
Programmer’s
Reference

Zinc® Application Framework™

Version 5

Zinc Software Incorporated
Pleasant Grove, Utah

NOTICE

This documentation is available in electronic and printed formats. If the electronic documentation is
printable, a single copy may be printed for use by the Developer. Except for the foregoing, no part of
this publication may be reproduced, translated, stored in a retrieval system, or transmitted, in any
form or by any means, without the prior written permission of Zinc Software Incorporated (“Zinc”).

DISCLAIMER

While every precaution has been taken in the preparation of this manual, Zinc assumes no responsi-
bility for errors or omissions. This publication and features described herein are subject to change
without notice. ZINC MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

TRADEMARKS

Zinc is a registered trademark and Zinc Application Framework, Zinc Designer and Zinc DataCon-
nect are trademarks of Zinc Software Incorporated. All other trademarks and tradenames used herein
are owned by their respective holders.

LICENSE AGREEMENTS

Zinc Application Framework is licensed subject to the terms and conditions of one of two separate
license agreements found in the “Getting Started” manual. The Personal Version license is provided
to individuals developing non-commercial, non-distributable, personal-use-only applications. There
is no license fee or royalty required for the Personal Version license. HOWEVER, TO EXERCISE
RIGHTS BEYOND THE PERSONAL VERSION LICENSE, THE DEVELOPER MUST PUR-
CHASE A PROFESSIONAL VERSION LICENSE FROM ZINC.

ACKNOWLEGEMENTS

The ChartFolio framework used by ZafChart is licensed software ©1994-97 DPC Technology Corpo-
ration. The XPM library used by ZafImage on Motif is licensed software ©1989-95 GROUPE BULL.
The ZAF installation program on Windows (INSTALIT) is licensed software ©1986-96 HPI. The
MetaWINDOW graphics primitives used by ZafDisplay on DOS is licensed software ©1988-96
Metagraphics, Inc.

This manual was generated December 23, 1997.

Copyright © 1990-1997 Zinc Software Incorporated.
All Rights Reserved.
Printed in the United States of America on recycled paper.

Contacting Zinc

Worldwide Sales: info@zinc.com, sales@zinc.com
Technical Support: support@zinc.com
Training and Consulting: services@zinc.com
Web: http://www.zinc.com/
Ftp: ftp://ftp.zinc.com/
CompuServe: GO ZINC

North America Zinc Software Incorporated
405 South 100 East
Pleasant Grove, Utah 84062 USA
Tel: 1-801-785-8900
Sales: 1-800-638-8665
Support: 1-801-785-8998
Fax: 1-801-785-8996

Zinc Software Services, Inc.
42627 Garfield, Suite 214
Clinton Township, Michigan 48038 USA
Tel: 1-810-228-4900
Fax: 1-810-228-6633

Europe Zinc Software (UK) Ltd.
106-108 Powis Street
London, SE18 6LU United Kingdom
Tel: +44 (0)181 855-9918
Fax: +44 (0)181 316-2211
BBS: +44 (0)181 317-2310
Email: europe@zinc.com

Table of Contents v

Table of Contents

Introduction 11

Class Reference 17
Class Hierarchy 19
ZafApplication 22
ZafAttachment 27
ZafBignum 32
ZafBignumData 37
ZafBitmap . 47
ZafBitmapData 50
ZafBitmapStruct 53
ZafBorder . 55
ZafButton . 58
ZafChart . 72
ZafChartStub 81
ZafCodeSetData 82
ZafComboBox 89
ZafConstraint 94
ZafCoordinateType. 97
ZafCursor . 99
ZafData . 102
ZafDataManager 108
ZafDataPersistence 110
ZafDataRecord 119
ZafDate . 121
ZafDateData 126
ZafDevice 129
ZafDialogWindow 133
ZafDimensionConstraint. 136
ZafDiskFile 140
ZafDiskFileSystem 142

vi Zinc Application Framework 5

ZafDisplay 147
ZafElement 170
ZafEraStruct 180
ZafErrorStub 182
ZafErrorSystem 184
ZafEventManager 186
ZafEventMap 191
ZafEventStruct 193
ZafFile . 200
ZafFileDialog 207
ZafFileInfoStruct 211
ZafFileSystem 213
ZafFormatData. 218
ZafFormattedString 221
ZafGdiDisplay 227
ZafGeometryManager 228
ZafGroup . 232
ZafHelpStub. 237
ZafHelpSystem 238
ZafHelpTips 242
ZafHzList . 247
ZafI18nData 252
ZafIcon. . 257
ZafIconData 262
ZafIconStruct 265
ZafImage . 267
ZafImageData 272
ZafImageStruct 274
ZafInteger. 275
ZafIntegerData 280
ZafKeyboard 285
ZafKeyStruct 288
ZafLanguageData. 289
ZafLanguageManager 293
ZafList . 296
ZafListBlock 300
ZafLocaleData 301
ZafLocaleStruct 304

Table of Contents vii

ZafMaximizeButton 310
ZafMDIWindow 313
ZafMessageData 317
ZafMessageStruct 319
ZafMessageWindow 320
ZafMinimizeButton 326
ZafMouse 329
ZafMouseData 333
ZafMouseStruct 337
ZafMSWindowsApp 340
ZafNotebook 346
ZafNotification 350
ZafObjectPersistence 358
ZafPaletteData 367
ZafPaletteMap. 370
ZafPaletteStruct 371
ZafPath . 375
ZafPathElement 376
ZafPopUpItem 378
ZafPopUpMenu 385
ZafPositionStruct 388
ZafPrintDialog 390
ZafPrinter 392
ZafPrintJobStruct 399
ZafProgressBar 400
ZafPrompt 406
ZafPullDownItem 411
ZafPullDownMenu 417
ZafQueueBlock 420
ZafQueueElement 421
ZafReal . 422
ZafRealData 426
ZafRegionStruct 430
ZafRelativeConstraint. 434
ZafScreenDisplay 439
ZafScrollBar 442
ZafScrollData 446
ZafScrollStruct 450

viii Zinc Application Framework 5

ZafScrolledWindow. 452
ZafSpinControl 456
ZafSplitter 460
ZafStandardArg 465
ZafStatusBar 468
ZafStorage 471
ZafStorageFile 476
ZafString . 478
ZafStringData 490
ZafSystemButton 501
ZafTable . 507
ZafTableHeader 518
ZafTableRecord 522
ZafText. . 525
ZafTime . 532
ZafTimeData 536
ZafTimer . 539
ZafTitle . 543
ZafToolBar 546
ZafTreeItem 550
ZafTreeList 558
ZafUTime. 565
ZafUTimeData 570
ZafVtList . 579
ZafWindow 583
ZafWindowManager 603
ZafWindowObject 609

Function Reference 703
ZafAbs . 705
ZafCrNlToCr 706
ZafCrNlToNl 707
ZafCrToCrNl 708
DynamicPtrCast 709
ZafMax. . 710
ZafMin . 711
ZafNlToCrNl 712
ZafRegisterMouse 714

Table of Contents ix

ZafStrColl 715
ZafStrdup 716
streq. 717
ZafStricmp 718
ZafStrlwr . 719
strneq . 720
strnicmp . 721
strrepc . 722
strstrip . 723
ZafStrupr . 724
ZafStrXFrm. 725
WildStrcmp. 726

Utility Reference 727
Convert . 729
Rep . 730
Rep4to5 . 731
ZMake . 746

Appendices 753
Event Definitions A-755
Property Matrices B-773
ZAF 5 to 4 Class Comparisons C-791
Character Maps D-796
ISO Country Codes. E-798
ISO Language Codes F-806
X Resources G-811
Zinc Coding Standards H-813

Index. 823

x Zinc Application Framework 5

Introduction

Zinc Application Framework Version 5 is a sophisticated product with many
nuances. As you will soon discover, there are as many ways to accomplish a
given task using ZAF as there are programmers. Zinc has created this refer-
ence with this principle in mind. Not only does this reference manual define
and publish the ZAF API, it also offers examples and hints on its use.

The Programmer’s Reference is available in two formats: hard copy documen-

tation and electronic documentation using Adobe® Acrobat®. Electronic docu-
mentation is supplied with Zinc Application Framework. Hard copy
documentation is available as a separate purchase.

Many programmers are already familiar with the advantages of electronic doc-
umentation and have become accustomed to using it. If you are not one of
these people, you’ve probably had a bad experience with first-generation elec-
tronic documentation. We encourage you to try again! The ZAF 5 Program-
mer’s Reference will be the best on-line documentation you’ve ever
experienced—and may change your mind forever about electronic docs.

This introduction chapter will familiarize you with the organization and for-
matting conventions of the Programmer’s Reference, and provide useful tips
for effective use of the electronic documentation. Contact information for Zinc
software is provided at the end of the chapter.

Organization This manual is divided into five major sections as follows:

• Table of Contents

The table of contents is hypertext linked in the electronic documentation. This
allows rapid navigation to each chapter.

12 Zinc Application Framework 5

• Class Reference
All ZAF 5 classes and structures are documented in this section—the majority of
the manual. Each class is formatted similarly to provide complete yet comfortable
information about each class. (Refer to the “Conventions and Formats” section
below for more information.) For programmers using electronic documentation,
these chapters are internally hypertext linked, plus linked to related and base
classes for rapid reference.

• Utility Reference

External applications supplied with ZAF 5 are documented in this section, with
one notable exception—Zinc Designer is documented separately in its own man-
ual. If you are converting applications developed using a previous version of Zinc
Application Framework to ZAF 5, this section contains useful information includ-
ing a complete correlation of ZAF 4 symbols to their new ZAF 5 equivalents.

• Appendices

Appendices include all essential reference information for ZAF 5 that cannot be
comfortably categorized as “Class Reference” or “Utility Reference.” Informa-
tion found here includes a comprehensive reference to messages, Zinc internal
coding conventions, and useful tables of object properties including defaults.

• Index

The Programmer’s Reference index includes every public member function in the
ZAF 5 API, plus many additional references to information found only in this
manual. This section is fully hypertext linked for programmers using electronic
documentation.

Conventions
and Formats

The majority of this manual is dedicated to the documentation of classes and
structures. The following format is generally followed in each chapter:

ClassName

A table at the beginning of each chapter lists all members documented in the
chapter. Only those members that meet all of the following criteria are docu-
mented:

• The member is public

• The member is overloaded in this class (not simply inherited from a base class)

• The member is substantially changed from the base class implementation, if any

• The member is not a “Blocking function.” Blocking functions are those members
overloaded simply to prevent modification of a class property in a derived class.

Member 1 Member 2 Operator 1

Introduction 13

These are not normally documented. Blocking functions can be identified by
entries in the “Member Initializations” table of the chapter’s “Constructors” sec-
tion.

Inheritance ZafDialogWindow : ZafWindow : ((ZafWindowObject :
ZafElement), ZafList)

The inheritance list shows the complete class hierarchy for this class. It uses a
terse notation (shown above) where a “:” (colon) separates a derived class from
its base class, and a “,” is used to denote multiple inheritance. “()” may also
be used for simple grouping.

The class hierarchy depicted above can be represented hierarchically as:

ZafDialogWindow

ZafWindow

ZafWindowObject

ZafElement

ZafList

In this hierarchy, “ZafDialogWindow” multiply inherits from “ZafWindow”.
“ZafWindow” in turn inherits from “ZafWindowObject” (which inherits from
“ZafElement”) and “ZafList”.

Base classes are hypertext linked to their reference chapters for rapid access by
programmers using electronic documentation.

Declaration #include <z_dlgwin.hpp>

The declaration directs the programmer to the ZAF header file (found in the
“\include” directory) that contains the definition for the class. The program-
mer does not typically need to specifically include this header file since it is
automatically included with “#include <zaf.hpp>.”

Description This section describes the purpose of the class and its typical uses. Often the
description will also include important information about class interactions,
caveats, and specific application usage.

14 Zinc Application Framework 5

Constructor(s) The “constructors” section begins with a brief description of the purpose for
the classes constructors and is followed by a table of “Member Initializations”
as follows:

The member initializations table lists the referenced class and any relevant
base classes along with their individual members that are specifically set in the
constructors for this class. To emphasize proper API usage, the public accessor
functions used to manipulate the protected and private data members are listed
instead of the data members themselves.

When present, “†” indicates a “blocking function” that prevents changes to the
attribute in this class. The value is set in the constructor and should not be
altered.

Destructor Specific information important to the deallocation of this class is presented in
this section. ZAF classes chain their destructor to the destructors of base
classes.

Members
SetCurrentPage virtual int SetCurrentPage(ZafWindowObject *currentPage)

Each member variable and function is documented with its complete declara-
tion from the header file, and a full description of the purpose and usage of the
member. Parameters are detailed and sample code snippets are often provided.

Member Initializations

ZafWindow
Destroyable() false

...

ZafWindowObject
AcceptDrop() false†

Bordered() false†

...

Introduction 15

Tips for
Electronic
Docs

To maximize the utility of electronic documentation programmers may wish to
consider the following tips:

• Obtain the latest version of Adobe Acrobat with full text search capabilities.
Zinc’s documentation relies on the capabilities of Adobe Acrobat version 3.0 with
full text search. The Zinc ftp site (ftp://ftp.zinc.com) and web site (http://
www.zinc.com) maintain copies of Acrobat, but Adobe’s site (http://
www.adobe.com) is the authoritative source.

• Maximize the Acrobat window. You’re looking at a document formatted for
printing. Pages are larger than the display and fonts are relatively small. The big-
ger the viewing area the better!

• For maximum performance, select “File | Preferences | General” and deselect the
option to “Smooth text and monochrome images.” This will greatly enhance the
speed of scrolling and page redisplay.

• Set continuous page display mode by selection “View | Continuous” from the
menu. This will allow you to more easily read sections that are split across two
pages.

• If you know which class you are looking for, use the Acrobat’s “bookmarks” (the
left side of the display) to expand the “Class Reference” section and directly the
select the class you want.

• Once you’re positioned on the correct class, click once in the document to auto-
matically “zoom” the display to full page width. This is the best size for actually
reading the content!

• Scan the members table at the top of the class. If you find the member you want,
click it and you’ll be taken directly to the reference for that member.

• If you don’t find the member you want, chances are good that the member was
inherited from a base class. Click on the first base class in the class’ “Inheritance”
diagram to jump directly to the base class. Repeat the process of scanning for the
member you want.

• To jump back to a previous view (i.e. “undo” a hypertext jump) use the “<<” but-
ton on the Acrobat toolbar.

• If you don’t know which class you’re looking for, select the member in the
“Index” portion of Acrobat’s “bookmarks” (the left side of the display). You’ll
jump into the index where you can select which of the references to use for that
member. Click on the page number of the reference to jump directly to the mem-
ber.

• Copy and paste code snippets into your own projects using the native clipboard
features of your OS. Note, however, that Acrobat is not a textual application and
does not preserve indenting when copying to the clipboard.

• Use the “full text indexing” capability of Acrobat to search for words that cannot
be found any other way. Select “Tools | Search” from the menu. This is a rapid,
full-text search. If your version of Acrobat does not support full-text searching,

16 Zinc Application Framework 5

select “Tools | Find” from the menu for a slower, sequential search of the docu-
mentation.

Contacting
Zinc

We want to hear from you! Your feedback drives the progress of the products
and services at Zinc. Watch our web site regularly for the latest information
from Zinc, and participate in Zinc’s discussion groups.

To contact Zinc directly, please refer to the information at the beginning of this
manual.

Class Reference

Class Reference 19

Class Hierarchy
The class hierachy for ZAF 5 is presented below. “<-” indicates multiple
inheritance and specifies additional base classes.

ZafApplication (z_app.hpp)
ZafDataPersistence (z_data.hpp)

ZafObjectPersistence (z_win.hpp)
ZafDisplay (z_dsp.hpp)

ZafScreenDisplay (z_scrdsp.hpp)
ZafPrinter (z_print.hpp)

ZafElement (z_list.hpp)
ZafConstraint (z_gmgr.hpp)

ZafAttachment (z_gmgr.hpp)
ZafDimensionConstraint (z_gmgr.hpp)
ZafRelativeConstraint (z_gmgr.hpp)

ZafData <- ZafNotification (z_data.hpp)
ZafDataRecord <- ZafList (z_data.hpp)

ZafDataManager (z_data.hpp)
ZafLanguageData (z_lang.hpp)
ZafLanguageManager (z_lang.hpp)

ZafFormatData (z_fdata.hpp)
ZafBignumData (z_bnum.hpp)
ZafIntegerData (z_int.hpp)
ZafRealData (z_real.hpp)
ZafStringData (z_str.hpp)

ZafMessageData (z_lang.hpp)
ZafUTimeData (z_utime.hpp)

ZafDateData (z_date.hpp)
ZafTimeData (z_time.hpp)

ZafI18nData (z_idata.hpp)
ZafCodeSetData (z_cset.hpp)
ZafLocaleData <- ZafLocaleStruct (z_loc.hpp)

ZafImageData (z_idata1.hpp)
ZafBitmapData <- ZafBitmapStruct (z_bmap.hpp)
ZafIconData <- ZafIconStruct (z_icon.hpp)
ZafMouseData <- ZafMouseStruct (z_mouse1.hpp)

ZafPaletteData (z_pal1.hpp)
ZafScrollData <- ZafScrollStruct (z_scrll1.hpp)

ZafDevice (z_dev.hpp)
ZafCursor (z_cursor.hpp)
ZafHelpTips (z_htips.hpp)
ZafKeyboard (z_keybrd.hpp)
ZafMouse (z_mouse2.hpp)
ZafTimer (z_timer.hpp)

ZafPathElement (z_file.hpp)

20 Zinc Application Framework 5

ZafQueueElement (z_evtmgr.hpp)
ZafWindowObject (z_win.hpp)

ZafBitmap (z_bmap1.hpp)
ZafBorder (z_border.hpp)
ZafButton (z_button.hpp)

ZafIcon (z_icon1.hpp)
ZafMaximizeButton (z_max.hpp)
ZafMinimizeButton (z_min.hpp)
ZafPopUpItem (z_popup.hpp)
ZafPullDownItem (z_plldn.hpp)
ZafSystemButton (z_sys.hpp)
ZafTitle (z_title.hpp)

ZafChartStub (z_chart.hpp)
ZafChart (cf_api/bz_zcht.hpp)

ZafGeometryManager <- ZafList (z_gmgr.hpp)
ZafImage (z_image.hpp)
ZafProgressBar (z_prgrss.hpp)
ZafPrompt (z_prompt.hpp)
ZafSplitter (z_split.hpp)
ZafString (z_str1.hpp)

ZafBignum (z_bnum1.hpp)
ZafDate (z_date1.hpp)
ZafFormattedString (z_fmtstr.hpp)
ZafInteger (z_int1.hpp)
ZafReal (z_real1.hpp)
ZafTime (z_time1.hpp)
ZafUTime (z_utime1.hpp)

ZafWindow <- ZafList (z_win.hpp)
ZafComboBox (z_combo.hpp)
ZafDialogWindow (z_dlgwin.hpp)

ZafFileDialog (z_fildlg.hpp)
ZafMessageWindow (z_msgwin.hpp)

ZafGroup (z_group.hpp)
ZafHelpSystem <- ZafHelpStub (z_help.hpp)
ZafHzList (z_hlist.hpp)
ZafMDIWindow (z_mdiwin.hpp)
ZafNotebook (z_notebk.hpp)
ZafPopUpMenu (z_popup.hpp)
ZafPullDownMenu (z_plldn.hpp)
ZafScrollBar (z_scrll2.hpp)
ZafScrolledWindow (z_sclwin.hpp)
ZafSpinControl (z_spin.hpp)
ZafStatusBar (z_status.hpp)
ZafTable (z_table.hpp)
ZafTableHeader (z_table.hpp)
ZafTableRecord (z_table.hpp)
ZafText (z_text.hpp)
ZafToolBar (z_tbar.hpp)
ZafTreeItem (z_tree.hpp)

Class Reference 21

ZafTreeList (z_tree.hpp)
ZafVtList (z_vlist.hpp)
ZafWindowManager (z_win.hpp)

ZafEraStruct (z_loc.hpp)
ZafErrorStub (z_error.hpp)

ZafErrorSystem (z_error.hpp)
ZafEventMap (z_win.hpp)
ZafEventStruct (z_event.hpp)
ZafFile (z_file.hpp)

ZafDiskFile (z_dskfil.hpp)
ZafStorageFile (z_store.hpp)

ZafFileInfoStruct (z_file.hpp)
ZafFileSystem (z_file.hpp)

ZafDiskFileSystem (z_dskfil.hpp)
ZafStorage (z_store.hpp)

ZafHelpStub (z_help.hpp)
ZafHelpSystem <- ZafWindow (z_help.hpp)

ZafImageStruct (z_dsp.hpp)
ZafBitmapStruct (z_dsp.hpp)

ZafBitmapData <- ZafImageData (z_bmap.hpp)
ZafIconStruct (z_dsp.hpp)

ZafIconData <- ZafImageData (z_icon.hpp)
ZafMouseStruct (z_dsp.hpp)

ZafMouseData <- ZafImageData (z_mouse1.hpp)
ZafKeyStruct (z_key.hpp)
ZafList (z_list.hpp)

ZafDataRecord <- ZafData (z_data.hpp)
ZafDataManager (z_data.hpp)

ZafEventManager (z_evtmgr.hpp)
ZafGeometryManager <- ZafWindowObject (z_gmgr.hpp)
ZafListBlock (z_list.hpp)

ZafQueueBlock (z_evtmgr.hpp)
ZafPath (z_file.hpp)
ZafWindow <- ZafWindowObject (z_win.hpp)

ZafLocaleStruct (z_loc.hpp)
ZafLocaleData <- ZafI18nData (z_loc.hpp)

ZafMessageStruct (z_lang.hpp)
ZafMSWindowsApp (w_app.hpp)
ZafNotification (z_notify.hpp)

ZafData <- ZafElement (z_data.hpp)
ZafPaletteMap (z_pal1.hpp)
ZafPaletteStruct (z_pal.hpp)
ZafPositionStruct (z_pos.hpp)
ZafRegionStruct (z_region.hpp)
ZafScrollStruct (z_scrll.hpp)

ZafScrollData <- ZafData (z_scrll1.hpp)
ZafStandardArg (z_stdarg.hpp)

22 Zinc Application Framework 5

ZafApplication

Inheritance Root Class

Declaration #include <z_app.hpp>

Description ZafApplication provides a platform independent entry point for ZAF applica-
tions called ZafApplication::Main() and a mechanism for managing global
objects used by these applications.

Execution of a C/C++ application begins with a call to main() or WinMain()
(for Microsoft Windows applications). ZAF includes main() or WinMain() in
its interface library so that it need not be provided by the ZAF developer.
Instead, the ZAF developer provides ZafApplication::Main().

A ZafApplication class instance is created and destroyed within the main() or
WinMain() function provided in the Zinc Application Framework library. This
allows ZafApplication to perform initialization of global objects before ZafAp-
plication::Main() is called, and to perform clean-up after. The following global
pointers are initialized by the ZafApplication constructor:

• zafApplication

• zafDisplay

• zafEventManager

• zafWindowManager

• zafLanguageManager

• zafLocale

• zafCodeSet

• zafI18nStorage

• zafErrorSystem

• zafSearchPath

ZafApplication also provides an event processing loop, ZafApplication::Con-
trol(). This loop controls the event flow for an application by getting events
from the ZAF event manager and passing them to the window manager. It
does not exit until program termination.

Constructor The ZafApplication constructor initializes global objects for use by ZAF appli-
cations. The constructor is called when a ZafApplication class instance is cre-

argc Control LinkMain
argv Error Main

ZafApplication 23

ated inside of the main() or WinMain() function found in the library. The
ZafApplication constructor should not be called by the ZAF developer.

The ZafApplication constructor also initializes the member variables associ-
ated with an instantiated ZafApplication object. The default values set by the
ZafApplication follow.

ZafApplication(int argc, char **argv);

The argc and argv parameters are equivalent to the parameters passed to a pro-
gram’s main() function. argc is an integer containing the number of arguments
passed to the program, and argv is an array of strings representing the argu-
ments passed to the program. If it exists, argv[0] contains the full path name of
the program being executed. Under Microsoft Windows, argc and argv are
synthesized from the parameters passed to WinMain().

Several global pointers are initialized by the constructor:

• zafApplication—a pointer to the application object

• zafDisplay—a pointer to the display

• zafEventManager—a pointer to the event manager

• zafWindowManager—a pointer to the window manager

• zafLanguageManager—a pointer to a ZafLanguageManager object containing
information about the active language

• zafLocale—a pointer to a ZafLocaleData object containing information about the
active locale

• zafCodeSet—a pointer to a ZafCodeSetData object containing information about
the active code page

• zafI18nStorage—a pointer to a ZafStorage object associated with I18N.ZNC, if it
was found

• zafErrorSystem—a pointer to a ZafErrorSystem object for reporting errors

• zafSearchPath—a pointer to a ZafPath object associated with the application star-
tup directory

In addition, ZafKeyboard, ZafMouse, ZafCursor, and ZafHelpTips devices are
added to the event manager. See ZafEventManager for additional information.

Member Initializations

ZafApplication
Error() ZAF_ERROR_NONE

24 Zinc Application Framework 5

Destructor virtual ~ZafApplication(void);

The ZafApplication destructor destroys all objects allocated by the constructor.

Members
argc int argc;

argc is an integer value specifying the number of arguments passed to the pro-
gram at startup. These arguments can be found in the argv member array.

argv ZafIChar **argv;

argv is an array of strings representing the arguments passed to the program at
start-up. If it exists, argv[0] contains the full path name of the program being
executed. The number of arguments passed to the program is contained in
argc.

Control ZafEventType Control(ZafQFlags flags = Q_NORMAL);

Control() is an event processing loop suitable for most applications. It
removes events from the event manager’s event queue and passes them to the
window manager. The Control() loop does not terminate until an S_EXIT is
removed from the event queue or until no windows are left on the window
manager.

Control() returns either S_EXIT, or S_NO_OBJECT. S_EXIT indicates that
an application is terminating because an S_EXIT message was processed,
while S_NO_OBJECT indicates that an application is terminating because
there are no windows left to process events.

The code for ZafApplication::Control() is shown below:

ZafEventType ZafApplication::Control(ZafQFlags flags)
{
 // Make sure there is a window attached to the window manager.
 if (!zafWindowManager->First())
 return (S_NO_OBJECT);
 // Wait for user response.
 ZafEventStruct event;
 ZafEventType ccode;
 do
 {
 if (zafEventManager->Get(event, flags) == 0)
 ccode = zafWindowManager->Event(event);
 } while (ccode != S_EXIT && ccode != S_NO_OBJECT);
 // Return the final code.
 return (ccode);

ZafApplication 25

}

It is sometimes desirable to process special events or to perform other special
actions inside of the control loop. In such cases, a custom control loop can be
written and the code above can be used as a starting point. See ZafEventMan-
ager and ZafWindowManager for details on relevant functions.

Error ZafError Error(void) const;

virtual ZafError SetError(ZafError error);

These functions get/set the error state of the ZafApplication. The types of
errors that can be set are defined in z_env.hpp. Generally, however, only the
following error values will be used by ZafApplication:

LinkMain void LinkMain(void);

LinkMain() is a stub used to overcome a deficiency with some linkers. If
main() (or WinMain()) is not found in an object file, most linkers will search
the libraries to find it. Some, however, do not. Since main() is included in the
interface library, linkers that do not look for it there may not find it and gener-
ate an error. ZAF developers who run into this error can resolve it by adding a
call to LinkMain() inside of ZafApplication::Main().

Main int Main(void);

Main() is the entry point for a ZAF application and must be provided by the
ZAF programmer. Execution of a C/C++ application begins with a call to
main() (or WinMain() for Microsoft Windows applications). ZAF includes
main() or WinMain() in its interface library so that it need not be provided by
the ZAF developer. Instead, the ZAF developer provides the ZafApplica-
tion::Main() function. This provides a platform independent entry point for all
ZAF applications.

The code below shows the Main() function for a simple ZAF application:

Error Value Description

ZAF_ERROR_NONE No error exists.

ZAF_ERROR_CONSTRUCTOR The ZafApplication was not properly
constructed, and will exit automati-
cally.

26 Zinc Application Framework 5

int ZafApplication::Main()
{
zafWindowManager->Add(new HellowWindow());
Control();
return (0);

}

The argc and argv member variables can be used in place of the parameters
normally passed to a C/C++ main() function. These variables are initialized in
the ZafApplication constructor (see argc and argv).

Main() is typically where the user would reinitialize internationalization for the
program. For more information on adding internationalization, see the
ZafI18nData chapter.

ZafAttachment 27

ZafAttachment

Inheritance ZafAttachment : ZafConstraint : ZafElement

Declaration #include <z_gmgr.hpp>

Description ZafAttachment geometry management constraints allow window objects to be
attached to the edges of sibling or parent window objects. ZafAttachment con-
straints must be added to the ZafGeometryManager object that has been added
to the managed object’s parent. (See ZafGeometryManager for more informa-
tion.)

Constructors All ZafAttachment constructors initialize the member variables associated with
an instantiated ZafAttachment object. The default values set by the ZafAttach-
ment and its base class constructors follow, if they differ from those set by the
base class constructor.

ZafAttachment(ZafWindowObject *object, ZafAttachmentType
type);

This constructor is useful in straight-code situations to create a ZafAttachment
object. object specifies the window object the constraint applies to, and type
specifies the type of attachment constraint. See ZafConstraint::Object() and
ZafAttachment::Type() for more information.

Event Reference Type
Offset Reference-NumberID
OppositeSide Stretch

Member Initializations

ZafAttachment
Offset() -1

OppositeSide() false

Reference() null

ReferenceNumberID() -1

Stretch() false

Type() user-supplied parameter

ZafElement
ClassID() ID_ZAF_ATTACHMENT

ClassName() "ZafAttachment"

28 Zinc Application Framework 5 - Beta

ZafAttachment(const ZafAttachment ©);

The copy constructor creates a new ZafAttachment object and initializes its
data from copy.

ZafAttachment(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create an attachment constraint follows:

// Create a status bar with geometry-managed children.
ZafStatusBar *stat = new ZafStatusBar(0, 0, 0, 1);
ZafString *string = new ZafString(0, 0, 15, new

ZafStringData("String"));
stat->Add(string);
ZafTime *time = new ZafTime(15, 0, 15, new ZafTimeData);
stat->Add(time);

// Time field will remain at the right side.
ZafAttachment *attach = new ZafAttachment(time, ZAF_ATCF_RIGHT);
attach->SetOffset(0);

// Create the geometry manager and add the first constraint.
ZafGeometryManager *geo = new ZafGeometryManager;
geo->Add(attach);

// String field will occupy the remaining space.
attach = new ZafAttachment(string, ZAF_ATCF_RIGHT);
attach->SetStretch(true);
attach->SetReference(time);
attach->SetOppositeSide(true);
attach->SetOffset(1);

// Add the second constraint to the geometry manager.
geo->Add(attach);

// Add the geometry manager to the status bar.
stat->Add(geo);

Destructor virtual ~ZafAttachment(void);

ZafAttachment 29

The destructor is used to free the memory associated with a ZafAttachment
object. It chains to the ZafConstraint and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafAttachment object,
since it is automatically destroyed when its parent geometry manager is
destroyed. For more information on child object deletion, see the ZafWindow
destructor.

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events sent to the ZafAttachment object.
The events handled by ZafAttachment are as follows:

Offset int Offset(void) const;

int SetOffset(int offset);

Offset() is the distance from the edge of the Reference() object that the edge of
Object() is positioned. Distances depend on Type() and OppositeSide(), and
are specified in the same coordinate type as Object()->Region().

For example, if Type() is ZAF_ATCF_LEFT, Offset() is 0, and OppositeSide()
is false, then the left edge of Object() will be set to the same value as the left
edge of Reference(). This attribute defaults to -1, requiring the programmer to
change it with SetOffset().

OppositeSide bool OppositeSide(void) const;

bool SetOppositeSide(bool oppositeSide);

If OppositeSide() is true, then the opposite edge of the Reference() object is
used when computing the position of Object().

ZafEventType Description

S_COMPUTE_SIZE causes the constraint to compute and modify the size
or position of its window object

S_INITIALIZE causes the constraint to initialize its numberID,
stringID, Object(), and Reference()

30 Zinc Application Framework 5 - Beta

For example, if Type() is ZAF_ATCF_LEFT, Offset() is 10, and Opposite-
Side() is true, then the left edge of Object() will be set to 10 pixels to the right
of the right edge of Reference(). If OppositeSide() is false, then the left edge
of Object() would be set to 10 pixels to the right of the left edge of Reference().
This attribute defaults to false, but the programmer may change it with SetOp-
positeSide().

Reference ZafWindowObject *Reference(void) const;

ZafError SetReference(ZafWindowObject *reference);

Reference() is the window object whose Region() is used when computing the
position of Object() (or the object to which this object is attached). If Refer-
ence() is null, the Region() of the parent of Object() is used as a reference.
This attribute defaults to null, but the programmer may change it with SetRef-
erence().

Reference-
NumberID

ZafNumberID *ReferenceNumberID(void) const;

void SetReferenceNumberID(ZafNumberID referenceNumberID);

ReferenceNumberID() specifies the numberID of the Reference() object.
When reading a constraint from a persistent data file, the constraint is tied to its
Reference() object via the numberID. This attribute defaults to , but the pro-
grammer may change it with SetReferenceNumberID().

Stretch bool Stretch(void) const;

bool SetStretch(bool stretch);

If Stretch() is true, then the opposite side of Object() than that specified by
Type() is not modified. For example, if Type() is ZAF_ATCF_RIGHT, Off-
set() is 0, and Stretch() is true, then the right edge of Object() will be set to the
same value as the right edge of Reference() and the left edge of Object() will
remain where it is, in effect making it possible to stretch Object(). If Stretch()
is false, then the left edge of Object() would be modified so that the width of
Object() would remain the same. This attribute defaults to false, but the pro-
grammer may change it with SetStretch().

Type ZafAttachmentType Type(void) const;

ZafAttachmentType SetType(ZafAttachmentType type);

Type() is the attachment constraint’s type, which specifies the side of Object()
used when calculating its position. If OppositeSide() is false, then Type() also
specifies the side of the Reference() object used when calculating the position

ZafAttachment 31

of Object(). If OppositeSide() is true, then the opposite side of the Reference()
object is used when calculating the position of Object(). The programmer may
use SetType() to change this attribute. The possible values for Type() follow:

Type() Description

ZAF_ATCF_BOTTOM causes the constraint to affect the bottom side of
Object()

ZAF_ATCF_LEFT causes the constraint to affect the left side of Object()

ZAF_ATCF_RIGHT causes the constraint to affect the right side of
Object()

ZAF_ATCF_TOP causes the constraint to affect the top side of Object()

32 Zinc Application Framework 5

ZafBignum

Inheritance ZafBignum : ZafString : ZafWindowObject : ZafElement

Declaration #include <z_bnum1.hpp>

Description ZafBignum is a single-line arbitrary precision numeric object designed for
financial and scientific use. ZafBignum allows user input through the key-
board. ZafBignum is fully internationalized to display and input using any for-
mat.

All ZafBignum objects refer to data contained in a ZafBignumData object
(refer to this class for additional essential information).

Formats ZafString and derived classes parse input and display output based on default
or programmer-defined input and output formats. Programmers may use the
SetInputFormat() and SetOutputFormat() families of functions to change the
default format. These functions are documented in the ZafString reference.

Each class derived from ZafFormatData handles a different set of formatting
arguments, in addition to those supported by its base classes. ZafBignumData
(and therefore ZafBignum) handles the following arguments in addition to
those used by ZafReal, ZafInteger, and ZafString:

Constructors All ZafBignum constructors initialize the member variables associated with an
instantiated ZafBignum object. The default values set by the ZafBignum and
its base class constructors follow, if they differ from those set by the base class

BignumData IValue SetBignum
Event RValue

Format Argument Substitution

%[$ @+-,]B Bignum, with any combination of the following
options:

$ adds the currency symbol

’ ’ (space character) inserts a space between the currency symbol and the
number

@ adds credit symbols such as parens for a negative num-
ber

+ adds a positive sign for positive numbers

- causes the bignum to be left-justified

, adds thousands separators

ZafBignum 33

constructor, or if a blocking function is implemented in ZafBignum. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

ZafBignum(int left, int top, int width, long value);

ZafBignum(int left, int top, int width, double value);

These constructors are useful in straight-code situations, particularly if the Zaf-
Bignum object is to create, maintain and destroy its own ZafBignumData
object automatically. left, top, and width specify the position and size of the
object on its parent. All values are specified in cell coordinates by default, but
may be specified using another coordinate system if desired.

value is the value that initially appears in the new ZafBignum object and can
be either an integral or a floating point value.

ZafBignum(int left, int top, int width, ZafBignumData
*bignumData = ZAF_NULLP(ZafBignumData));

This constructor is useful in straight-code situations where a ZafBignumData
object has already been created. This constructor could be used when manu-
ally maintaining a ZafBignumData object, rather than having the ZafBignum
class create and maintain the data object automatically. For more information
on using ZafBignumData objects, see the chapter on ZafBignumData. See the
previous constructor for a description of left, top, and width parameters.

Member Initializations

ZafBignum
BignumData() null

ZafString
LowerCase() false†

Password() false†

StringData() null†

UpperCase() false†

VariableName() false†

ZafElement
ClassID() ID_ZAF_BIGNUM

ClassName() "ZafBignum"

34 Zinc Application Framework 5

ZafBignum(const ZafBignum ©);

The copy constructor calls the overloaded Duplicate() to create a new ZafBig-
num object and initialize its data from copy. If the original data objects are
StaticData() then the new ZafBignum object simply points to the original data,
otherwise StaticData() copies are made.

ZafBignum(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Sample ZafBignum creation techniques follow:

// Create a sample window with bignum objects.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);
// Create bignum objects and pass in the values directly.
window1->Add(new ZafBignum(0, 1, 25, 3.1415927));
window1->Add(new ZafBignum(0, 2, 25, 100));
...
// Create a sample window with bignum objects.
ZafWindow *window2 = new ZafWindow(10, 10, 40, 10);
// Create bignum data objects.
ZafBignumData *bigData1 = new ZafBignumData(3.1415927);
ZafBignumData *bigData2 = new ZafBignumData(100);
// Create bignums that use the data previously created.
window2->Add(new ZafBignum(0, 1, 25, bigData1));
window2->Add(new ZafBignum(0, 2, 25, bigData2));

Destructor virtual ~ZafBignum(void);

The destructor is used to free the memory associated with a ZafBignum object,
including all data objects that are Destroyable(). It chains to the ZafString,
ZafWindowObject, and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafBignum object, since
it is automatically destroyed when its parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members ZafBignumData *BignumData(void) const;
BignumData virtual ZafError SetBignumData(ZafBignumData

*bignumData);

*BignumData() contains the actual information used by ZafBignum. The Big-
numData() object may be used by one or more ZafBignum objects, or other
objects. If shared, all associated ZafBignum objects will be notified when the

ZafBignum 35

BignumData() changes. For more information on data sharing in ZAF, see
ZafDataManager. SetBignumData() will delete the previous BignumData()
object if it is Destroyable() and no other object uses it.

BignumData() returns a pointer to the BignumData() object associated with the
ZafBignum object. The return value for SetBignumData() is normally
ZAF_ERROR_NONE. See the constructor code snippet for an example using
ZafBignumData objects with ZafBignum.

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function receives all events that get sent to the ZafBignum
object and either handles them or passes them to ZafString, its immediate base
class. See ZafWindowObject for more information.

ZafBignum specifically handles the following events:

IValue long IValue(void);

IValue() returns the value of the ZafBignumData associated with this ZafBig-
num as a long.

RValue double RValue(void);

RValue() returns the value of the ZafBignumData associated with this ZafBig-
num as a double.

Event Description

N_RESET_I18N causes the object to redisplay its data according to the
new internationalization values

S_COPY_DATA causes the object to copy event.windowObject’s Big-
numData() if event.windowObject is a ZafBignum
object

S_SET_DATA causes the object to create a new BignumData() object,
then copy into it event.windowObject’s BignumData() if
event.windowObject is non-null and is a ZafBignum
object

36 Zinc Application Framework 5

SetBignum virtual ZafError SetBignum(long value);

virtual ZafError SetBignum(double value);

SetBignum() sets the value of the ZafBignumData associated with this ZafBig-
num from value.

ZafBignumData 37

ZafBignumData

Inheritance ZafBignumData : ZafFormatData : ZafData : (ZafElement,
ZafNotification)

Declaration #include <z_bnum.hpp>

Description ZafBignumData objects can be used to store and manipulate large numeric val-
ues to an arbitrary level of precision. Internally, ZafBignumData uses BCD
(Binary Coded Decimal) representation to store and manipulate large numbers.

ZafBignumData combines number encapsulation with data and object notifica-
tion from ZafData. It is most often used in conjunction with the ZafBignum
user interface object but may be used as a stand-alone object if desired.

Numeric precision of ZafBignumData defaults to thirty digits to the left of the
decimal and eight to the right. If desired, this precision may be changed by
rebuilding the library after changing two constants
(ZAF_NUMBER_WHOLE, ZAF_NUMBER_DECIMAL) in z_bnum.hpp.

All ZafData objects may make use of printf-style formatting and parsing argu-
ments during string operations. In addition to printf arguments normally used
by real and integer data types, ZafBignumData adds additional custom argu-
ments (conversion characters) to those normally available to the printf family
of functions:

Clear operator + operator /=
double operator ++ operator %=
FormattedText operator * operator ==
IValue operator / operator !=
long operator % operator <
RValue operator = operator <=
SetBignum operator += operator >
operator - operator -= operator >=
operator -- operator *=

38 Zinc Application Framework 5

Refer to standard library documentation for detailed information on printf
functions and conversion characters.

Constructors ZafBignumData constructors initialize the member variables associated with a
new ZafBignumData object and allocate space to hold the bignum data.

The default values set by ZafBignumData follow, if they are overridden from
those set by base class constructors:

ZafBignumData(void);

The basic constructor allocates a ZafBignumData instance and initializes its
value to 0.

ZafBignumData(long value);

ZafBignumData(double value);

These constructors allocate a ZafBignumData instance and initialize its con-
tents to value. Since a compiler error may result in passing a value of type int,
such a value must be explicitly cast by the programmer. The data is automati-

Format conversion char Description

"B" Formats the printf() argument as a bignum.
The stream is right-padded with zeros to the
full precision of a bignum. Leading zeros are
suppressed.

Parse conversion char

"B" Parses a scanf() stream component as a big-
num and stores the resulting value in the sup-
plied bignum argument.

Member Initializations

ZafBignumData
IValue() (varies by constructor)

RValue() (varies by constructor)

ZafElement
ClassID() ID_ZAF_BIGNUM_DATA

ClassName() "ZafBignumData"

ZafBignumData 39

cally converted to its equivalent BCD representation and stored in an internal
buffer.

ZafBignumData(const ZafIChar *string, const ZafIChar
*format = ZAF_NULLP(ZafIChar));

This constructor allocates a ZafBignumData instance and initializes its value to
the numeric equivalent of string. The conversion uses the printf-style specifier
format to interpret the string. If format is null ZafBignumData uses its locale-
specific default format.

ZafBignumData(const ZafBignumData ©);

This constructor is the copy constructor. It allocates a new ZafBignumData
instance and copies all member data from copy.

ZafBignumData(const ZafIChar *name, ZafDataPersistence
&persist);

This constructor is the persistent constructor. It allocates a new ZafBignum-
Data instance and reads most member data from the name directory of the per-
sistent data file referred to by persist. The StringID() of the new data is name.

// Sample ZafBignumData creation techniques
double value = 123.45;
ZafBignumData bignum1(value);
ZafBignumData copyBignum = bignum1;
ZafBignumData stringBignum("123.45");
ZafBignumData zeroBignum;

Destructor virtual ~ZafBignumData(void);

The destructor is used to free the memory associated with an instantiated Zaf-
BignumData object. A ZafBignumData object is usually destroyed automati-
cally when all ZafBignum objects that refer to it are destroyed (unless the last
ZafBignum object referring to the ZafBignumData object has its StaticData()
set to true).

Members virtual void Clear(void);
Clear Clear() sets the value of a ZafBignumData object to zero.

40 Zinc Application Framework 5

double operator double();

See RValue().

FormattedText virtual int FormattedText(ZafIChar *buffer, int
maxLength, const ZafIChar *format = 0) const;

FormattedText() fills buffer with a string representation of the ZafBignumData
using the printf-style specifier format to build the string. A locale-specific
default format is used if format is not included. Buffer contents will be trun-
cated if they exceed maxLength characters. FormattedText() returns the inte-
ger value it receives from its call to Sprintf().

// Show various results of FormattedText().
ZafIChar buffer[256];

ZafBignumData bignum(12345.6789);
bignum.FormattedText(buffer, 256);
printf("bignum - %s\n", buffer);

bignum.FormattedText(buffer, 256, "%.0B");
printf("integer - %s\n", buffer);

bignum.FormattedText(buffer, 256, "%5.2B");
printf("real - %s\n", buffer);

==========
bignum - 12345.67890000
integer - 12346
real - 12345.68

IValue long IValue(void) const;
long operator long();

IValue() returns the integer equivalent of a ZafBignumData object as a long.
The convenience operator long(), which returns IValue(), is more commonly
used.

In the examples below, note that the compiler must be able to resolve static val-
ues to longs or doubles to properly interpret the overloaded operator.

// Perform numerical operations on a bignum.

ZafBignumData bignum(12345.6789);
bignum = bignum.IValue() + 1.0;
printf("bignum - %b\n", bignum);

ZafBignumData 41

bignum = bignum - 0.1;
printf("bignum - %b\n", bignum);

==========
bignum - 12346.00000000
bignum - 12345.90000000

operator long();

See IValue().

RValue double RValue(void) const;

operator double();

RValue() returns the real value of a ZafBignumData object as a double. The
convenience operator double(), which returns RValue(), is more commonly
used.

In the examples below, note that the compiler must be able to resolve static val-
ues to longs or doubles to properly interpret the overloaded operator. Compare
the following code to the IValue() code above.

// Perform numerical operations on a bignum.

ZafBignumData bignum(12345.6789);
bignum = bignum.RValue() + 1.0;
printf("bignum - %B\n", bignum);

bignum = double(bignum) - 0.1;
printf("bignum - %B\n", bignum);

==========
bignum - 12346.67890000
bignum - 12346.57890000

SetBignum virtual ZafError SetBignum(long value);

virtual ZafError SetBignum(double value);

virtual ZafError SetBignum(const ZafIChar *buffer, const
ZafIChar *format);

virtual ZafError SetBignum(const ZafBignumData &number);

SetBignum() functions set the value of the ZafBignumData object from vari-
ous numeric input types, sscanf-style specifiers buffer and format (if not
included, a locale-specific default format is used), or another bignum. Refer to

42 Zinc Application Framework 5

FormattedText() for more information on bignum/string conversions. The
overloaded operator = offers similar functionality to SetBignum().

operator - ZafBignumData operator-(const ZafBignumData &number1,
const ZafBignumData &number2);

ZafBignumData operator-(const ZafBignumData &number, long
value);

ZafBignumData operator-(long value, const ZafBignumData
&number);

ZafBignumData operator-(const ZafBignumData &number,
double value);

ZafBignumData operator-(double value, const ZafBignumData
&number);

These operators allow simple inline subtraction operations involving ZafBig-
numData objects, longs and doubles. The following code shows the proper use
of these operators:

// Create some ZafBignumData objects.
ZafBignumData big1(1000), big2(500000), big3(2000000);
// Create another ZafBignumData object and modify the others.
ZafBignumData big4 = big2 - big1;
big3 -= big4;
big1--;
// Compare two of the objects.
if (big4 > big3)
return (-1);

operator -- ZafBignumData operator--(void);

ZafBignumData operator--(int);

These pre- and post-operators decrement the ZafBignumData object’s value by
1. See operator - for sample code.

operator + ZafBignumData operator+(const ZafBignumData &number1,
const ZafBignumData &number2);

ZafBignumData operator+(const ZafBignumData &number, long
value);

ZafBignumData operator+(long value, const ZafBignumData
&number);

ZafBignumData operator+(const ZafBignumData &number,
double value);

ZafBignumData 43

ZafBignumData operator+(double value, const ZafBignumData
&number);

These operators allow simple inline addition operations involving ZafBignum-
Data objects, longs and doubles. See operator - for sample code.

operator ++ ZafBignumData operator++(void);

ZafBignumData operator++(int);

These pre- and post-operators increment the ZafBignumData object’s value by
1. See operator - for sample code.

operator * ZafBignumData operator*(const ZafBignumData &number1,
const ZafBignumData &number2);

ZafBignumData operator*(const ZafBignumData &number, long
value);

ZafBignumData operator*(long value, const ZafBignumData
&number);

ZafBignumData operator*(const ZafBignumData &number,
double value);

ZafBignumData operator*(double value, const ZafBignumData
&number);

These operators allow simple inline multiplication operations involving Zaf-
BignumData objects, longs and doubles. See operator - for sample code.

operator / ZafBignumData operator/(const ZafBignumData &number1,
const ZafBignumData &number2);

ZafBignumData operator/(const ZafBignumData &number, long
value);

ZafBignumData operator/(long value, const ZafBignumData
&number);

ZafBignumData operator/(const ZafBignumData &number,
double value);

ZafBignumData operator/(double value, const ZafBignumData
&number);

These operators allow simple inline division operations involving ZafBignum-
Data objects, longs and doubles. See operator - for sample code.

operator % ZafBignumData operator%(const ZafBignumData &number1,
const ZafBignumData &number2);

44 Zinc Application Framework 5

ZafBignumData operator%(const ZafBignumData &number, long
value);

ZafBignumData operator%(long value, const ZafBignumData
&number);

ZafBignumData operator%(const ZafBignumData &number,
double value);

ZafBignumData operator%(double value, const ZafBignumData
&number);

These operators allow simple inline modulus operations involving ZafBignum-
Data objects, longs and doubles. See operator - for sample code.

operator = ZafBignumData &operator=(long value);

ZafBignumData &operator=(double value);

These operators assign the ZafBignumData object’s value to the input value
which may be a long, double, or another ZafBignumData. See operator - for
sample code.

operator += ZafBignumData &operator+=(long value);

ZafBignumData &operator+=(double value);

These operators increment the ZafBignumData object’s value by the input
value. See operator - for sample code.

operator -= ZafBignumData &operator-=(const ZafBignumData &number);

ZafBignumData &operator-=(long value);

ZafBignumData &operator-=(double value);

These operators decrement the ZafBignumData object’s value by the input
value. See operator - for sample code.

operator *= ZafBignumData &operator*=(const ZafBignumData &number);

ZafBignumData &operator*=(long value);

ZafBignumData &operator*=(double value);

These operators multiply the ZafBignumData object’s value by the input value
and use the resulting product to set the ZafBignumData object’s value. See
operator - for sample code.

ZafBignumData 45

operator /= ZafBignumData &operator/=(const ZafBignumData &number);

ZafBignumData &operator/=(long value);

ZafBignumData &operator/=(double value);

These operators divide the ZafBignumData object’s value by the input value
and use the resulting quotient to set the ZafBignumData object’s value. value
is used as the divisor. See operator - for sample code.

operator %= ZafBignumData &operator%=(const ZafBignumData &number);

ZafBignumData &operator%=(long value);

ZafBignumData &operator%=(double value);

These operators work exactly the same as the /= operators above, but use the
operation’s remainder to set the ZafBignumData’s value. See operator - for
sample code.

operator == bool operator==(const ZafBignumData &number1, const
ZafBignumData &number2)

bool operator==(const ZafBignumData &number, long value)

bool operator==(long value, const ZafBignumData &number)

bool operator==(const ZafBignumData &number, double
value)

bool operator==(double value, const ZafBignumData
&number)

operator != bool operator!=(const ZafBignumData &number1, const
ZafBignumData &number2)

bool operator!=(const ZafBignumData &number, long value)

bool operator!=(long value, const ZafBignumData &number)

bool operator!=(const ZafBignumData &number, double
value)

bool operator!=(double value, const ZafBignumData
&number)

These operators allow simple inline equivalence comparisons between ZafBig-
numData objects, longs and doubles. See operator - for sample code.

operator < bool operator<(const ZafBignumData &number1, const
ZafBignumData &number2)

bool operator<(const ZafBignumData &number, long value)

bool operator<(long value, const ZafBignumData &number)

bool operator<(const ZafBignumData &number, double value)

46 Zinc Application Framework 5

bool operator<(double value, const ZafBignumData &number)
operator <= bool operator<=(const ZafBignumData &number1, const

ZafBignumData &number2)

bool operator<=(const ZafBignumData &number, long value)

bool operator<=(long value, const ZafBignumData &number)

bool operator<=(const ZafBignumData &number, double
value)

bool operator<=(double value, const ZafBignumData
&number)

operator > bool operator>(const ZafBignumData &number1, const
ZafBignumData &number2)

bool operator>(const ZafBignumData &number, long value)

bool operator>(long value, const ZafBignumData &number)

bool operator>(const ZafBignumData &number, double value)

bool operator>(double value, const ZafBignumData &number)
operator >= bool operator>=(const ZafBignumData &number1, const

ZafBignumData &number2)

bool operator>=(const ZafBignumData &number, long value)

bool operator>=(long value, const ZafBignumData &number)

bool operator>=(const ZafBignumData &number, double
value)

bool operator>=(double value, const ZafBignumData
&number)

These operators allow simple inline magnitude comparisons between ZafBig-
numData objects, longs and doubles. See operator - for sample code.

ZafIcon 47

ZafBitmap

Inheritance ZafBitmap : ZafWindowObject : ZafElement

Declaration #include <z_bmap1.hpp>

Description ZafBitmap displays a portable bitmap after automatically converting it to the
environment’s native format. ZafBitmap is useful for displaying bitmap infor-
mation portably where user interaction is not required.

Constructors All ZafBitmap constructors initialize the member variables associated with an
instantiated ZafBitmap object. The default values set by the ZafBitmap and its
base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafBitmap. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

AutoSize BitmapData

Member Initializations

ZafBitmap
AutoSize() true

BitmapData() null

ZafWindowObject
AcceptDrop() false†

Changed() false†

CopyDraggable() false†

Focus() false†

Font() ZAF_FNT_NULL†

HelpContext() null†

LinkDraggable() false†

MoveDraggable() false†

Noncurrent() true†

OSDraw() false†

TextColor() null†

UserFunction() null†

ZafElement
ClassID() ID_ZAF_BITMAP

ClassName() "ZafBitmap"

48 Zinc Application Framework 5

ZafBitmap(int left, int top, int width, int height,
ZafBitmapData *bitmapData = ZAF_NULLP(ZafBitmapData));

This constructor is useful in straight-code situations. left, top, width, and
height specify the position and size of the bitmap on its parent. All values are
specified in cell coordinates by default, but may be specified using another
coordinate system if desired. bitmapData specifies the bitmap to be displayed
on the ZafBitmap object. bitmapData may be shared by many ZafBitmaps to
conserve system resources or ensure consistency. See ZafDataManager for
information on sharing data objects.

ZafBitmap(const ZafBitmap ©);

The copy constructor calls the overloaded Duplicate() to create a new ZafBit-
map object and initialize its data from copy. If the original data object is Static-
Data() then the new ZafBitmap object simply points to the original data object,
otherwise a copy is made.

ZafBitmap(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. The parameters and values of this
constructor are deferred to the ZafWindow section of this manual, since most
persistence is done at the ZafWindow level.

Here is a code snippet that shows how to create a ZafBitmap object.

// Create a sample window with some bitmap objects.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);

// Add the bitmaps to the window.
extern ZafBitmapData *bitmapData1, *bitmapData2;
window1->Add(new ZafBitmap(1, 1, 2, 2, bitmapData1));
window1->Add(new ZafBitmap(4, 1, 2, 2, bitmapData2));

Destructor virtual ~ZafBitmap(void);

The destructor is used to free the memory associated with a ZafBitmap object,
including all the data object pieces that are Destroyable(). It chains to the Zaf-
WindowObject and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafBitmap object, since
it is automatically destroyed when its parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

ZafIcon 49

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

AutoSize bool AutoSize(void) const;

virtual bool SetAutoSize(bool autoSize);

If AutoSize() is true, the ZafBitmap object will automatically grow to the size
it needs to be to display all of its data. The default value of this attribute is
true, but the user may call SetAutoSize() to change it.

BitmapData ZafBitmapData *BitmapData(void) const;

virtual ZafError SetBitmapData(ZafBitmapData
*bitmapData);

The BitmapData() object is where the actual image data is stored. The Bitmap-
Data() may be shared among several ZafBitmap or ZafButton objects (perhaps
to save memory by allowing many objects to use the same image data), or it
may belong to a single ZafBitmap object. If shared among several ZafBitmap
objects, all the associated ZafBitmap objects will be updated when the Bitmap-
Data() changes. SetBitmapData() may be used to associate a BitmapData()
object with a ZafBitmap object. For more information on data sharing in ZAF,
see ZafDataManager. SetBitmapData() will delete the previous BitmapData()
object if it is Destroyable() and no other object uses it.

The return value for BitmapData() is a pointer to the BitmapData() object asso-
ciated with the ZafBitmap object. The return value for SetBitmapData() is nor-
mally ZAF_ERROR_NONE.

50 Zinc Application Framework 5

ZafBitmapData

Inheritance ZafBitmapData : ((ZafImageData : ZafData :
(ZafNotification, ZafElement)), ZafBitmapStruct)

Declaration #include <z_bitmap.hpp>

Description ZafBitmapData objects can be used to store and manipulate bitmap informa-
tion. ZafBitmapData is used in conjunction with ZAF classes that utilize bit-
map information, such as ZafButton.

Constructors All ZafBitmapData constructors initialize the member variables associated
with an instantiated ZafBitmapData object. The default values set by the Zaf-
BitmapData and its base class constructors follow, if they differ from those set
by the base class constructor.

ZafBitmapData(const ZafImageStruct &data);

ZafBitmapData(const ZafBitmapStruct &data);

These constructors allocate a ZafBitmapData instance and initialize its data to
the values in data.

ZafBitmapData(const ZafBitmapData ©);

The copy constructor creates a new ZafBitmapData object and initializes its
data from copy.

Array Height Width
Clear SetBitmap operator =

Member Initializations

ZafBitmapData
Array() null

ZafElement
ClassID() ID_ZAF_BITMAP_DATA

ClassName() "ZafBitmapData"

ZafBitmapData 51

ZafBitmapData(const ZafIChar *name, ZafDataPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

The following code snippet shows how to create a ZafBitmapData object:

// Create a bitmap array.
#define gnd ZAF_CLR_BACKGROUND
#define blk ZAF_CLR_BLACK
static ZafLogicalColor ZAF_FARDATA upArrowArray[28] =
{
 gnd,gnd,gnd,blk,gnd,gnd,gnd,
 gnd,gnd,blk,blk,blk,gnd,gnd,
 gnd,blk,blk,blk,blk,blk,gnd,
 blk,blk,blk,blk,blk,blk,blk
};
static ZafBitmapStruct upArrowStruct(7, 4, upArrowArray, true);

// Create ZafBitmapData objects based on the bitmap array.
ZafBitmapData bitmap1(upArrowStruct);
ZafBitmapData bitmap2(bitmap1);

Destructor virtual ~ZafBitmapData(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafBitmapData object.

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Array ZafLogicalColor *Array(void) const;

Array() returns the portable logical color array that the bitmap data is based on.
This array is converted to a native environment bitmap handle. Each element
of the array is a ZAF logical color. See ZafDisplay for more information.

Clear virtual void Clear(void);

Clear() destroys the portable Array() if StaticArray() is false, and it destroys
the environment handle if StaticHandle() is false. Regardless of StaticArray()

52 Zinc Application Framework 5

and StaticHandle(), the portable Array() and the environment handle are both
set to null, effectively clearing the bitmap data.

Height int Height(void) const;

Height() returns the height of the bitmap data.

SetBitmap virtual ZafError SetBitmap(int width, int height,
ZafLogicalColor *array);

virtual ZafError SetBitmap(const ZafBitmapStruct
&bitmap);

These functions copy the data passed in to the ZafBitmapData object. width
and height are the width and height of array, respectively. If StaticArray() is
true, array becomes Array(); otherwise, a new array is created for Array(). In
the second function, the data is copied from bitmap. These functions always
return ZAF_ERROR_NONE.

Width int Width(void) const;

Width() returns the width of the bitmap data.

operator = ZafBitmapData &operator=(const ZafBitmapData &bitmap);

This operator copies the data from bitmap into this ZafBitmapData object.

ZafBitmapStruct 53

ZafBitmapStruct

Inheritance ZafBitmapStruct : ZafImageStruct

Declaration #include <z_dsp.hpp>

Description ZafBitmapStruct is used to store bitmap information. The base ZafImage-
Struct stores the portable image array using elements of ZafLogicalColors, and
ZafBitmapStruct defines additional members that store environment-specific
structures for the bitmap filled by the ZafDisplay conversion function
ZafDisplay::ConvertToOSBitmap().

Constructors All ZafBitmapStruct constructors initialize the member variables associated
with an instantiated ZafBitmapStruct object. The default values set by the Zaf-
BitmapStruct constructors follow.

ZafBitmapStruct(void);

This constructor allocates a ZafBitmapStruct instance and initializes its data to
indicate that no bitmap information has been set.

ZafBitmapStruct(const ZafImageStruct &data);

This constructor allocates a ZafBitmapStruct instance and initializes its data to
the values in data. The environment-specific bitmap information is initialized
to indicate that the bitmap has not yet been converted.

StaticHandle

Member Initializations

ZafBitmapStruct
StaticHandle() false

ZafImageStruct
array null

height 0

StaticArray() false

width 0

54 Zinc Application Framework 5

ZafBitmapStruct(int width, int height, ZafLogicalColor
*array, bool staticArray);

This constructor allocates a ZafBitmapStruct instance and initializes its data to
the values passed in. width and height indicate the size of the image, array
specifies a pointer to the portable array of ZafLogicalColors, and staticArray
indicates if array is declared static.

The following code snippet shows how to create a ZafBitmapStruct object:

// Create a bitmap structure.
#define gnd ZAF_CLR_BACKGROUND
#define blk ZAF_CLR_BLACK
static ZafLogicalColor ZAF_FARDATA upArrowArray[28] =
{
 gnd,gnd,gnd,blk,gnd,gnd,gnd,
 gnd,gnd,blk,blk,blk,gnd,gnd,
 gnd,blk,blk,blk,blk,blk,gnd,
 blk,blk,blk,blk,blk,blk,blk
};
static ZafBitmapStruct upArrowStruct(7, 4, upArrowArray, true);

Members bool StaticHandle(void) const;
StaticHandle bool SetStaticHandle(bool staticHandle);

If StaticHandle() is true, the environment-specific information (generally
known as a handle) of the ZafBitmapStruct is recognized as static, so that it
will not be deleted by ZAF, and may be used by several ZafBitmapStruct
objects. This attribute is initialized to false, but it may be changed with Set-
StaticHandle(). Both functions return the current value of the StaticHandle()
attribute.

ZafBorder 55

ZafBorder

Inheritance ZafBorder : ZafWindowObject : ZafElement

Declaration #include <z_border.hpp>

Description The ZafBorder object may only be added to a ZafWindow. The ZafBorder is
the border decoration on a ZafWindow, and is generally drawn by the environ-
ment. The width of the ZafBorder is therefore determined by the environment,
and may not be modified by the programmer in most cases. The ZafBorder is
used to size the parent window with the ZafMouse device.

Constructors All ZafBorder constructors initialize the member variables associated with an
instantiated ZafBorder object. The default values set by the ZafBorder and its
base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafBorder. “†”Indi-
cates a blocking function that prevents changes to the attribute in this class.

Width

Member Initializations

ZafBorder
Width() Environment specific

ZafWindowObject
AcceptDrop() false†

Bordered() false†

CopyDraggable() false†

Disabled() false†

Focus() false†

HelpContext() null†

HelpObjectTip() null†

LinkDraggable() false†

MoveDraggable() false†

Noncurrent() true†

ParentDrawBorder() false†

ParentDrawFocus() false†

ParentPalette() false†

QuickTip() null†

RegionType() ZAF_OUTSIDE_REGION†

Selected() false†

56 Zinc Application Framework 5

ZafBorder(void);

The first constructor is useful in straight-code situations, and is used to instan-
tiate a ZafBorder object to be added to a ZafWindow object.

ZafBorder(const ZafBorder ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafBorder object and copies the object’s informa-
tion.

ZafBorder(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. The parameters and values of this
constructor are deferred to the ZafWindow section of this manual, since most
persistence is done at the ZafWindow level.

Below is a simple example:

// Create a sample window.
ZafWindow *window = new ZafWindow(0, 0, 40, 10);
ZafBorder *border = new ZafBorder;
window->Add(border);

Destructor virtual ~ZafBorder(void);

The destructor is used to free the memory associated with a ZafBorder object.
It chains to the ZafWindowObject and ZafElement destructors. Generally, the
programmer will not directly destroy a ZafBorder object, since it is automati-
cally destroyed when its parent window is destroyed. For more information on
child object deletion, see ZafWindow::~ZafWindow().

SupportObject() true†

UserFunction() null†

ZafElement
ClassID() ID_ZAF_BORDER

ClassName() “ZafBorder”

NumberID() ZAF_NUMID_BORDER

StringID() “ZAF_NUMID_BORDER”

Member Initializations

ZafBorder 57

Members virtual int Width(void);
Width virtual ZafError SetWidth(int width);

Since a ZafBorder object is normally a decoration added to the window by the
host environment, the width of a ZafBorder is usually dictated by the environ-
ment, and the programmer may not change it. The Width() function returns the
width of the ZafBorder object.

SetWidth() allows the programmer to change the width of the ZafBorder object
on environments that allow it. Normally the width of a border is set by the
operating system.

58 Zinc Application Framework 5

ZafButton

Inheritance ZafButton : ZafWindowObject : ZafElement

Declaration #include <z_button.hpp>

Description The ZafButton class provides support for native buttons, 3-D buttons, flat but-
tons, toolbar buttons, radio buttons and check boxes. By default, ZafButton
objects support the native environment look-and-feel, but by deriving from
ZafButton, the programmer may provide custom button objects.

The ZafButton class is used as a base class for other selectable action classes
such as ZafIcon and ZafPopUpItem. These classes inherit much of the base
functionality provided by ZafButton. Note: AutoSize() buttons (which is the
default) grow up rather than down as other objects. This behavior will become
optional in a future version.

Constructors All ZafButton constructors initialize the member variables associated with an
instantiated ZafButton object. Default values set by the ZafButton constructor
are listed below, as well as values overridden from those set by base class con-
structors.

AllowDefault Depressed SelectOnDownClick
AllowToggling Depth SendMessage
AutoRepeatSelection Event SendMessageText
AutoSize HotKeyChar SendMessageWhenSelected
BitmapData HotKeyIndex StringData
ButtonType HzJustify Text
ClearImage Region Value
ClearText SelectOnDoubleClick VtJustify

Member Initializations

ZafButton
AllowDefault() false

AllowToggling() false

AutoRepeatSelection() false

AutoSize() true

BitmapData() ZAF_NULLP(ZafBitmapData)

ButtonType() ZAF_NATIVE_BUTTON

Depressed() false

Depth() 2

HotKeyChar() ’\0’

HotKeyIndex() -1

ZafButton 59

ZafButton(int left, int top, int width, int height, const
ZafIChar *text, ZafBitmapData *bitmapData =
ZAF_NULLP(ZafBitmapData), ZafButtonType buttonType =
ZAF_NATIVE_BUTTON);

This constructor is useful in straight-code situations, particularly if you wish
the ZafButton object to create, maintain and destroy its own ZafStringData
object automatically. Simply pass the string into the text parameter. left and
top specify the position where the left and top of the button will be placed on
its parent. width and height specify the width and height of the button. All val-
ues are specified in cell coordinates by default, but may be specified using
another coordinate system if desired.

bitmapData specifies the bitmap to be displayed on the button object. button-
Type specifies the type of button to be created. See ButtonType() for more
information on button types.

ZafButton(int left, int top, int width, int height,
ZafStringData *stringData, ZafBitmapData *bitmapData =
ZAF_NULLP(ZafBitmapData), ZafButtonType buttonType =
ZAF_NATIVE_BUTTON);

This constructor is also useful in straight-code situations, particularly if you
have already created a ZafStringData object to be associated with the button.
This constructor could be used to maintain string data pieces manually, rather
than having the ZafButton class create and maintain the string data pieces auto-
matically. For example, to maintain a database of ZafStringData objects and
tie them into ZafButton objects, maintain some ZafStringData objects and cre-

HzJustify() ZAF_HZ_CENTER

SelectOnDoubleClick() false

SelectOnDownClick() false

SendMessageText() null

SendMessageWhen-
Selected()

false

StringData() ZAF_NULLP(ZafStringData)

Value() 0

VtJustify() ZAF_VT_CENTER

ZafElement
ClassID() ID_ZAF_BUTTON

ClassName() "ZafButton"

Member Initializations

60 Zinc Application Framework 5

ate ZafButton objects using the ZafStringData objects. For more information
on using ZafStringData objects, see ZafStringData. stringData specifies the
string data object to be associated with the button. Either bitmapData or
stringData may be null, to provide a string-only or bitmap-only button. Other-
wise, this constructor (and parameters) is the same as the first.

ZafButton(const ZafButton ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafButton object (copy) and copies the object’s
information. If the data objects are StaticData(), then the new ZafButton
object simply points to the original data objects. If the data objects are not
StaticData(), then a copy is made for the new ZafButton object. This behavior
allows a programmer to use static data for more than one ZafButton object.

ZafButton(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. The parameters and values of this
constructor are deferred to the ZafWindow section of this manual, since most
persistence is done at the ZafWindow level.

Here are some code snippets that show various ZafButton object creation tech-
niques:

// Create a sample window with some button objects.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);

// Add the buttons to the window.
extern ZafBitmapData *bitmapData;
window1->Add(new ZafButton(1, 4, 15, 1,

ZAF_NULLP(ZafStringData), bitmapData));
window1->Add(new ZafButton(20, 4, 15, 1, "Button2",

ZAF_NULLP(ZafBitmapData)));
...
// Create a sample window with a group of radio buttons.
ZafWindow *window2 = new ZafWindow(10, 10, 40, 10);
ZafGroup *group = new ZafGroup(1, 1, 30, 5, "Group");

// Add the radio buttons to the group.
group->SetAutoSelect(true);
group->Add(new ZafButton(1, 0, 25, 1, "Choice 1",

ZAF_NULLP(ZafBitmapData), ZAF_RADIO_BUTTON));
group->Add(new ZafButton(1, 1, 25, 1, "Choice 2",

ZAF_NULLP(ZafBitmapData), ZAF_RADIO_BUTTON));

ZafButton 61

group->Add(new ZafButton(1, 2, 25, 1, "Choice 3",
ZAF_NULLP(ZafBitmapData), ZAF_RADIO_BUTTON));

group->Add(new ZafButton(1, 3, 25, 1, "Choice 4",
ZAF_NULLP(ZafBitmapData), ZAF_RADIO_BUTTON));

// Finally, add the group of radio buttons to the window.
window2->Add(group);

Destructor virtual ~ZafButton(void);

The destructor is used to free the memory associated with a ZafButton object,
including all the data object pieces (such as StringData()) that are Destroy-
able(). It chains to the ZafWindowObject and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafButton object, since it
is automatically destroyed when its parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

AllowDefault bool AllowDefault(void) const;

virtual bool SetAllowDefault(bool allowDefault);

A default button is the button that will be selected when the user types <Enter>
or <Return>. The default button commonly has a bold border around it to indi-
cate to the user that it is the default button. If a ZafButton object is to display
as the default button on a window, AllowDefault() must be true; otherwise, the
default border may not be drawn, even when the button is the default button.
The default value of this attribute is false, but the user may call SetAllowDe-
fault() to change it.

In order to specify a button as the default button, ZafWindow::SetDefaultBut-
ton() must also be called. ZafWindow::SetDefaultButton() tells the parent
window which button is to function as the default button, but does not set the
AllowDefault() attribute on the button. SetAllowDefault(true) must be called
for all the buttons that are aligned together, if one of them is to be the default
button. The AllowDefault() attribute affects the visual aspect of a button, and
ZafWindow::SetDefaultButton() affects which button functions as the default
button on the window. Refer to ZafWindow::DefaultButton() for more infor-
mation.

In edit mode, such as when modifying a ZafButton object in Zinc Designer, the
ZafButton object displays a large border, indicating the largest area the object

62 Zinc Application Framework 5

may occupy in any environment. Currently, the largest area a default button
will occupy is under Motif.

The following code provides a brief example:

// Get the attribute.
if (object->AllowDefault())
break;

...
// Create the OK button as the default button.
ZafButton *button1 = new ZafButton(1, 4, 12, 1, "OK",

ZAF_NULLP(ZafBitmapData));
ZafButton *button2 = new ZafButton(15, 4, 12, 1, "Cancel",

ZAF_NULLP(ZafBitmapData));
button1->SetAllowDefault(true);
button2->SetAllowDefault(true);
window->Add(button1);
window->Add(button2);
window->SetDefaultButton(button1);

AllowToggling bool AllowToggling(void) const;

virtual bool SetAllowToggling(bool allowToggling);

A toggle button may stay in the selected or de-selected state. A check box and
a radio button may be considered toggle buttons, since they keep their selection
state. When the end-user clicks a toggle button, it toggles its selection state.
For example, if the toggle button is in its normal state, and the user selects it, it
will display itself in its selected state. For a check box, that means a mark
inside its box. For a normal toggle button, the selected button stays depressed,
so that the user knows that it is currently selected. AllowToggling() is false by
default, but the user may call SetAllowToggling() to change it.

The following code shows how to create a toggle button:

// Create a toggle button.
ZafButton *button = new ZafButton(1, 4, 12, 1, "Toggle Button",

ZAF_NULLP(ZafBitmapData));
button->SetAllowToggling(true);

AutoRepeat-
Selection

bool AutoRepeatSelection(void) const;

virtual bool SetAutoRepeatSelection(bool
autoRepeatSelection);

If AutoRepeatSelection() is true, the button performs its action repeatedly at a
delay rate specified by the environment as long as the button is depressed by

ZafButton 63

the user. See ZafWindowObject::InitialDelay and ZafWindowObject::Repeat-
Delay for more information on the delay rate. For example, if the button is
also SendMessageWhenSelected(), then the button will repeatedly post events
on the event manager’s queue. If a user function is specified for the button, the
user function will be repeatedly called. A scroll bar’s arrow button is an exam-
ple of an object with this behavior. While the user selects the arrow button, the
scroll bar’s thumb button moves, scrolling the associated object, such as a list.
The default value of this attribute is false, but the user may call SetAutoRe-
peatSelection() to change it.

The following code shows how to create an auto-repeat button:

// Create a button that automatically repeats during selection.
ZafButton *button = new ZafButton(1, 4, 12, 1, "Repeat Button",

ZAF_NULLP(ZafBitmapData));
button->SetSendMessageWhenSelected(true);
button->SetValue(USER_ACTION_EVENT);
button->SetAutoRepeatSelection(true);

AutoSize bool AutoSize(void) const;

virtual bool SetAutoSize(bool autoSize);

If AutoSize() is true, the button will automatically grow (up) vertically to the
size it needs to be to display all of its data. If the button does not contain bit-
map data, then the button is sized vertically to the default size used by the
native environment, depending on the system font. For example, an “OK” but-
ton that is AutoSize() will be the same size as a normal “OK” button that you
would see in the native environment’s system utility applications. The default
value of this attribute is true, but the user may call SetAutoSize() to change it.

BitmapData ZafBitmapData *BitmapData(void) const;

virtual ZafError SetBitmapData(ZafBitmapData
*bitmapData);

The BitmapData() object is where the actual bitmap data is stored. The Bit-
mapData() may be shared among several ZafButton objects (perhaps to save
memory by allowing many button objects to use the same bitmap data), or it
may belong to a single ZafButton object. If shared among several ZafButton
objects, all the associated ZafButton objects will be updated when the Bitmap-
Data() changes. SetBitmapData() may be used to associate a BitmapData()
object with a ZafButton object. For more information on data sharing in ZAF,
see ZafDataManager. SetBitmapData() will delete the previous BitmapData()
object if it is Destroyable() and no other object uses it.

64 Zinc Application Framework 5

The return value for BitmapData() is a pointer to the BitmapData() object asso-
ciated with the ZafButton object. The return value for SetBitmapData() is nor-
mally ZAF_ERROR_NONE.

The following code shows the proper use of these functions:

// Get the data.
const ZafBitmapData *data = button->BitmapData();
...
// Add the bitmap data.
extern ZafBitmapData *bitmapData;
button->SetBitmapData(bitmapData);

ButtonType ZafButtonType ButtonType(void) const;

virtual ZafButtonType SetButtonType(ZafButtonType
buttonType);

ButtonType() specifies the type of button a ZafButton object is. The default
value of this attribute is ZAF_NATIVE_BUTTON, but the user may call Set-
ButtonType() to change it. Here are the possible button types:

The parent’s SelectionType() directly affects the behavior of buttons on a win-
dow. For example, a group with radio buttons in it must be SelectionType() ==
ZAF_SINGLE_SELECTION to behave as expected, and a group with check
boxes in it must be SelectionType() == ZAF_MULTIPLE_SELECTION to
behave as expected. Only one radio button should be selected at a time,
whereas multiple check boxes may be selected at a time. This way, the parent
correctly acts as the container of the button objects and the button objects need
not know of their siblings’ states. See ZafWindow::SelectionType() for more
information.

ButtonType() Description

ZAF_NATIVE_BUTTON Creates a native push button object (may look
different from environment to environment)

ZAF_RADIO_BUTTON Creates a radio button object

ZAF_CHECK_BOX Creates a check box object

ZAF_3D_BUTTON Creates a 3-D push button object

ZAF_FLAT_BUTTON Creates a flat push button object

ZAF_TOOLBAR_BUTTON Creates a push button object that displays
specially to look appropriate when placed on
a toolbar object

ZafButton 65

Check boxes and radio buttons should also set AllowToggling() to true, since
they generally toggle selection state when selected (or when another radio but-
ton is selected). See AllowToggling() for more information.

ClearImage virtual void ClearImage(void);

ClearImage() deletes the bitmap data portion of a ZafButton object, if the bit-
map data is Destroyable(). ClearImage() is an advanced routine, and should
normally not be called by the programmer. This routine is called internally by
the Zinc libraries.

ClearText virtual void ClearText(void);

ClearText() deletes the string data portion of a ZafButton object, if the string
data is Destroyable(). ClearText() is an advanced routine, and should normally
not be called by the programmer. This routine is called internally by the Zinc
libraries.

Depressed bool Depressed(void) const;

virtual bool SetDepressed(bool depressed);

A button in the process of being selected appears depressed until the selection
operation is completed (for example, by releasing the mouse button).
Depressed() and SetDepressed() are advanced routines, and should normally
not be called by the programmer. These routines are called internally by the
Zinc libraries, since each environment handles button depression differently.
Selected() and SetSelected() provide correct support for selecting and de-
selecting a button.

Depth int Depth(void) const;

virtual int SetDepth(int depth);

The depth of a button is the number of pixels the button appears to be above
the plane of its parent. Depth() and SetDepth() are advanced routines, and
should normally not be called by the programmer. These routines are called
internally by the Zinc libraries, since each environment dictates its own button
depth.

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events that are sent to the ZafButton
object, either by processing the events itself, or by passing the event down for

66 Zinc Application Framework 5

base class processing. Refer to ZafWindowObject::Event() for complete
details. Following are events that are handled by ZafButton in addition to
those handled by its base classes:

HotKeyChar ZafIChar HotKeyChar(void) const;
HotKeyIndex int HotKeyIndex(void) const;

virtual ZafIChar SetHotKey(ZafIChar hotKeyChar, int index
= -1);

An object’s hot key character is the character that when typed with a modifier
key (such as <ALT> or <Command>) causes the object to be selected. The
object’s action (such as an event being posted to the event manager’s queue if
the button is SendMessageWhenSelected()) is performed as a result of the
selection.

The hot key index is the zero-based index into the object’s text that specifies
the character to be visually displayed as the hot key character, usually with an
underline.

The hot key character does not cause any display modification, and the hot key
index does not cause any action to be performed when that character is typed
with the modifier key. The default value of HotKeyChar() is 0, indicating that
there is no hot key character associated with the object, and the default value of
HotKeyIndex() is -1, indicating that no character is to be displayed as the hot
key character on the object. The user may call SetHotKey() to change the Hot-
KeyChar() and the HotKeyIndex() attributes. hotKeyChar specifies the hot
key character, and index specifies the hot key index.

The following code shows how to create a button with a hot key:

// Create a button with a hot key.
ZafButton *button = new ZafButton(1, 4, 12, 1, "Quit",

ZAF_NULLP(ZafBitmapData));
button->SetHotKey(‘Q’, 0);

HzJustify ZafHzJustify HzJustify(void) const;
VtJustify ZafVtJustify VtJustify(void) const;

Event type Description

S_HOT_KEY Causes the object to perform its action, if
event.key.value is the object’s hot key

S_REDISPLAY_DEFAULT Causes the object to display or erase its
default border, as appropriate

ZafButton 67

virtual ZafHzJustify SetHzJustify(ZafHzJustify
hzJustify);

virtual ZafVtJustify SetVtJustify(ZafVtJustify
vtJustify);

HzJustify() and VtJustify() control the button’s horizontal and vertical justifi-
cation, respectively. HzJustify() is ZAF_HZ_CENTER by default, and VtJus-
tify() is ZAF_VT_CENTER by default. The user may call SetHzJustify() or
SetVtJustify() to change them.

If there are both textual and bitmap pieces associated with the button, both are
justified as a unit within the available space on the button. With combinations
of horizontal and vertical justification other than ZAF_HZ_CENTER and
ZAF_VT_CENTER together, the bitmap is justified first, and then the text.
When the button is ZAF_HZ_CENTER and ZAF_VT_CENTER together, the
bitmap is placed on top of the text, and both as a unit are centered horizontally
and vertically on the button. The following picture illustrates how justification
effects a button object.

Region virtual ZafRegionStruct Region(void) const;

virtual void SetRegion(const ZafRegionStruct ®ion);

Region() and SetRegion() overload the ZafWindowObject methods, and pro-
vide specific functionality for the ZafButton class. A button object that is
either AutoSize() or AllowDefault() may appear on the screen larger than its
corresponding object region. For that reason, these overloaded functions are
necessary to allow for this discrepancy between the object’s region and the
operating environment’s representation of the object. See ZafWindowObject
for more detailed descriptions of these functions.

68 Zinc Application Framework 5

SelectOnDouble-
Click

bool SelectOnDoubleClick(void) const;

virtual bool SetSelectOnDoubleClick(bool
selectOnDoubleClick);

If SelectOnDoubleClick() is true, the button performs its action on a double-
click, as opposed to a single click. The maximum time between the first up-
click and the second down-click is determined by the operating environment.
For MS-DOS, ZafWindowObject::doubleClickRate is used. See ZafWin-
dowObject::doubleClickRate for more information on the double-click rate.
An example of an object with this behavior is an icon that causes an applica-
tion to be launched by the operating environment. A single click simply causes
the icon to receive focus, and a double-click causes the operating environment
to launch the application associated with the icon. The default value of this
attribute is false, but the user may call SetSelectOnDoubleClick() to change it.

SelectOnDownClick bool SelectOnDownClick(void) const;

virtual bool SetSelectOnDownClick(bool
selectOnDownClick);

If SelectOnDownClick() is true, the button performs its action on a down-
click, as opposed to an up-click. An example of an object with this behavior is
a combo-box button. A down-click on the combo-box button causes the list of
choices to appear, allowing the user to position the mouse over an item and up-
clicking to choose it. Normal buttons wait until the up-click to perform their
action. The default value of this attribute is false, but the user may call SetSe-
lectOnDownClick() to change it.

SendMessage ZafEventType SendMessage(const ZafEventStruct &event,
ZafEventType ccode);

SendMessage-
WhenSelected

bool SendMessageWhenSelected(void) const;

virtual bool SetSendMessageWhenSelected(bool
sendMessageWhenSelected);

One way to tie a button to an action is through the SendMessageWhenSe-
lected() attribute. The default value of this attribute is false, but the program-
mer may call SetSendMessageWhenSelected() to change it. The programmer
may define a user event type, set the value of the button to the user event type
through SetValue(), and handle the user event type in a derived object’s Event()
method. For example:

// Define the user event type.
const ZafEventType USER_ACTION_EVENT = 20001;

ZafButton 69

...
// Create a button that posts an event on the event manager’s
// queue.
ZafButton *button = new ZafButton(1, 4, 12, 1, "Action",

ZAF_NULLP(ZafBitmapData));
button->SetSendMessageWhenSelected(true);
button->SetValue(USER_ACTION_EVENT);

Alternatively, the programmer may wish to use a pre-defined ZAF event type.
For example, to create a button that will cause the application to close down,
use the following code snippet.

// Create a button that causes the application to close down.
ZafButton *button = new ZafButton(1, 4, 12, 1, "Quit",

ZAF_NULLP(ZafBitmapData));
button->SetSendMessageWhenSelected(true);
button->SetValue(S_EXIT);

If SendMessageWhenSelected() is true, the SendMessage() method is automat-
ically called when the button is selected. SendMessage() simply packages an
event of the same type as the button’s Value() attribute with event.windowOb-
ject pointing to the button, and posts the event on the event manager’s queue.
If SendMessageText() is non-null, then SendMessageText() is copied into
event.text, and the object handling the event must delete event.text. The pro-
grammer should never need to call SendMessage(), since it is called internally
by the ZafButton class.

Either SendMessageWhenSelected() or UserFunction() may be true, but not
both.

The return value for SendMessage() is an error code indicating any error that
may have occurred. The return value is usually ZAF_ERROR_NONE, mean-
ing that no error occurred.

SendMessageText const ZafIChar *SendMessageText(void) const;

virtual const ZafIChar *SetSendMessageText(const ZafIChar
*text);

SendMessageText() stores the text that is copied to event.text when a message
is posted to the event manager’s queue for SendMessageWhenSelected() but-
tons. See SendMessageWhenSelected() for more information. SendMessage-
Text() is null by default, but the user may call SetSendMessageText() to
change it.

70 Zinc Application Framework 5

The object handling the event where event.text contains a duplicate of Send-
MessageText() must delete event.text. Otherwise, a memory leak will occur.
If SendMessageText() is null, there is no need to delete event.text. The follow-
ing code snippet shows how to create a button that utilizes SendMessageText().

// Create a button that closes an extra window.
ZafButton *button = new ZafButton(1, 4, 12, 1, "Clean Up",

ZAF_NULLP(ZafBitmapData));
button->SetSendMessageWhenSelected(true);
button->SetValue(A_CLOSE_WINDOW);

// The window to be closed has a stringID of "EXTRA_WINDOW".
button->SetSendMessageText("EXTRA_WINDOW");

StringData ZafStringData *StringData(void) const;

virtual ZafError SetStringData(ZafStringData
*stringData);

The StringData() object is the piece of the ZafButton object where the actual
string data is stored. The StringData() may be shared among several ZafButton
objects, or it may belong to a single ZafButton object. If shared among several
ZafButton objects, all the associated ZafButton objects will be updated when
the StringData() piece changes. SetStringData() may be used to associate a
StringData() object with a ZafButton object. For more information on data
sharing in ZAF, see the chapter on ZafDataManager. SetStringData() will
delete the previous StringData() object if it is Destroyable() and no other object
uses it.

The return value for StringData() is a pointer to the StringData() object associ-
ated with the ZafButton object. The return value for SetStringData() is nor-
mally ZAF_ERROR_NONE.

Text virtual const ZafIChar *Text(void);

virtual ZafError SetText(const ZafIChar *text);

The textual data of a ZafButton (contained in the StringData() object) may be
returned or set with Text() and SetText(). These functions provide simple
accessibility to the StringData() of a ZafButton, and may be used if the pro-
grammer does not wish to interact directly with the data portion of the object.

The return value for Text() is a pointer to the textual information in the data
object of a ZafButton. The return value for SetText() is normally
ZAF_ERROR_NONE.

ZafButton 71

Value ZafEventType Value(void) const;

virtual ZafEventType SetValue(ZafEventType value);

Value() stores the event type that is posted on the event manager’s queue for
SendMessageWhenSelected() buttons. See SendMessageWhenSelected() for
more information. Value() is 0 by default, but the user may call SetValue() to
change it to any event type desired, including user-defined event types.

VtJustify ZafVtJustify VtJustify(void) const;

virtual ZafVtJustify SetVtJustify(ZafVtJustify
vtJustify);

See HzJustify().

72 Zinc Application Framework 5

ZafChart

Inheritance ZafChart : ZafChartStub : ZafWindowObject : ZafElement

Declaration #include <cf_api/bz_zcht.hpp>

Description ZafChart supports graphical charting of data groups. Each data group is repre-
sented by points, lines, bars, pie slices, or another representation.

ZafChart is a unique ZAF class. It is a “wrapper” class serving only as a ZAF-
like interface to a third-party library: DPC Technology’s ChartFolio™. Basic
use of the ZafChart class is supported directly by Zinc Software. Technical
support for specific functionality and underlying ChartFolio operation is pro-
vided directly by DPC Technology.

The “cf_zaf” directory of the ZAF 5 distribution contains the source code for a
limited version of DPC’s ChartFolio library. Before utilizing the ZafChart
class, the ChartFolio library must be built using the supplied make files. The
cf_zaf/include directory must be part of the compiler’s include search path in
order to utilize the ChartFolio header files.

The limited ChartFolio library supplied with ZAF provides two-dimensional
chart types including pie, bar, column, stack, point-series, line, and integral/
area. Data-domain indexing modes supplied include natural number (n=1, 2,
3, .. N) and integral number (i=0, 1, 2, .. I).

DPC Technology also publishes advanced, full-featured versions of ChartFolio
that provide complete 3-D charting support, additional chart types, real-time
rotation and scaling, real number value indexing, user dialog and chart control
objects, and more. These add-on products are available from Zinc Software, or
directly from DPC Technology.

DPC Technology Corporation
9586 Easter Way
San Diego, CA
92121 USA

ActiveModel DataGroup IndexMethod
AddDataGroup DataGroupBackgroundColor MarksXAxis
AddDataPoint DataGroupFillPattern MarksYAxis
AxisColor DataGroupFont TextTitle
ChartType DataGroupForegroundColor TextXAxis
ClearDataAll DataGroupLineStyle TextYAxis
ClearDataGroup DataPoint

ZafChart 73

Tel: 619 / 622-1887
Fax: 619 / 622-1833

http://www.dpc-tech.com
Email: info@dpc-tech.com

Constructors All ZafChart constructors initialize the member variables associated with an
instantiated ZafChart object. The default values set by the ZafChart and its
base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafChart. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

Member Initializations

ZafChart
AxisColor() ZAF_CLR_BLACK

ChartType() user-supplied parameter

IndexMethod() user-supplied parameter

MarksXAxis() true

MarksYAxis() true

TextTitle() null

TextXAxis() null

TextYAxis() null

ZafWindowObject
AcceptDrop() false†

Changed() false†

CopyDraggable() false†

Disabled() false†

Focus() false†

HelpContext() null†

LinkDraggable() false†

MoveDraggable() false†

Noncurrent() true†

OSDraw() false

ZafElement
ClassID() ID_ZAF_CHART

ClassName() "ZafChart"

74 Zinc Application Framework 5

ZafChart(int left, int top, int width, int height, int
iChartTypeID = ZAF_POINTS_2D, int iIndexMethodID =
ZAF_RANGE_NATURAL);

This constructor is useful in straight-code situations. left, top, width, and
height specify the position and size of the object on its parent. These values
are specified in cell coordinates by default, but may be specified using another
coordinate system if desired. iChartTypeID specifies the chart type (see Chart-
Type() for more information). iIndexMethodID specifies the chart index
method (see IndexMethod() for more information).

ZafChart(const ZafChart ©);

The copy constructor creates a new ZafChart object and initializes its data
from copy. Data groups and data points are part of the ChartFolio data as
opposed to the user interface ZafChart object, and are not copied. The pro-
grammer must create new data groups and new data points for the copy.

ZafChart(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level. Data
groups and data points are part of the ChartFolio data as opposed to the user
interface ZafChart object, and are not stored. The programmer must create
new data groups and new data points for the new ZafChart object.

An example of how to create a chart object follows:

// Create the sample window.
ZafWindow *window = new ZafWindow(0, 0, 35, 10);
window->AddGenericObjects(new ZafStringData("Sample Chart

Window"));

// Create a line chart.
ZafChart *chart = new ZafChart(1, 0, 30, 7, CF_ID_LINE_2D,

CF_ID_YVALS_ON_NAT_NS);

// Define 5 data groups of 10 values each and add them to the
// chart.
double chartData[5][10] =
{
{ 20.0, 10.0, 20.0, 10.0, 20.0, 10.0, 20.0, 10.0, 20.0, 10.0 },
{ 20.0, 18.0, 14.0, 2.0, 14.0, 37.0, 35.0, 30.0, 24.0, 23.0 },
{ 33.0, 30.0, 27.0, 24.0, 21.0, 18.0, 15.0, 12.0, 9.0, 6.0 },
{ 20.0, 15.0, 10.0, 12.0, 14.0, 20.0, 24.0, 28.0, 30.0, 32.0 },
{ 16.0, 15.0, 23.0, 17.0, 24.0, 20.0, 18.0, 13.0, 28.0, 16.0 }

ZafChart 75

};
for (int i = 0; i < 5; i++)
{
// Add each data group (data groups are one-based).
chart->AddDataGroup(i + 1);

// Add each data point in the data group.
for (int j = 0; j < 10; j++)
chart->AddDataPoint(i + 1, chartData[i][j]);

}

// Add the chart to the window.
window->Add(chart);

Destructor virtual ~ZafChart(void);

The destructor is used to free the memory associated with a ZafChart object. It
chains to the ZafChartStub, ZafWindowObject, and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafChart object, since it
is automatically destroyed when its parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

ActiveModel cf_ChartModel *ActiveModel(void);

ActiveModel() returns a pointer to the active ChartFolio chart model object
associated with this ZafChart. ActiveModel() is an advanced routine and
should normally not be called by the programmer. Consult ChartFolio docu-
mentation for detailed information on the use of a cf_ChartModel.

AddDataGroup ZafError AddDataGroup(int groupIndex);

AddDataGroup() creates a new data group, referenced by one-based groupIn-
dex. The first data group that should be allocated is 1, then 2, and so on. Fail-
ure to create new data groups sequentially will cause undefined results by the
ChartFolio library. AddDataGroup() returns ZAF_ERROR_INVALID if an
error occurred; otherwise ZAF_ERROR_NONE is returned.

AddDataPoint ZafError AddDataPoint(int groupIndex, double dDataValue);

76 Zinc Application Framework 5

AddDataPoint() creates a new data point in the previously-created data group
referenced by one-based groupIndex. dDataValue is the value used by the new
data point. AddDataPoint() returns ZAF_ERROR_INVALID if an error
occurred; otherwise ZAF_ERROR_NONE is returned.

AxisColor ZafLogicalColor AxisColor(ZafLogicalColor *mono =
ZAF_NULLP(ZafLogicalColor));

ZafLogicalColor SetAxisColor(ZafLogicalColor color,
ZafLogicalColor mono = ZAF_MONO_NULL);

AxisColor() specifies the logical color used when drawing the axes and the tick
marks of the chart. AxisColor() defaults to ZAF_CLR_BLACK, but may be
changed by calling SetAxisColor(). color specifies the logical color to be used
when drawing the axes and the tick marks of the chart, but both routines ignore
mono since black and white charts are not supported by the ChartFolio library.

ChartType int ChartType(void) const;

int SetChartType(int chartTypeID);

ChartType() specifies the chart display type. SetChartType() may be used to
change the chart display type. Any of the following values defined by the
ChartFolio library may be used for the ChartType(). Note that 3-D charts are
not supported by the limited version of ChartFolio supplied with ZAF 5, but
are available in the add-on product:

ClearDataAll ZafError ClearDataAll(void);

ClearDataAll() deletes all the data points in all data groups currently used by
the chart. The data groups themselves are not deleted. ClearDataAll() returns
ZAF_ERROR_INVALID if an error occurred; otherwise
ZAF_ERROR_NONE is returned.

ChartType() Description

CF_ID_AREA_2D Displays the data in a 2-D area chart

CF_ID_BAR_2D Displays the data in a 2-D horizontal bar chart

CF_ID_COL_2D Displays the data in a 2-D vertical (column) bar chart

CF_ID_LINE_2D Displays the data in a 2-D line chart

CF_ID_PIE_2D Displays the data in a 2-D pie chart

CF_ID_POINTS_2D Displays the data in a 2-D point series chart

CF_ID_STACK_2D Displays the data in a 2-D vertical stack chart

ZafChart 77

ClearDataGroup ZafError ClearDataGroup(int groupIndex);

ClearDataGroup() deletes all the data points in the data group referred to by
one-based index groupIndex. The data group itself is not deleted. ClearData-
Group() returns ZAF_ERROR_INVALID if an error occurred; otherwise
ZAF_ERROR_NONE is returned.

DataGroup cf_DataGroup *DataGroup(int groupIndex);

DataGroup() returns a pointer to the ChartFolio data group object referred to
by one-based index groupIndex. DataGroup() is an advanced routine and
should normally not be called by the programmer. Consult ChartFolio docu-
mentation for detailed information on the use of a cf_DataGroup.

DataGroupBack-
groundColor

ZafLogicalColor DataGroupBackgroundColor(int groupIndex,
ZafLogicalColor *mono = ZAF_NULLP(ZafLogicalColor));

ZafLogicalColor SetDataGroupBackgroundColor(int
groupIndex, ZafLogicalColor color, ZafLogicalColor
mono = ZAF_MONO_NULL);

DataGroupBackgroundColor() specifies the logical color used when drawing
the background pieces of the data group referred to by one-based index
groupIndex. Each data group’s DataGroupBackgroundColor() is initially set
by the ChartFolio library, but may be changed by calling SetDataGroupBack-
groundColor(). color specifies the logical color to be used when drawing the
background pieces of the data group, but both routines ignore mono since black
and white charts are not supported by the ChartFolio library.

DataGroupFill-
Pattern

ZafLogicalFillPattern DataGroupFillPattern(int
groupIndex) const;

ZafLogicalFillPattern SetDataGroupFillPattern(int
groupIndex, ZafLogicalFillPattern fillPattern);

DataGroupFillPattern() specifies the logical fill pattern used when drawing the
data group referred to by one-based index groupIndex. Each data group’s Dat-
aGroupFillPattern() is initially set by the ChartFolio library, but may be
changed by calling SetDataGroupFillPattern(). fillPattern specifies the logical
fill pattern to be used when drawing the data group.

DataGroupFont ZafLogicalFont DataGroupFont(int groupIndex) const;

78 Zinc Application Framework 5

ZafLogicalFont SetDataGroupFont(int groupIndex,
ZafLogicalFont font);

DataGroupFont() specifies the logical font used when drawing the textual
information of the data group referred to by one-based index groupIndex. Each
data group’s DataGroupFont() is initially set by the ChartFolio library, but may
be changed by calling SetDataGroupFont(). font specifies the logical font to be
used when drawing the textual information of the data group.

DataGroup-
ForegroundColor

ZafLogicalColor DataGroupForegroundColor(int groupIndex,
ZafLogicalColor *mono = ZAF_NULLP(ZafLogicalColor));

ZafLogicalColor SetDataGroupForegroundColor(int
groupIndex, ZafLogicalColor color, ZafLogicalColor
mono = ZAF_MONO_NULL);

DataGroupForegroundColor() specifies the logical color used when drawing
the foreground pieces of the data group referred to by one-based index
groupIndex. Each data group’s DataGroupForegroundColor() is initially set by
the ChartFolio library, but may be changed by calling SetDataGroupFore-
groundColor(). color specifies the logical color to be used when drawing the
foreground pieces of the data group, but both routines ignore mono since black
and white charts are not supported by the ChartFolio library.

DataGroupLineStyle ZafLogicalLineStyle DataGroupLineStyle(int groupIndex)
const;

ZafLogicalLineStyle SetDataGroupLineStyle(int groupIndex,
ZafLogicalLineStyle lineStyle);

DataGroupLineStyle() specifies the logical line style used when drawing the
data group referred to by one-based index groupIndex. Each data group’s Dat-
aGroupLineStyle() is initially set by the ChartFolio library, but may be
changed by calling SetDataGroupLineStyle(). lineStyle specifies the logical
line style to be used when drawing the data group.

DataPoint cf_XYZ *DataPoint(int groupIndex, int dataIndex);

DataPoint() returns a pointer to the ChartFolio data point object referred to by
one-based data group index groupIndex and one-based data point index dataIn-
dex. DataPoint() is an advanced routine and should normally not be called by
the programmer. Consult ChartFolio documentation for detailed information
on the use of a cf_XYZ.

IndexMethod int IndexMethod(void) const;

ZafChart 79

int SetIndexMethod(int indexMethodID);

IndexMethod() specifies the index method used by the domain axis of the
chart. SetIndexMethod() may be used to change the domain index method.
Any of the following values defined by the ChartFolio library may be used for
the IndexMethod(). Note that extended indexing modes, including real num-
ber value indexing, are available in the add-on product:

MarksXAxis bool MarksXAxis(void) const;

bool SetMarksXAxis(bool xAxisMarks);

If MarksXAxis() is true, the x-axis of the chart is drawn with tick marks and
incremental values (if applicable according to the ChartType()). MarksX-
Axis() defaults to true, but may be changed by calling SetMarksXAxis().

MarksYAxis bool MarksYAxis(void) const;

bool SetMarksYAxis(bool yAxisMarks);

If MarksYAxis() is true, the y-axis of the chart is drawn with tick marks and
incremental values (if applicable according to the ChartType()). MarksYAxis()
defaults to true, but may be changed by calling SetMarksYAxis().

TextTitle const ZafIChar *TextTitle(void);

const ZafIChar *SetTextTitle(const ZafIChar *text);

TextTitle() specifies the text used when drawing the title of the chart. TextTi-
tle() defaults to null (in which case no title is drawn with the chart), but may be
changed by calling SetTextTitle().

TextXAxis const ZafIChar *TextXAxis(void);

const ZafIChar *SetTextXAxis(const ZafIChar *text);

TextXAxis() specifies the text used when drawing the x-axis label for the chart
(if applicable according to the ChartType()). TextXAxis() defaults to null (in
which case no label is drawn with the x-axis), but may be changed by calling
SetTextXAxis().

ChartType() Description

CF_ID_YVALS_ON_INT_IS Uses non-negative integral values for
the domain

CF_ID_YVALS_ON_NAT_NS Uses natural (counting) values for the
domain

80 Zinc Application Framework 5

TextYAxis const ZafIChar *TextYAxis(void);

const ZafIChar *SetTextYAxis(const ZafIChar *text);

TextYAxis() specifies the text used when drawing the y-axis label for the chart
(if applicable according to the ChartType()). TextYAxis() defaults to null (in
which case no label is drawn with the y-axis), but may be changed by calling
SetTextYAxis().

ZafChartStub 81

ZafChartStub
Inheritance ZafChartStub : ZafWindowObject : ZafElement

Declaration #include <z_chart.hpp>

Description ZafChartStub serves solely as a base class for ZafChart, so that ZafChart—and
the third-party ChartFolio library it relies on—are not linked into a program
that does not make use of it. Zinc Designer uses this class to allow editing of a
ZafChart persistent object without the need to link in the overhead. The pro-
grammer should normally not derive from this class. See ZafChart for more
information.

82 Zinc Application Framework 5

ZafCodeSetData

Inheritance ZafCodeSetData : ZafI18nData : ZafData :
ZafNotification, ZafElement

Declaration #include <z_cset.hpp>

Description Different environments use different character sets to represent characters and
strings internally. For example, some environments use Unicode as the native
character set, and others use multi-byte strings. ZAF provides support for ISO
8859-1 and Unicode character mapping. By default, the ZAF libraries support
ISO 8859-1, but the programmer may uncomment the ZAF_UNICODE macro
definition in the header file z_env.hpp and recompile the libraries to support
Unicode character mapping.

Though ISO 8859-1 characters are all single-byte characters and Unicode char-
acters are all double-byte characters, some systems may use multi-byte charac-
ters, which may use any number of bytes for a single character. ZAF provides
transparent support for all these systems by using the ZafCodeSetData meth-
ods when passing information to and from the native environment. The ZAF
programmer simply has to use ZafIChar characters and strings, which always
use ISO 8859-1 or Unicode character mapping. By commenting out both
ZAF_ISO8859_1 and ZAF_UNICODE macros in the header file z_env.hpp,
no mapping will occur, and the programmer may use native characters and
strings, albeit unportably.

ZafCodeSetData provides support for mapping characters and strings between
ISO 8859-1 or Unicode character sets (depending on the mode of the applica-
tion) and the native environment’s character set. For example, before calling a
native API, a ZafIChar character or string must at times be converted to the
native environment’s format so the API will be able to utilize it correctly.
Internally to the ZAF library, ZafCodeSetData is utilized when appropriate,
since all ZAF interfaces use ZafIChar characters and strings. The mapping
tables that enable this functionality are included in the file i18n.znc, which
must be available in the same directory as the ZAF application that requires
these tables. The i18n.znc file is shipped in the zaf/bin directory.

Clear ConvertToOSWChar IsoToUnicode
CodeSetAllocate ConvertToOSWString mblen
CodeSetFree ConvertToZafChar mbstowcs
CodeSetName ConvertToZafString NativeMapping
ConvertToOSChar DefaultLeadByte UnicodeToISO
ConvertToOSString DirSepStr wcstombs

ZafCodeSetData 83

The programmer should never construct a ZafCodeSetData object, since one is
created by ZafApplication which may be accessed via the global zafCodeSet.
And normally, the programmer will not need to call these routines. However,
advanced programmers may call a native API, and may be required to call the
routines in ZafCodeSetData to convert values passed to the native API.

Constructors All ZafCodeSetData constructors initialize the member variables associated
with an instantiated ZafCodeSetData object. The default values set by the Zaf-
CodeSetData and its base class constructors follow, if they differ from those set
by the base class constructor.

ZafCodeSetData(ZafIChar *isoToLocal, ZafIChar
*localToIso);

These constructors allocate a ZafCodeSetData instance. isoToLocal specifies
the table used to map ISO 8859-1 characters to native characters, and local-
ToIso specifies the table used to map native characters to ISO 8859-1 charac-
ters.

ZafCodeSetData(const ZafCodeSetData ©);

The copy constructor creates a new ZafCodeSetData object and initializes its
data from copy.

ZafCodeSetData(const ZafIChar *name, ZafDataPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Member Initializations

ZafCodeSetData
CodeSetName() environment-specific

DefaultLeadByte() 0

dirSepStr[2] environment-specific

NativeMapping() false (Unicode mode only)

ZafElement
ClassID() ID_ZAF_CODE_SET_DATA

ClassName() "ZafCodeSetData"

84 Zinc Application Framework 5

Destructor virtual ~ZafCodeSetData(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafCodeSetData object.

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Clear virtual void Clear(void);

Clear() does nothing, but provides a definition for the base class ZafData pure
virtual function.

CodeSetAllocate static void CodeSetAllocate(const ZafIChar *name =
ZAF_NULLP(ZafIChar));

CodeSetAllocate() is called at application startup, and creates the global Zaf-
CodeSetData instance zafCodeSet. CodeSetAllocate() allocates the lookup
tables used to convert between ISO 8859-1 or Unicode characters and native
characters. If name is null, the default lookup tables are used for each environ-
ment; otherwise, name specifies the name of the code set data object to be
loaded by the data manager.

CodeSetFree static void CodeSetFree(bool globalRequest = false);

If globalRequest is true, CodeSetFree() deletes the global ZafCodeSetData
instance zafCodeSet; otherwise it does nothing. CodeSetFree() is called as an
application shuts down, and should normally not be called by the programmer.

CodeSetName static const ZafIChar *CodeSetName(void);

static ZafError SetCodeSetName(const ZafIChar
*codeSetName);

CodeSetName() specifies the name of the code set being used to map charac-
ters. For example, a straight mapping for ISO 8859-1 would specify a code set
name of "ISO8859-1", a straight mapping for Unicode would specify "UNI-
CODE", a MS-DOS code page 437 would specify "437", and the Macintosh
character set would specify "MACINTOSH". The default for this attribute is
different for each environment, and may be changed by calling SetCodeSet-

ZafCodeSetData 85

Name(). The programmer should not call SetCodeSetName(), since this
attribute is set internally by the ZAF libraries.

ConvertToOSChar int ConvertToOSChar(ZafIChar zafChar, char *osChar);

ConvertToOSChar() converts the ISO 8859-1 or Unicode character zafChar to
the native equivalent. Systems that require multi-byte strings may return a
character that is more than a single byte (char), so the return buffer osChar
must be large enough to hold the resulting character. The number of bytes
(chars) required for osChar is returned.

ConvertToOSString char *ConvertToOSString(const ZafIChar *zafString, char
*osString = ZAF_NULLP(char), bool allocate = true);

ConvertToOSString() converts the ISO 8859-1 or Unicode string zafString to
the native equivalent and returns the result. Systems that require multi-byte
strings may return a string that requires a different size buffer than the source
string, so the return buffer osString may be a different size than zafString. If
allocate is true, ConvertToOSString() will allocate a buffer in which the result-
ing string will be placed, and the programmer must delete the buffer when
appropriate. If allocate is false and osString is null, a static buffer will be used
in which the resulting string will be placed, and the programmer should not
delete the buffer.

ConvertToOSW-
Char

int ConvertToOSWChar(ZafIChar zafChar, wchar_t *osChar);

Unicode only. ConvertToOSWChar() converts the Unicode character zafChar
to the native wide character equivalent, if supported by the environment. The
return buffer osChar must be allocated by the programmer before calling Con-
vertToOSWChar(). The number of wchar_ts required for osChar is returned,
which is always 1 according to the portable definition of wchar_t.

ConvertToOSW-
String

wchar_t *ConvertToOSWString(const ZafIChar *zafString,
wchar_t *osString = ZAF_NULLP(wchar_t), bool allocate
= true);

Unicode only. ConvertToOSWString() converts the Unicode string zafString
to the native wide character string equivalent and returns the result both as the
return value for the function and in osString. If allocate is true, Convert-
ToOSWString() will allocate a buffer in which the resulting string will be
placed, and the programmer must delete the buffer when appropriate. If allo-
cate is false and osString is null, a static buffer will be used in which the result-
ing string will be placed, and the programmer should not delete the buffer.

86 Zinc Application Framework 5

ConvertToZafChar int ConvertToZafChar(const char *osChar, ZafIChar
&zafChar);

ISO only. ConvertToZafChar() converts the native character osChar to the
ISO 8859-1 or Unicode equivalent, which is returned in zafChar. The number
of bytes (chars) required for osChar is returned.

int ConvertToZafChar(const wchar_t *osChar, ZafIChar
&zafChar);

Unicode only. This overloaded ConvertToZafChar() converts the native wide
character osChar to the Unicode equivalent, which is returned in zafChar. The
number of ZafIChars required for zafChar is returned, which is always 1, since
ZafIChar is ZAF’s portable character type no matter what mode the application
is running in.

ConvertToZafString ZafIChar *ConvertToZafString(const char *osString,
ZafIChar *zafString = ZAF_NULLP(ZafIChar), bool
allocate = true);

ZafIChar *ConvertToZafString(const wchar_t *osString,
ZafIChar *zafString = ZAF_NULLP(ZafIChar), bool
allocate = true);

The first method is for ISO only. ConvertToZafString() converts the native
string osString to the ISO 8859-1 or Unicode equivalent and returns the result.
Systems that require multi-byte strings may return a string that requires a dif-
ferent size buffer than the source string, so the return buffer zafString may be a
different size than osString. If allocate is true, ConvertToZafString() will allo-
cate a buffer in which the resulting string will be placed, and the programmer
must delete the buffer when appropriate. If allocate is false and zafString is
null, a static buffer will be used in which the resulting string will be placed,
and the programmer should not delete the buffer.

The second method is for Unicode only. This overloaded ConvertToZaf-
String() converts the native wide character string osString to the Unicode
equivalent and returns the result both as the return value for the function and in
zafString. If allocate is true, ConvertToZafString() will allocate a buffer in
which the resulting string will be placed, and the programmer must delete the
buffer when appropriate. If allocate is false and zafString is null, a static buffer
will be used in which the resulting string will be placed, and the programmer
should not delete the buffer.

ZafCodeSetData 87

DefaultLeadByte ZafUInt8 DefaultLeadByte(void) const;

ZafUInt8 SetDefaultLeadByte(ZafUInt8 defaultLeadByte);

When mapping a character from ISO 8859-1 to Unicode, DefaultLeadByte() is
used as the high byte. DefaultLeadByte() is analogous to the Unicode page
that corresponds to a language. For example, the Unicode page for English
and other similar languages is 0. DefaultLeadByte() defaults to 0, but the pro-
grammer may call SetDefaultLeadByte() to change it.

DirSepStr ZafIChar dirSepStr[2];

dirSepStr is a null-terminated string that includes the character used to separate
directory names in a pathname for each environment. It is initialized at appli-
cation startup.

IsoToUnicode ZafIChar *IsoToUnicode(const char *isoText, ZafIChar
*unicodeText = ZAF_NULLP(ZafIChar));

Unicode only. IsoToUnicode() converts the single-byte ISO 8859-1 string iso-
Text to a double-byte Unicode string and returns the Unicode string both as the
return value for the function and in unicodeText. Since the first 256 Unicode
characters are also ISO 8859-1 characters, IsoToUnicode() simply pads the
high byte of each resulting character with DefaultLeadByte(), which corre-
sponds to the Unicode page that a language uses. If unicodeText is null, IsoT-
oUnicode() allocates the return buffer, and the programmer must delete the
buffer when appropriate.

mblen int mblen(const char *hardware);

Unicode only. mblen() returns the number of bytes (chars) of the multi-byte
character that hardware points to.

mbstowcs int mbstowcs(ZafIChar *pwcs, const char *s, int n = -1);

Unicode only. mbstowcs() converts the multi-byte string s to the native wide
character string equivalent and returns the result in pwcs. pwcs must point to a
buffer sufficiently large to hold the resulting string. If n is less than zero,
mbstowcs() will convert the entire string; otherwise n characters of the string
will be converted. The number of ZafIChars required for pwcs is returned.

88 Zinc Application Framework 5

NativeMapping bool NativeMapping(void) const;

bool SetNativeMapping(bool mapping);

Unicode only. If NativeMapping() is true, then the native environment uses
the Unicode code set internally, so no mapping is necessary; otherwise, map-
ping between the native code set and Unicode is necessary. This attribute may
be changed using SetNativeMapping(), but should normally not be changed by
the programmer, since it is initialized at application startup according to the
native environment.

UnicodeToISO char *UnicodeToIso(const ZafIChar *unicodeText, char
*isoText = ZAF_NULLP(char));

Unicode only. UnicodeToIso() converts the double-byte Unicode string unico-
deText to a single-byte ISO 8859-1 string and returns the ISO 8859-1 string
both as the return value for the function and in isoText. The Unicode string
should not include any characters beyond the first 256 Unicode characters.
Since the first 256 Unicode characters are also ISO 8859-1 characters, Unico-
deToIso() simply copies the low byte of each Unicode character into the result-
ing string. If isoText is null, UnicodeToIso() allocates the return buffer, and the
programmer must delete the buffer when appropriate.

wcstombs int wcstombs(char *s, const ZafIChar *pwcs, int n = -1);

Unicode only. wcstombs() converts the native wide character string pwcs to
the multi-byte string equivalent and returns the result in s. s must point to a
buffer sufficiently large to hold the resulting string. If n is less than zero, wcs-
tombs() will convert the entire string; otherwise n characters of the string will
be converted. The number of bytes (chars) required for s is returned.

ZafComboBox 89

ZafComboBox

Inheritance ZafComboBox : ZafWindow : (ZafWindowObject :
ZafElement), ZafList

Declaration #include <z_combo.hpp>

Description The ZafComboBox object provides support for a list of items, where one item
at a time is selected and visible. When the user selects the ZafComboBox
object, the list of items becomes visible, and the user may select another of the
items. When an item is selected, the list closes, and the ZafComboBox object
displays the newly-selected item. Any item may be selected programmatically
by calling SetSelected(true) for the item. In fact, if the programmer doesn’t
call SetSelected(true) on one of the children, the ZafComboBox object initially
appears empty. See ZafWindowObject::Selected() for more information on
selecting child objects.

A ZafComboBox object may be editable (see ViewOnly() for more informa-
tion), in which case the user may type one of the items to select it without
bringing up the list. The first list item beginning with the characters typed by
the user is selected. If the ZafComboBox object is ViewOnly(), then the first
item beginning with a key typed is selected.

A ZafComboBox object may contain children that display more than textual
information, such as ZafButton objects with bitmap information. For the chil-
dren's bitmap information to be displayed, the ZafComboBox object’s
OSDraw() attribute must not be true; otherwise only the text of the children
will be displayed.

In initializing a newly-created ZafComboBox to select a child other than the
first, child->SetSelected(true) should be called. To initialize the editable tex-
tual portion of a newly-created non-ViewOnly() ZafComboBox, comboBox-
>SetText() should be called.

Like other ZAF classes, ZafComboBox utilizes the native API when available,
so the look-and-feel is what the end user expects. ZafComboBox by its very
nature implies a relatively small number of items to choose from, since it only
takes up as much space as a single item in its list. Though there is program-
matically not a limit to the number of items allowable in a ZafComboBox
object, no more than approximately 100 items should be placed in a single Zaf-
ComboBox object. For a large number of items, consider using ZafVtList for
better usability.

AutoSortData SetBackgroundColor SetTextColor
list SetFont ViewOnly

90 Zinc Application Framework 5

Constructors All ZafComboBox constructors initialize the member variables associated with
an instantiated ZafComboBox object. The default values set by the ZafCom-
boBox and its base class constructors follow, if they differ from those set by
the base class constructor, or if a blocking function is implemented in ZafCom-
boBox. “†” Indicates a blocking function that prevents changes to the attribute
in this class.

ZafComboBox(int left, int top, int width, int height);

This constructor is useful in straight-code situations. left and top specify the
left and top of the object, while width and height specify the width and height
of the drop down list. All values are specified in cell coordinates by default,
but may be specified using another coordinate system if desired.

Member Initializations

ZafComboBox
AutoSortData() false

ViewOnly() false

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() false†

SelectionType() ZAF_SINGLE_SELECTION†

Sizeable() false†

Temporary() false†

ZafWindowObject
Bordered() true†

ZafElement

ClassID() ID_ZAF_COMBO_BOX

ClassName() "ZafComboBox"

ZafComboBox 91

ZafComboBox(const ZafComboBox ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafComboBox object and copies the object’s
information.

ZafComboBox(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a combo-box with strings follows:

// Create a sample window with an editable combo-box with
strings.

ZafWindow *window1 = new ZafWindow(0, 0, 50, 10);
ZafComboBox *comboBox = new ZafComboBox(0, 0, 20, 5);
// Children are automatically positioned by the combo-box.
comboBox->Add(new ZafString(0, 0, 20, "Black", -1));
comboBox->Add(new ZafString(0, 0, 20, "Blue", -1));
comboBox->Add(new ZafString(0, 0, 20, "Green", -1));
comboBox->Add(new ZafString(0, 0, 20, "Red", -1));
comboBox->Add(new ZafString(0, 0, 20, "White", -1));
// Add the combo-box to the window.
window1->Add(comboBox);

Destructor virtual ~ZafComboBox(void);

The destructor is used to free the memory associated with a ZafComboBox
object. It chains to the ZafWindow, ZafList, ZafWindowObject and ZafEle-
ment destructors.

Generally, the programmer will not directly destroy a ZafComboBox object,
since it is automatically destroyed when its parent window is destroyed. For
more information on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

92 Zinc Application Framework 5

AutoSortData bool AutoSortData(void) const;

virtual bool SetAutoSortData(bool autoSortData);

If AutoSortData() is true, the combo-box will automatically sort its children as
they are added to the combo-box. The function returned by CompareFunc-
tion() is used to sort the children. By default, sorting is done in alphabetical
order, but SetCompareFunction() may be called to provide a custom sorting
function. See ZafList::CompareFunction() for more information about sorting
list children. The default value of this attribute is false, but the user may call
SetAutoSortData() to make changes.

SetBackground-
Color

virtual ZafLogicalColor
SetBackgroundColor(ZafLogicalColor color,
ZafLogicalColor mono = ZAF_MONO_NULL);

To provide consistency in the appearance of combo-box children, the ZafCom-
boBox object sets the ParentPalette() attribute on each of its children (see Zaf-
WindowObject::ParentPalette()). In conjunction with this attribute, this
overloaded function provides functionality for setting the background color for
all the children in the combo-box.

SetFont virtual ZafLogicalFont SetFont(ZafLogicalFont font);

To provide consistency in the appearance of combo-box children, the ZafCom-
boBox object sets the ParentPalette() attribute on each of its children (see Zaf-
WindowObject::ParentPalette()). In conjunction with this attribute, this
overloaded function provides functionality for setting the font for all the chil-
dren in the combo-box.

list ZafVtList *list;

The list member is used internally by ZAF to house the children of a combo-
box. The programmer should never need to access this member, since it is
maintained by the ZafComboBox class.

SetTextColor virtual ZafLogicalColor SetTextColor(ZafLogicalColor
color, ZafLogicalColor mono = ZAF_MONO_NULL);

To provide consistency in the appearance of combo-box children, the ZafCom-
boBox object sets the ParentPalette() attribute on each of its children (see Zaf-
WindowObject::ParentPalette()). In conjunction with this attribute, this
overloaded function provides functionality for setting the text color for all the
children in the combo-box.

ZafComboBox 93

ViewOnly bool ViewOnly(void) const;

virtual bool SetViewOnly(bool viewOnly);

A ViewOnly() ZafComboBox object may not be edited, but may be the current
object of a window, and arrow keys may be used to navigate it. If a
ViewOnly() ZafComboBox object is OSDraw(), text may be selected and cop-
ied to the clipboard, but it may not be modified. ViewOnly() is false by
default, but the user may call SetViewOnly() to make changes.

A common use of a ZafComboBox object with ViewOnly() false is to allow
the end user to type a new value that is to be dynamically added as a new child
when <Enter> or <Return> is typed, such as with a selection of font sizes. This
behavior may be implemented by adding a new child to the ZafComboBox
object using the Add() function. See ZafWindow::Add() for more information
on adding child objects.

94 Zinc Application Framework 5 - Beta

ZafConstraint

Inheritance ZafConstraint : ZafElement

Declaration #include <z_gmgr.hpp>

Description ZafConstraint is provided solely as a base class for all geometry management
constraint classes to be used with ZafGeometryManager (see ZafGeometry-
Manager for more information). ZafConstraint is an abstract class, since it
defines a pure virtual function. ZAF provides three derived classes of ZafCon-
straint: ZafAttachment, ZafDimensionConstraint, and ZafRelativeConstraint.

Since ZafConstraint is the abstract base class for all constraint classes, the
information presented in this chapter applies to all the derived classes.

Constructors All ZafConstraint constructors initialize the member variables associated with
an instantiated ZafConstraint object. The default values set by the ZafCon-
straint and its base class constructors follow, if they differ from those set by the
base class constructor.

ZafConstraint(ZafWindowObject *object);

This constructor is called by derived class constructors to create a ZafCon-
straint, attached to object. (See Object() for more information.)

ZafConstraint(const ZafConstraint ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It is provided solely so that derived class instances may be copied via
a ZafConstraint pointer.

Event Object ObjNumberID

Member Initializations

ZafConstraint

Object() user-supplied parameter

ZafElement

ClassID() ID_ZAF_CONSTRAINT

ClassName() "ZafConstraint"

ZafConstraint 95

ZafConstraint(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a constraint follows:

// Create a status bar with geometry-managed children.
ZafStatusBar *stat = new ZafStatusBar(0, 0, 0, 1);
ZafString *string = new ZafString(0, 0, 15, new

ZafStringData("String"));
stat->Add(string);
ZafTime *time = new ZafTime(15, 0, 15, new ZafTimeData);
stat->Add(time);

// Time field will remain at the right side of status bar.
ZafAttachment *attach = new ZafAttachment(time, ZAF_ATCF_RIGHT);
attach->SetOffset(0);

// Create the geometry manager and add the first constraint.
ZafGeometryManager *geo = new ZafGeometryManager;
geo->Add(attach);

// String field will occupy the remaining space.
attach = new ZafAttachment(string, ZAF_ATCF_RIGHT);
attach->SetStretch(true);
attach->SetReference(time);
attach->SetOppositeSide(true);
attach->SetOffset(1);

// Add the second constraint to the geometry manager.
geo->Add(attach);

// Add the geometry manager to the status bar.
stat->Add(geo);

Destructor virtual ~ZafConstraint(void);

The destructor is used to free the memory associated with a ZafConstraint
object. It chains to the ZafElement destructor.

Generally, the programmer will not directly destroy a ZafConstraint object,
since it is automatically destroyed when its parent geometry manager is
destroyed. For more information on child object deletion, see ZafWin-
dow::~ZafWindow().

96 Zinc Application Framework 5 - Beta

Members
Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events sent to the ZafConstraint object.
The only event handled by ZafConstraint is S_INITIALIZE, which causes the
constraint to initialize its numberID, stringID, and Object().

Object ZafWindowObject *Object(void) const;
void SetObject(ZafWindowObject *setObject);

Object() is the window object to which the constraint applies. There may be
many constraints that apply to a single object, but a constraint applies to
exactly one window object.

ObjNumberID ZafNumberID ObjNumberID(void) const;

void SetObjNumberID(ZafNumberID tObjNumberID);

SetObjNumberID() specifies to the constraint the numberID of the window
object to which it applies. When reading a constraint from a persistent data
file, the constraint is tied to its window object via the numberID. tObjNum-
berID is the numberID of the window object.

ZafCoordinateStruct 97

ZafCoordinateType
Inheritance Enumerated type

Declaration #include <z_coord.hpp>

Description ZafCoordinateType provides support for various coordinate systems in ZAF.
ZAF_CELL is the default coordinate system based on the size of the system
font on each environment. Since this system is fully portable to all environ-
ments (including non-graphical character-based environments) the program-
mer should use coordinate systems other than ZAF_CELL only when greater
precision is needed. ZAF_MINICELL coordinates are fractional ZAF_CELLs
and are portable between graphical environments only. ZAF_PIXEL coordi-
nates are not portable. Other coordinate systems are available as well and are
discussed below. Since coordinate systems depend on a display device,
ZafDisplay provides conversion values and functions for converting between
the different supported coordinate systems in ZAF.

The coordinate systems defined in ZAF are as follows:

Coordinate Type Description

ZAF_CELL Specifies the cell coordinate system, based on the
system font, and the only coordinate system portable
to both graphical and character-based environments.

ZAF_INCH_1000 Specifies the inch coordinate system, based on thou-
sandths of an inch. Inches are portable between
graphical environments.

ZAF_MILLIMETER_10 Specifies the millimeter coordinate system, based on
tenths of a millimeter. Millimeters are portable
between graphical environments.

ZAF_MINICELL Specifies the mini-cell coordinate system, based on
fractional cells calculated as specified above. Mini-
cells are portable between graphical environments.

ZAF_PIXEL Specifies the pixel coordinate system using native
display values. Pixels are not portable.

ZAF_POINTS Specifies the point coordinate system commonly
used in typography. There are 72 points in an inch,
but inches are not rigidly defined on a display. Points
are not fully portable but may be appropriate for
internal calculations requiring greater precision.

98 Zinc Application Framework 5

ZAF_TWIPS Specifies the twip coordinate system. There are 20
twips in a point, or 1440 twips in an inch, but inches
are not rigidly defined on a display. Twips are not
fully portable but may be appropriate for internal cal-
culations requiring greater precision.

Coordinate Type Description

ZafCursor 99

ZafCursor

Inheritance ZafCursor : ZafDevice : ZafElement

Declaration #include <z_cursor.hpp>

Description ZafCursor is the class that defines cursor device support. A cursor shows the
end user where keyboard focus is, and usually blinks for noticability. Any
keys typed will be inserted where the cursor is.

Constructors All ZafCursor constructors initialize the member variables associated with an
instantiated ZafCursor object. Default values set by the ZafCursor follow, as
well as base class values when overridden by ZafCursor.

ZafCursor(ZafDeviceState state = D_ON, ZafDeviceImage
imageType = DC_INSERT);

This constructor is used to instantiate a ZafCursor object to be added to a ZafE-
ventManager object. state specifies the initial state of the device, and image-
Type specifies the initial image type displayed by the device (see ImageType()
for more information).

BlinkRate ImageType
Event Poll

Member Initializations

ZafCursor
BlinkRate() environment-specific

ImageType() user-supplied parameter

ZafDevice
DeviceType() E_CURSOR

ZafElement
ClassID() ID_ZAF_CURSOR

ClassName() "ZafCursor"

NumberID() ID_ZAF_CURSOR

StringID() "ZafCursor"

100 Zinc Application Framework 5

ZafCursor(const ZafCursor ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafCursor object and copies the object’s informa-
tion. An example of how to create a ZafCursor object follows:

// Instantiate the input devices.
ZafEventManager *eventManager = new ZafEventManager;
eventManager->Add(new ZafKeyboard);
eventManager->Add(new ZafMouse);
eventManager->Add(new ZafCursor);

Destructor virtual ~ZafCursor(void);

The destructor is used to free the memory associated with a ZafCursor object.
It chains to the ZafDevice and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafCursor object, since it
is automatically destroyed when the event manager is destroyed. For more
information on device object deletion, see ZafEventManager::~ZafEventMan-
ager().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

BlinkRate static int BlinkRate(void);

static int SetBlinkRate(int blinkRate);

BlinkRate() is a static member used by environments that don’t automatically
blink the cursor device. It should normally not be referred to by the program-
mer.

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events sent to the ZafCursor object.
ZafCursor handles all the DC_* messages discussed in ImageType(), as well as
D_STATE, which causes a device to return its state.

ZafCursor 101

ImageType ZafDeviceImage ImageType(void) const;

virtual ZafDeviceImage SetImageType(ZafDeviceImage
imageType);

ImageType() returns a constant that indicates the cursor’s current image type.
SetImageType() may be called to change a cursor’s image type, if supported by
the environment. The different image types supported by ZafCursor are as fol-
lows:

Poll virtual void Poll(void);

In some environments, the Poll() function checks the cursor device for any
input events and posts them on the event manager’s queue, if the ZafCursor’s
state is not D_OFF. In other environments where cursor events are handled
automatically by the native environment’s event queue, Poll() simply blocks
cursor events from coming through ZAF’s event manager queue if the ZafCur-
sor’s state is D_OFF.

ImageType() Description

DC_INSERT causes the cursor to show the insert image

DC_OVERSTRIKE causes the cursor to show the overstrike image

102 Zinc Application Framework 5

ZafData

Inheritance ZafData : ZafElement, ZafNotification

Declaration #include <z_data.hpp>

Description ZafData is the base class for all low-level data types such as dates, times,
strings, bitmaps, etc. This class is derived from both the ZafElement and
ZafNotification base classes, giving it the inherited capabilities associated with
list elements and data notification objects. These inherited features include
string and number identifications, notification to window objects when a par-
ticular data value changes, and notification when the contents of an associated
user interface object is modified.

ZafData is an abstract class since it has some pure virtual functions and a pro-
tected constructor. Since you cannot directly instantiate a ZafData class, you
must instantiate a publicly available derived class. There are three types of
data objects that are supported by Zinc:

• data objects that allow formatted text

• data objects that have image information

• data objects that maintain internationalization information

These ZAF classes are listed below, presented under their data category.

Constructors The ZafData class constructor can only be instantiated from a derived class’s
constructor such as ZafDateData, ZafStringData, ZafIconData, or ZafLan-
guageData.

The primary purpose of this constructor is to initialize the ZafElement and
ZafNotification portions of the class and to clear the error value

Clear Duplicate Event
Destroyable Error GetObject

Formatted Images Internationalization

ZafBignumData ZafBitmapData ZafCodeSetData

ZafDateData ZafIconData ZafLanguageData

ZafIntegerData ZafMouseData ZafLocaleData

ZafStringData ZafScrollData

ZafRealData

ZafTimeData

ZafUTimeData

ZafData 103

(ZAF_ERROR_NONE) associated with the data object. The default values set
by ZafData are listed below, as well as values overridden from those set by
base class constructors.

ZafData(void);

All other aspects of this class constructor are deferred to the appropriate
derived class definition. Please refer to the specific data object you are using
for complete information about the object’s construction.

ZafData(const ZafIChar *name, ZafDataPersistence
&persist);

This constructor is used for persistence. The parameters and values of this
constructor are deferred to the ZafWindow section of this manual, since most
persistence is done at the ZafWindow level.

Destructor virtual ~ZafData(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafData object. The ZafData portion of the destructor performs no inter-
nal operations because no memory is allocated for ZafData members. It
simply provides a chain from the derived object’s destructor up to the ZafEle-
ment and ZafNotification class destructors.

A ZafData pointer may be deleted even though the class definition is abstract.
This is done by allocating a derived object and by setting the returned object to
a ZafData pointer.

The following code shows the correct use of the ZafData destructor under
these conditions.

// Create a string data object.
ZafData *string = new ZafStringData("string", 100);
...
// Free the string.

Member Initializations

ZafData
Destroyable() true

Error() ZAF_ERROR_NONE

ZafElement
ClassID() ID_ZAF_DATA

ClassName() "ZafData"

104 Zinc Application Framework 5

delete string;

The pointer assignment, shown above, is permitted because ZafData is a base
class to ZafStringData. When the string object’s destructor is called, the actual
contents of the ZafStringData instance are freed because the base class destruc-
tor is declared virtual.

For complete information on the type of memory that is freed as a result of a
call to the destructor, see the reference chapter on the particular object you cre-
ated.

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Clear virtual void Clear(void) = 0;

This is a pure virtual function that abstractly defines “clearing” functionality
for a derived object. The Clear() function operates differently on various
derived objects. For example:

The following code shows how to use this method.

// Create an integer.
ZafData *data = new ZafIntegerData(100);
...
// Clear the data object’s contents.
data->Clear();

Derived class Description of Clear()

ZafBitmapData Destroys the original bitmap array associated
with the object and also any environment specific
bitmap handles that were created during the
application’s run-time operation.

ZafIntegerData Sets the integer value of the object to be 0.

ZafLocaleData Resets the locale information based on a set of
information known as the canonical locale.

ZafStringData Sets the string value of the object to be a blank
string, but does not destroy the string buffer.

ZafData 105

If data notification is active, and the integer data is associated with a window
object, then a call to Clear() will not only clear the internal value of the data,
but will also make a request to the associated window object to re-display its
screen information.

Destroyable bool Destroyable(void) const;

bool SetDestroyable(bool destroyable);

If Destroyable() is true, then the data object is considered non-static, and is
maintained by the corresponding window object. In other words, when the
corresponding window object is destroyed, then the data object is also
destroyed, usually by the window object’s destructor. On the other hand, if
Destroyable() is false, ZAF will not destroy the data object, and the program-
mer assumes responsibility for the data object. The default value of this
attribute is true, but it may be changed by calling SetDestroyable().

Duplicate virtual ZafData *Duplicate(void) = 0;

Duplicate() abstractly defines functionality for duplicating a derived object. A
derived class must provide a Duplicate() function, since it is declared pure vir-
tual. Generally, Duplicate() simply calls the copy constructor for the derived
class. Duplicate() may be called correctly with a ZafData pointer, since it is
declared virtual. For example, the following code correctly creates two string
data objects:

// Create an integer.
ZafData *data = new ZafIntegerData(100);
...
// Create a duplicate of the integer data object.
ZafData *dataCopy = data->Duplicate();

Error ZafError Error(void) const;

ZafError SetError(ZafError error);

Error() stores the last error that occurred with the object. The default value of
Error() is ZAF_ERROR_NONE, but it may be set internally by the library
whenever an error occurs, and SetError() may be called to change it. Note that
the programmer is responsible for setting this attribute back to
ZAF_ERROR_NONE when appropriate. The types of errors that can be set
are defined in the header file z_env.hpp. Generally, however, only the follow-
ing error values will be used by a ZafData object:

106 Zinc Application Framework 5

In addition to the error types described above, error values greater than or
equal to 10,000 are reserved for use on user-defined objects.

The following code fragments show how to define and use an error value with
a derived data object.

// Define the class and constant.
const ZafError CARTESIAN_ERROR = 10000;
class Cartesian : public ZafData
...
// Create a new coordinate.

Error() Description

ZAF_ERROR_NONE No error exists.

ZAF_ERROR_INVALID The contents of the data object are
invalid, meaning the data object’s
value can be shown on the screen and
used in calculations, but that the value
is incorrect in the context of the appli-
cation. For instance, the value 45 is a
legitimate integer, but is invalid when
used to describe the number of days in
the month of February.

ZAF_ERROR_OUT_OF_RANGE An error occurred while trying to con-
vert data from one type to another or
where the argument was too big or too
small for the return value. For exam-
ple, a value of 1000 does not fit into a
“%c” sprintf() style argument.

ZAF_ERROR_INVALID_TARGET The target data could not accept the
source value being presented. Such an
error would occur while trying to set
an integer value from a large floating
point number.

ZAF_ERROR_INVALID_SOURCE The source data is either of an incor-
rect type, or the data cannot be con-
verted by the target object. This error
is similar to the invalid target error,
except that the error occurred in the
information being passed by the
source, rather than by an error in the
target.

ZafData 107

Cartesian coordinate(120, 100);
...
// Check for coordinate error.
if (coordinate > point1 || coordinate < point2)
coordinate.SetError(CARTESIAN_ERROR);

...
// Check the error status.
if (coordinate.Error())
break;

Event virtual ZafEventType Event(const ZafEventStruct &event);

Event() processes all the events that come to the data object. At this level, no
events are handled. Derived classes must handle events in overloaded Event()
functions.

GetObject virtual ZafData *GetObject(ZafNumberID numberID);

virtual ZafData *GetObject(ZafIChar *stringID);

At the data level, the GetObject() functions simply check the parameter against
the data object’s identification. The numberID parameter is checked against
NumberID(), and the stringID parameter is checked against StringID(). If they
match, GetObject() returns a pointer to the data object, or null otherwise.

108 Zinc Application Framework 5

ZafDataManager

Inheritance ZafDataManager : ZafDataRecord : ZafData :
(ZafNotification, ZafElement), ZafList

Declaration #include <z_data.hpp>

Description ZafDataManager cooperates with ZafDataPersistence through the zafDataPer-
sistence global in maintaining ZafData objects to be used in an application. By
calling AllocateData(), the programmer can ask the ZafDataManager to load a
particular data object out of persistence, or simply return the data object if it
has already been loaded.

Constructor The ZafDataManager constructor initializes the member variables associated
with an instantiated ZafDataManager object. The default values set by the Zaf-
DataManager and its base class constructors follow, if they differ from those
set by the base class constructor.

ZafDataManager(void);

The constructor allocates a ZafDataManager instance.

The following code snippet shows how to use the global zafDataManager:

// Ask the data manager for a bitmap data object
// whose stringID is "MyBitmap".
// AllocateData() will load the bitmap data object
// from persistence if necessary.
ZafBitmapData *bitmapData = DynamicPtrCast(zafDataManager-

>AllocateData("MyBitmap", ZafBitmapData::className,
ZafBitmapData::classID), ZafBitmapData);

AllocateData

Member Initializations

ZafElement

ClassID() ID_ZAF_DATA_MANAGER

ClassName() "ZafDataManager"

ZafDataManager 109

Destructor virtual ~ZafDataManager(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafDataManager object. All ZafData objects associated with the Zaf-
DataManager are destroyed.

Members virtual ZafData *AllocateData(const ZafIChar *stringID,
ZafClassName className, ZafClassID classID);

AllocateData AllocateData() returns a pointer to the object identified by a stringID of
stringID. If it hasn’t been loaded yet, AllocateData() asks ZafDataPersistence
through the global zafDataPersistence to load the object using GetDataCon-
structor(). If the object cannot be found, null is returned. className specifies
the constant string identifier for the class of the object to be loaded, and
classID specifies the constant number identifier for the class of the object to be
loaded.

110 Zinc Application Framework 5

ZafDataPersistence

Inheritance Root class

Declaration #include <z_data.hpp>

Description ZafDataPersistence allows objects derived from ZafData to be written to, and/
or read from a storage object—usually a persistent data file.

Using ZafDataPersistence, a ZafData object can be constructed directly from
information stored in the data file, or stored there for later use. A table of per-
sistent data objects is maintained by this class and is used to reference each
object’s Read() function during construction. All ZAF-supplied data classes
are included in this table by default and the programmer may add support for
derived classes. See AddDataConstructor().

ZafData constructors (and thereby ZafDataPersistence members) are often
called by ZafWindowObject constructors, or by ZafDataManager::Allocate-
Data(). ZafDataPersistence uses ZafFileSystem and ZafFile to maintain and
manipulate one or more persistent object data files. See ZafStorage for more
information.

Constructors ZafDataPersistence initializes its members to the following default values:

ZafDataPersistence(ZafFileSystem *fileSystem,
DataConstructor *dataConstructor);

The ZafDataPersistence class constructor creates a ZafDataPersistence object
based on the open file fileSystem and the persistent data constructor table data-
Constructor.

AddDataConstructor CurrentFile PopLanguage
AddFileSystem CurrentFileSystem PushLanguage
AllocateFile CurrentLanguage PopLevel
ClearDataConstructors Error PushLevel
ClearFileSystems FirstFileSystem SetDataConstructors
CurrentClassID LastFileSystem SubtractDataConstructor
CurrentClassName Merge SubtractFileSystem

Member Initializations

ZafDataPersistence
CurrentLanguage() 0

Error() ZAF_ERROR_NONE

ZafDataPersistence 111

Below is the definition of ZafDataPersistence::DataConstructor.

struct DataConstructor
{
ZafClassID classID;
ZafClassName className;
ZafDataConstructor constructor;

};

classID is the numeric class identification constant for the data class, class-
Name is the string class identification constant for the data class, and construc-
tor is a pointer to the function used to construct an instance of the data class.
The className identifier is used by ZafDataPersistence to locate the correct
persistent constructor for a data class. The definition of ZafDataConstructor
follows:

typedef ZafElement *(*ZafDataConstructor)(const ZafIChar *,
ZafDataPersistence &);

ZafDataPersistence(const DataConstructor ©);

ZafDataPersistence(const ZafDataPersistence ©);

The copy constructors create a new ZafDataPersistence object and initialize its
data from copy.

The following code snippet shows how to create a ZafDataPersistence object
and use it to load a data object from storage:

// Create a storage object, which opens the data file.
ZafStorage *storage = new ZafStorage("test.znc",
ZAF_FILE_READ);

// Create a persistence object for loading the data object.
zafDataPersistence = new ZafDataPersistence(storage,
zafDefaultDataConstructor);

// Load the data object from the data file.
ZafBignumData *bignumData = new ZafBignumData("BignumData1",
*zafDataPersistence);

Often it is useful to derive a ZafData class and store custom information to the
persistent file. The following code snippet shows how to derive a class that
stores its own data in addition to information normally stored by base classes:

// Define the static members of MyStringData.

112 Zinc Application Framework 5

ZafClassID MyStringData::classID = 3500;
ZafClassNameChar MyStringData::className[] ="MyStringData";

// Persistent constructor of MyStringData.
// PushLevel() before reading the base class information.
MyStringData::MyStringData(const ZafIChar *name,

ZafDataPersistence &persist) : ZafStringData(name,
persist.PushLevel(className, classID, ZAF_PERSIST_FILE))

{
if (persist.Error() == ZAF_ERROR_NONE)
{
// Read the MyStringData class information.
ZafFile *file = persist.CurrentFile();
*file >> MyStringData::member;

}
// PopLevel() after the class information has been read.
persist.PopLevel();

// Save the error into the object if the data couldn’t be read.
if (persist.Error() != ZAF_ERROR_NONE)
SetError(persist.Error());

}

// Define Read(), since ZafData must add it to the
// ZafDataPersistence data constructor table.
ZafElement *MyStringData::Read(const ZafIChar *name,

ZafDataPersistence &persist)
{
return (new MyStringData(name, persist));

}

// Write() stores the class information in the data file.
// Base class info is stored first followed by custom info.
void MyStringData::Write(ZafDataPersistence &persist)
{
// Write the base class information.
// PushLevel() before writing the base class information.
// (AllocateFile() is called internally to prep the file.
ZafStringData::Write(persist.PushLevel(className, classID,
ZAF_PERSIST_FILE));

if (persist.Error() == ZAF_ERROR_NONE)
{
// Write the MyStringData class information.
ZafFile *file = persist.CurrentFile();
*file << MyStringData::member;

}

// PopLevel() after writing the class information.

ZafDataPersistence 113

persist.PopLevel();

// Save the error into the object if data couldn’t be written.
if (persist.Error() != ZAF_ERROR_NONE)
SetError(persist.Error());

}

Destructor virtual ~ZafDataPersistence(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafDataPersistence object. Generally, the programmer will not directly
destroy a ZafDataPersistence object, since it is destroyed when the application
is closed.

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

AddData-
Constructor

virtual DataConstructor *AddDataConstructor(ZafClassName
className, ZafClassID classID, ZafDataConstructor
constructor);

AddDataConstructor() adds a data class constructor to ZafDataPersistence’s
table of constructors. className is the string class identification constant for
the data class, classID is the numeric class identification constant for the data
class, and constructor is a pointer to the function used to construct an instance
of the data class. If an entry with the same class identification constants is
already present in the table, its constructor is updated to constructor. A pointer
to the DataConstructor element in the table is returned. Internally, ZAF uses
className for all lookups.

AddFileSystem ZafFileSystem *AddFileSystem(ZafFileSystem *fileSystem,
ZafFileSystem *position = ZAF_NULLP(ZafFileSystem));

AddFileSystem() adds a data file to a table (list) of data files to search when
trying to load a data object. fileSystem specifies the data file to add to the table.
If position is null, the data file is added to the end of the table, in effect becom-
ing the last data file to search. If position is non-null, fileSystem is added to the
table before the data file specified by position, causing fileSystem to be
searched before position. fileSystem is returned.

114 Zinc Application Framework 5

When ZafDataPersistence reads data it first calls AllocateFile() to search for
the data in each of the file systems in its list, moving from first to last. The
read is successful when the first matching entry is found and read, and fails if
all file systems are searched unsuccessfully.

AllocateFile ZafError AllocateFile(const ZafIChar *name, ZafFileMode
mode);

AllocateFile() finds the object specified by the stringID name in the data files
that have been added to the data file table by AddFileSystem(). CurrentFile()
then points to the object.

If mode is ZAF_FILE_READ and the object was not found, Error() is set to
either ZAF_ERROR_INVALID_ID (meaning the object wasn’t found), or
ZAF_ERROR_FILE_OPEN (meaning the file was not open); otherwise,
Error() is set to ZAF_ERROR_NONE.

If mode is ZAF_FILE_READWRITE, ZAF_FILE_CREATE, or
ZAF_FILE_OPENCREATE and the object wasn’t found, the file is prepared
for the object to be written. The value Error() is returned.

ClearData-
Constructors

virtual void ClearDataConstructors(void);

ClearDataConstructors() clears the table of data constructors and destroys the
memory associated with the table, so that no data constructor is associated with
the ZafDataPersistence object.

ClearFileSystems virtual void ClearFileSystems(void);

ClearFileSystems() clears the table of file systems, so that no file is associated
with the ZafDataPersistence object.

CurrentClassID virtual ZafClassID CurrentClassID(void);

CurrentClassID() returns the numeric class identification constant for the
object currently being accessed.

CurrentClassName virtual ZafClassName CurrentClassName(void);

CurrentClassName() returns the string class identification constant for the
object currently being accessed.

ZafDataPersistence 115

CurrentFile ZafFile *CurrentFile(void) const;

CurrentFile() returns the location in the file system where the object was found
or created by a previous call to AllocateFile(). CurrentFile() is called before
reading or writing an object’s data in a data file.

CurrentFileSystem ZafFileSystem *CurrentFileSystem(void) const;

CurrentFileSystem() returns the file system in which the object was found or
created by a previous call to AllocateFile().

CurrentLanguage const ZafIChar *CurrentLanguage(void) const;

CurrentLanguage() returns the current language of the object being read or
written, specified by a two-character ISO code. This language ID is appended
to the file name when a language has been specified using PushLanguage().
(see ZafI18nData for more information).

Error ZafError Error (void) const;

ZafError SetError(ZafError error);

Error() stores the last error that occurred with the ZafDataPersistence object.
The default value of Error() is ZAF_ERROR_NONE, but it may be set inter-
nally by the library whenever an error occurs, and SetError() may be called to
change it. Note that the programmer is responsible for setting this attribute
back to ZAF_ERROR_NONE when appropriate. The types of errors that can
be set are defined in the header file z_env.hpp. Generally, however, only the
following error values will be used by a ZafDataPersistence object:

FirstFileSystem ZafFileSystem *FirstFileSystem(void) const;

FirstFileSystem() returns the first file system added to the search table by
AddFileSystem().

Error() Description

ZAF_ERROR_NONE No error exists.

ZAF_ERROR_INVALID_ID No object with the ID given was found
in the table.

ZAF_ERROR_FILE_OPEN The file to be searched was not open.

116 Zinc Application Framework 5

GetDataConstructor virtual ZafDataConstructor GetDataConstructor(ZafClassID
classID, ZafClassName className = 0);

GetDataConstructor() finds and returns a data class constructor in ZafDataPer-
sistence’s table of constructors according to the class identification constants.
classID is the numeric class identification constant for the data class and class-
Name is the string class identification constant for the data class. If no match-
ing class is found, null is returned.

LastFileSystem ZafFileSystem *LastFileSystem(void) const;

LastFileSystem() returns the last file system added to the search table by
AddFileSystem().

Merge bool Merge(ZafDataPersistence ©);

Merge() merges copy and all its data (including tables and file systems) into
this ZafDataPersistence object and returns true. The merged object’s tables
and file systems are removed from copy and added to this ZafDataPersistence
object, so copy is in effect empty after calling this function.

PopLanguage int PopLanguage(void);
PushLanguage int PushLanguage(const ZafIChar *language);

To support multilingual application data (multiple languages in a single data
file), PushLanguage() must be called with the two-character ISO code that
specifies the language before reading or writing the data. (See ZafI18nData for
more information.)

PushLanguage() causes the object data to be stored in a different location using
the language specifier. After the data is read or written, PopLanguage() must
be called to finalize the operation.

Both functions return a zero-based index into ZafDataPersistence's internal
language table. The following code snippet shows how to use these functions:

// Get the Spanish version of the data.
zafDataPersistence->PushLanguage("es");

// Load Spanish messages from data file.
ZafLanguage esMessages("MyMessages", *zafDataPersistence);

// Finalize the read operation.
zafDataPersistence->PopLanguage();

ZafDataPersistence 117

PopLevel ZafDataPersistence &PopLevel(void);
PushLevel ZafDataPersistence &PushLevel(ZafClassName className,

ZafClassID classID, ZafPersistEntryType type);

Since each class may write its own data and chain to other objects to write data
pieces, these methods maintain a stack to facilitate the opening and closing of
the object in the file system. Each time a derived class calls its base class to
read or write information, it calls PushLevel(). The root class calls Allocate-
File() to find the object and open it for reading or writing. Then after each
class reads or writes its information, it calls PopLevel(). The last PopLevel()
causes the object to be closed in the file system.

Using PushLevel() and PopLevel() the programmer can preserve a file system
state and return to it later. For example, one object may cause another object to
be written into a different directory and file (a change in file system state). To
ensure that the file system state is not destroyed by the secondary write, Push-
Level() and PopLevel() are called before and after the secondary operation.

className specifies the string class identification constant for the class. Only
the derived-most class name is important when reading and writing the object.
classID specifies the numeric class identification constant for the class, and
only the derived-most class ID is important when reading and writing the
object. type specifies where to look for the object in the file system. The pos-
sible values of type are as follows:

ZafPersistEntryType Description

ZAF_PERSIST_DATA Directs AllocateFile() to look for the
object in the data section of the file
system

ZAF_PERSIST_DIRECTORY Directs AllocateFile() to look for the
object in the file system’s directory
specified by the persistent construc-
tor’s name parameter

ZAF_PERSIST_FILE Directs AllocateFile() to look for the
object in the current directory of the
file system

ZAF_PERSIST_ROOT_DIRECTORY Directs AllocateFile() to look for the
object in the className directory in
the root of the file system

ZAF_PERSIST_ROOT_FILE Directs AllocateFile() to look for the
object in the root directory of the file
system

118 Zinc Application Framework 5

SetData-
Constructors

virtual bool SetDataConstructors(DataConstructor
*dataConstructor);

SetDataConstructors() clears ZafDataPersistence’s table of constructors, then
creates a new table of constructors based on the pre-built dataConstructor
table. SetDataConstructors() is an internal routine, and is normally not called
by the programmer.

SubtractData-
Constructor

virtual bool SubtractDataConstructor(ZafClassID classID,
ZafClassName className = 0);

SubtractDataConstructor() removes a data class constructor from ZafDataPer-
sistence’s table of constructors. classID is the numeric class identification con-
stant for the data class and className is the string class identification constant
for the data class. If the entry was successfully removed, true is returned; oth-
erwise, false is returned.

SubtractFileSystem ZafFileSystem *SubtractFileSystem(ZafFileSystem
*fileSystem);

SubtractFileSystem() removes a data file from the table of data files to search
when trying to load a data object. fileSystem specifies the data file to remove
from the table. If an error occurs, null is returned; otherwise a pointer to file-
System is returned.

ZafDataRecord 119

ZafDataRecord

Inheritance ZafDataRecord : ZafData : (ZafNotification,
ZafElement), ZafList

Declaration #include <z_data.hpp>

Description ZafDataRecord is provided strictly as a base class for ZafDataManager. Zaf-
DataRecord provides service routines used by ZafDataManager to maintain its
list of ZafData objects. Please refer to ZafDataManager for more information.

Constructors The ZafDataRecord constructors initialize the member variables associated
with an instantiated ZafDataRecord object. The default values set by the Zaf-
DataRecord and its base class constructors follow, if they differ from those set
by the base class constructor.

ZafDataRecord(void);

This constructor allocates a ZafDataRecord instance.

ZafDataRecord(const ZafIChar *name, ZafDataPersistence
&persist);

This constructor is used for persistence. Refer to ZafWindow for more infor-
mation, since most persistence is done at the ZafWindow level.

Destructor virtual ~ZafDataRecord(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafDataRecord object. All ZafData objects associated with the ZafDa-
taRecord are destroyed.

Clear GetObject

Member Initializations

ZafElement
ClassID() ID_ZAF_DATA_RECORD

ClassName() "ZafDataRecord"

120 Zinc Application Framework 5

Members
Clear virtual void Clear(void);

Clear() provides a hook for clearing the data associated with the ZafDa-
taRecord object. This is an advanced routine, and should not be used by the
programmer.

GetObject virtual ZafData *GetObject(ZafNumberID numberID);

virtual ZafData *GetObject(const ZafIChar *stringID);

These functions return a pointer to the ZafData object in the ZafDataRecord
object’s list with either the identifier numberID or the identifier stringID. If a
data object cannot be found with the identifier provided, null is returned. See
ZafElement for more information on these identifiers.

ZafDate 121

ZafDate

Inheritance ZafDate : ZafString : ZafWindowObject : ZafElement

Declaration #include <z_date1.hpp>

Description ZafDate is a single-line date object that allows user input through the key-
board. ZafDate is fully internationalized to display and input using any format.
See ZafString::AllowInvalid() and ZafString::ReportInvalid() for information
on these attributes and how they affect validation for this class.

All ZafDate objects refer to data contained in a ZafDateData object (refer to
this class for additional essential information). ZafDate includes “year 2000
compliance,” meaning that through the underlying ZafDateData object, a Zaf-
Date object keeps track of the exact year, rather than just the last two digits.

Formats ZafString and derived classes parse input and display output based on default
or programmer-defined input and output formats. Programmers may use the
SetInputFormat() and SetOutputFormat() families of functions to change the
default format. The functions are documented in the ZafString reference.

Each class derived from ZafFormatData handles a different set of formatting
arguments, in addition to those supported by its base classes. ZafDateData
(and therefore ZafDate) handles the following “date” subset of the arguments
supported by ZafUTimeData (the parent class to ZafDateData):

DateData Event

Format Argument Substitution

%% '%' character

%a Locale-specific abbreviated weekday name

%A Locale-specific full weekday name

%b Locale-specific abbreviated month name

%B Locale-specific full month name

%C Century number (the year divided by 100 and trun-
cated to an integer) as a decimal number [00-99]

%d Day of month as a decimal number [01, 31]

%D Same as %m/%d/%y

%e Day of the month as a decimal number [1, 31]; a single
digit is preceded by a space

122 Zinc Application Framework 5

Constructors All ZafDate constructors initialize the member variables associated with an
instantiated ZafDate object. The default values set by the ZafDate and its base
class constructors follow, if they differ from those set by the base class con-

%EC Number of the base year (period) in the locale’s alter-
native representation

%Ey The offset from %EC (year only) in the locale’s alter-
native representation

%EY The full alternative year representation

%g Month as an abbreviated month name

%G Day as an abbreviated day name

%j Day of the year as a decimal number [01, 366]

%m Month as a decimal number [01, 12]

%M Minute as a decimal number [00, 59]

%u Weekday as a decimal number [1, 7], with 1 represent-
ing Monday

%U Week number of the year (Sunday as the first day of
the week) as a decimal number [00, 53]

%v Month number as a decimal [1, 12]

%V Week number of the year (Monday as the first day of
the week) as a decimal number [01, 53]; if the week
containing 1 January has four or more days in the new
year then it is considered week 1; otherwise, it is week
53 of the previous year, and the next week is week 1

%w Replaced by the weekday as a decimal number [0, 6],
with 0 representing Sunday

%W Week number of the year (Monday as the first day of
the week) as a decimal number [00, 53]; all days in a
new year preceding the first Sunday are considered to
be in week 0

%x Locale-specific date representation

%y Year without century as a decimal number [00, 99]

%Y Year with century as a decimal number

Format Argument Substitution

ZafDate 123

structor, or if a blocking function is implemented in ZafDate. “†”Indicates a
blocking function that prevents changes to the attribute in this class.

ZafDate(int left, int top, int width, int year, int month,
int day);

This constructor is useful in straight-code situations, particularly if the ZafDate
object is to create, maintain and destroy its own ZafDateData object automati-
cally. left, top, and width specify the position and size of the object on its par-
ent. All values are specified in cell coordinates by default, but may be
specified using another coordinate system if desired.

year, month, and day specify the date values that initially appear in the new
ZafDate object.

ZafDate(int left, int top, int width, ZafDateData
*dateData = ZAF_NULLP(ZafDateData));

This constructor is useful in straight-code situations where a ZafDateData
object has already been created. This constructor could be used when manu-
ally maintaining a ZafDateData object, rather than having the ZafDate class
create and maintain the data object automatically. For more information on
using ZafDateData objects, see the chapter on ZafDateData. See the previous
constructor for a description of left, top, and width parameters.

ZafDate(const ZafDate ©);

Member Initializations

ZafDate
DateData() null

ZafString
LowerCase() false†

Password() false†

StringData() null†

UpperCase() false†

VariableName() false†

ZafElement
ClassID() ID_ZAF_DATE

ClassName() "ZafDate"

124 Zinc Application Framework 5

The copy constructor calls the overloaded Duplicate() to create a new ZafDate
object and initialize its data from copy. If the original data objects are Static-
Data() then the new ZafDate object simply points to the original data, other-
wise copies are made.

ZafDate(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Sample ZafDate creation techniques follow:

// Create a sample window with date objects.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);

// Create date objects and pass in the values directly.
window1->Add(new ZafDate(0, 1, 25, 1984, 1, 22));
window1->Add(new ZafDate(0, 2, 25, 2000, 1, 1));
...
// Create a sample window with date objects.
ZafWindow *window2 = new ZafWindow(10, 10, 40, 10);

// Create date data objects.
ZafDateData *dateData1 = new ZafDateData(1984, 1, 22);
ZafDateData *dateData2 = new ZafDateData(2000, 1, 1);

// Create dates that use the data previously created.
window2->Add(new ZafDate(0, 1, 25, dateData1));
window2->Add(new ZafDate(0, 2, 25, dateData2));

Destructor virtual ~ZafDate(void);

The destructor is used to free the memory associated with a ZafDate object,
including all the data objects that are Destroyable(). It chains to the ZafString,
ZafWindowObject, and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafDate object, since it
is automatically destroyed when its parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members ZafDateData *DateData(void) const;
DateData virtual ZafError SetDateData(ZafDateData *dateData);

*DateData() contains the actual information used by ZafDate. The DateData()
object may be used by one or more ZafDate objects, or other objects. If shared,
all associated ZafDate objects will be notified when the DateData() changes.
For more information on data sharing in ZAF, see ZafDataManager. SetDate-

ZafDate 125

Data() may be called to change the date data object used by the ZafDate object.
SetDateData() will delete the previous DateData() object if it is Destroyable()
and no other object uses it.

DateData() returns a pointer to the DateData() object associated with the Zaf-
Date object. The return value for SetDateData() is normally
ZAF_ERROR_NONE. See the Constructors code snippet for an example
using ZafDateData objects with ZafDate.

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function receives all events that get sent to the ZafDate object
and either handles them or passes them to ZafString, its immediate base class.
See ZafWindowObject for more information.

ZafDate specifically handles the following events:

Event Description

N_RESET_I18N causes the object to redisplay its data according to the
new internationalization values

S_COPY_DATA causes the object to copy event.windowObject’s Date-
Data() if event.windowObject is a ZafDate object

S_SET_DATA causes the object to create a new DateData() object, then
copy into it event.windowObject’s DateData() if
event.windowObject is non-null and is a ZafDate object

126 Zinc Application Framework 5

ZafDateData

Inheritance ZafDateData : ZafUTimeData : ZafFormatData : ZafData :
ZafElement, ZafNotification

Declaration #include <z_date.hpp>

Description ZafDateData combines date encapsulation with data notification and object
notification from ZafData. It is most often used in conjunction with the Zaf-
Date user interface object but may be used as a stand-alone object if desired.
Refer to the ZafUTimeData documentation for a discussion of member meth-
ods, inherited by ZafDateData, used to retrieve and set date-specific informa-
tion (e.g., day, month, year, etc.).

All ZafData objects may make use of printf-style formatting and parsing argu-
ments during string operations. In addition, all ZafUTimeData objects may
make use of strftime- and strptime-style formatting and parsing arguments dur-
ing string operations. Refer to standard library documentation for detailed
information on printf, strftime, and strptime functions as well as their corre-
sponding conversion characters.

Constructors ZafDateData constructors initialize the member variables associated with a
new ZafDateData object and allocate space to hold the date data. The default
values set by ZafDateData follow, if they are overridden from those set by base
class constructors:

Clear FormattedText SetDate

Member Initializations

ZafUTimeData
BasisYear() (varies by constructor)

Day() (varies by constructor)

DayName() (varies by constructor)

DayOfWeek() (varies by constructor)

DaysInMonth() (varies by constructor)

DaysInYear() (varies by constructor)

LeapYear() (varies by constructor)

Month() (varies by constructor)

MonthName() (varies by constructor)

Value() (varies by constructor)

Year() (varies by constructor)

ZafDateData 127

ZafDateData(void);

The basic constructor allocates a ZafDateData instance and initializes its value
to the current system date.

ZafDateData(int year, int month, int day);

This constructor allocates a ZafDateData instance and initializes its contents to
the date corresponding to year, month and day.

ZafDateData(const ZafIChar *string, const ZafIChar
*format = ZAF_NULLP(ZafIChar));

This constructor allocates a ZafDateData instance and initializes its contents to
the date equivalent of string. The conversion uses the strptime-style specifier
format to interpret the string. If format is null ZafDateData uses its locale-spe-
cific default format.

ZafDateData(const ZafDateData ©);

This constructor is the copy constructor. It allocates a new ZafDateData
instance and copies all member data from copy.

ZafDateData(const ZafIChar *name, ZafDataPersistence
&persist);

This constructor is the persistent constructor. It allocates a new ZafDateData
instance and reads most member data from the name directory of the persistent
data file referred to by persist. The StringID() of the new data is name.

// Sample ZafDateData creation techniques.
ZafDateData date1(1997, 3, 20);
ZafDateData copyDate = date1;
ZafDateData date2("1997 2 14", "%y %m %d");
ZafDateData systemDate;

ZafElement
ClassID() ID_ZAF_DATE_DATA

ClassName() "ZafDateData"

Member Initializations

128 Zinc Application Framework 5

Destructor virtual ~ZafDateData(void);

The destructor is used to free the memory associated with an instantiated Zaf-
DateData object. Unless StaticData() is true a ZafDateData object is usually
destroyed automatically when all ZafDate objects that refer to it are destroyed.

Members virtual void Clear(void);
Clear Clear() sets the value of a ZafDateData object to the current system date.

FormattedText virtual int FormattedText(ZafIChar *buffer, int
maxLength, const ZafIChar *format = 0) const;

FormattedText() fills buffer with a string representation of the ZafDateData
using the strftime-style specifier format to build the string. A locale-specific
default format is used if format is not included. Buffer contents will be trun-
cated if they exceed maxLength characters. FormattedText() returns the inte-
ger value it receives from its call to strftime().

// Show various results of FormattedText().
ZafIChar buffer[256];

ZafDateData date(1997, 7, 4);
date.FormattedText(buffer, 256, "%y/%m/%d");
printf("date - %s\n", buffer);

date.FormattedText(buffer, 256, "%B%e, %Y");
printf("date - %s\n", buffer);

date.FormattedText(buffer, 256, "%A,%e %B %Y");
printf("date - %s\n", buffer);

==========
date - 97/07/04
date - July 4, 1997
date - Friday, 4 July 1997

SetDate virtual ZafError SetDate(int year, int month, int day);

virtual ZafError SetDate(const ZafIChar *buffer, const
ZafIChar *format);

virtual ZafError SetDate(const ZafDateData &number);

SetDate() functions set the value of the ZafDateData object from numeric
input, another date, or an interpreted string. Refer to FormattedText() for more
information on date/string conversions.

ZafDevice 129

ZafDevice

Inheritance ZafDevice : ZafElement

Declaration #include <z_device.hpp>

Description ZafDevice is an abstract class that defines the basic functionality necessary to
support input devices such as a mouse, a keyboard, or a cursor. All ZAF input
device classes derive from this class.

ZAF device classes share certain characteristics in common. For example, all
device objects are added to the ZafEventManager object. Device object input
is packaged into events and placed on the event manager’s event queue. Fre-
quently, device objects handle events dispatched to them such as activation and
deactivation.

In this section, examples are used that apply to ZafDevice, but also may apply
to the creation and use of all device objects. Also refer to ZafEventManager
for information regarding the general operation of device objects.

Constructor The ZafDevice constructor initializes the member variables associated with an
instantiated ZafDevice object. The default values set by ZafDevice and its
base class constructor follow, if they override values set by the base class con-
structor.

display Event Poll
DeviceState Installed Previous
DeviceType Next

Member Initializations

ZafDevice
DeviceState() user-supplied parameter

DeviceType() user-supplied parameter

display null

eventManager null

Installed() false

ZafElement
ClassID() ID_ZAF_DEVICE

ClassName() "ZafDevice"

130 Zinc Application Framework 5

ZafDevice(ZafDeviceType type, ZafDeviceState state);

This constructor is used to instantiate a ZafDevice object to be added to a
ZafEventManager object. type specifies the type of the device, such as
E_MOUSE. state specifies the initial state of the device, such as DM_VIEW.
This constructor should not normally be called by the programmer, since the
constructors of classes derived from ZafDevice chain to this constructor.

Sample ZafDevice object creation techniques follow:

// Instantiate the input devices.
ZafEventManager *eventManager = new ZafEventManager;
eventManager->Add(new ZafKeyboard);
eventManager->Add(new ZafMouse);
eventManager->Add(new ZafCursor);

Destructor virtual ~ZafDevice(void);

The destructor is used to free the memory associated with a ZafDevice object.
It chains to the ZafElement destructor.

Generally, the programmer will not directly destroy a ZafDevice object, since
it is automatically destroyed when the event manager is destroyed. For more
information on device object deletion, see ZafEventManager::~ZafEventMan-
ager().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

display static ZafDisplay *display;

The display member of this class is a static pointer to the display object instan-
tiated by the ZafApplication constructor. This member is useful since most
device objects have direct interaction with the display.

DeviceState ZafDeviceState DeviceState(void) const;

virtual ZafDeviceState SetDeviceState(ZafDeviceState
deviceState);

DeviceState() returns a constant that indicates a device object’s current state.
For example, DeviceState() returns DM_VIEW for a mouse device that cur-

ZafDevice 131

rently displays the default pointer image. SetDeviceState() may be called to
change a device’s state.

An example of device state manipulation follows:

// Indicate that a lengthy operation is in process.
mouse->SetDeviceState(DM_WAIT);
DoLotsOfWork();
mouse->SetDeviceState(DM_VIEW);

DeviceType ZafDeviceType DeviceType(void) const;

DeviceType() returns the constant that identifies a device object’s type. For
example, E_MOUSE is returned for a mouse device, E_KEY is returned for a
keyboard device, and E_CURSOR is returned for a cursor device.

Event virtual ZafEventType Event(const ZafEventStruct &event) =
0;

This function is pure virtual. Any device class using ZafDevice as a base class
must overload the Event() function to handle events passed to it.

Classes deriving from ZafDevice must handle the event D_STATE, which
causes a device to return its state.

Installed bool Installed(void) const;

This function returns true if the device object has been successfully installed in
the event manager. If an error occurred during device object initialization, this
function will return false.

Next ZafDevice *Next(void) const;
Previous ZafDevice *Previous(void) const;

These overloaded functions add a type-safe cast of “ZafDevice *” to the object
while accessing the next or previous sibling in the event manager’s list of
devices. This allows initialization and manipulation of a list of associated
device objects with the proper base type declaration. For example:

// Find the mouse device.
for (ZafDevice *device = eventManager->First(); device; device =

device->Next())
if (device->DeviceType() == E_MOUSE)
break;

132 Zinc Application Framework 5

Poll virtual void Poll(void) = 0;

This function is pure virtual. Any device class using ZafDevice as a base class
must overload the Poll() function to post events on the event manager queue.
For more information on device object polling, see ZafEventManager::Get().

ZafDialogWindow 133

ZafDialogWindow

Inheritance ZafDialogWindow : ZafWindow : (ZafWindowObject :
ZafElement), ZafList

Declaration #include <z_dlgwin.hpp>

Description ZafDialogWindow supports the native look and feel of a dialog window. Usu-
ally, this includes a border or title bar appearing different than those of a regu-
lar window. A dialog window is not sizeable by nature, since its border
indicates a dialog window rather than sizability and since a dialog’s contents
should promote understandability. A dialog window is also by its nature not a
temporary window, since the end user is expected to dismiss the dialog after
interacting with it.

Constructors All ZafDialogWindow constructors initialize the member variables associated
with an instantiated ZafDialogWindow object. The default values set by the
ZafDialogWindow and its base class constructors follow, if they differ from
those set by the base class constructor, or if a blocking function is implemented
in ZafDialogWindow. “†” Indicates a blocking function that prevents changes
to the attribute in this class.

Control

Member Initializations

ZafWindow
Destroyable() false

Modal() true

Sizeable() false†

Temporary() false†

ZafWindowObject
AcceptDrop() false†

Bordered() false†

Disabled() false†

Noncurrent() false†

ParentPalette() false†

RegionType() ZAF_INSIDE_REGION†

ZafElement

134 Zinc Application Framework 5

ZafDialogWindow(int left, int top, int width, int height);

This constructor is useful in straight-code situations. left and top specify the
position where the left and top of the object will be placed on the window man-
ager. width and height specify the width and height of the client region of the
object. All values are specified in cell coordinates by default, but may be spec-
ified using another coordinate system if desired.

ZafDialogWindow(const ZafDialogWindow ©);

The copy constructor creates a new ZafDialogWindow object and initializes its
data from copy.

ZafDialogWindow(const ZafIChar *name,
ZafObjectPersistence &persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a dialog window follows:

// Create a modal dialog window.
ZafDialogWindow *window = new ZafDialogWindow(1, 1, 60, 16);
window->AddGenericObjects(new ZafStringData("Modal Dialog"));
window->SetModal(true);

// Add a message to the dialog.
window->Add(new ZafString(18, 1, 24, "Continue?", -1));

// Add OK and Cancel buttons to cause Control() to return.
ZafButton *ok = new ZafButton(18, 4, 10, 1, "OK");
ok->SetSendMessageWhenSelected(true);
ok->SetValue(S_DLG_OK);
window->Add(ok);
ZafButton *cancel = new ZafButton(32, 4, 10, 1, "Cancel");
cancel->SetSendMessageWhenSelected(true);
cancel->SetValue(S_DLG_CANCEL);
window->Add(cancel);

ClassID() ID_ZAF_DIALOG_WINDOW

ClassName() "ZafDialogWindow"

Member Initializations

ZafDialogWindow 135

// Add the dialog to the window manager.
// Use Control() only if Modal() is true.
// Control() returns only when the user has made a selection.
if (window->Control() != S_DLG_OK)
break;

Destructor virtual ~ZafDialogWindow(void);

The destructor is used to free the memory associated with a ZafDialogWindow
object. It chains to the ZafWindow, ZafWindowObject, ZafList, and ZafEle-
ment destructors. For more information on child object deletion, see ZafWin-
dow::~ZafWindow().

Members ZafDialogEvent Control(ZafQFlags flags = Q_NORMAL);
Control Control() causes the dialog to appear on the screen. Control() doesn’t return

control to the caller until the end user has made a selection, after which the dia-
log is removed from the screen. When any button with a Value() between
S_DIALOG_FIRST and S_DIALOG_LAST is selected, Control() will return.
The following such values are predefined in ZAF:

• S_DLG_OK

• S_DLG_CANCEL

• S_DLG_YES

• S_DLG_NO

• S_DLG_ABORT

• S_DLG_RETRY

• S_DLG_IGNORE.

When one these event messages is handled in a derived class Event() method,
the programmer must return the value from the derived Event() method to
cause the dialog to close.

Control() should only be called if Destroyable() is false and Modal() is true;
otherwise, simply add the dialog to the window manager via the Add() func-
tion or the + operator. If Control() is called on a dialog when Destroyable() is
true, S_ERROR is returned.

136 Zinc Application Framework 5

ZafDimensionConstraint

Inheritance ZafDimensionConstraint : ZafConstraint : ZafElement

Declaration #include <z_gmgr.hpp>

Description ZafDimensionConstraint allows a window object to be constrained to a maxi-
mum or minimum height or width (see Maximum() and Minimum() for more
information). ZafDimensionConstraint objects must be added to the ZafGeom-
etryManager object that has been added to the managed object’s parent (see
ZafGeometryManager for more information).

Constructors All ZafDimensionConstraint constructors initialize the member variables asso-
ciated with an instantiated ZafDimensionConstraint object. The default values
set by the ZafDimensionConstraint and its base class constructors follow, if
they differ from those set by the base class constructor.

ZafDimensionConstraint(ZafWindowObject *object,
ZafDimensionConstraintType type);

This constructor is useful in straight-code situations to create a ZafDimension-
Constraint object. object specifies the window object the constraint applies to,
and type specifies the type of dimension constraint. See ZafCon-
straint::Object() and ZafDimensionConstraint::Type() for more information.

ZafDimensionConstraint(const ZafDimensionConstraint
©);

Event Minimum
Maximum Type

Member Initializations

ZafDimensionConstraint
Maximum() 0

Minimum() 0

Type() user-supplied parameter

ZafElement
ClassID() ID_ZAF_DIMENSION_CONSTRAINT

ClassName() "ZafDimensionConstraint"

ZafDimensionConstraint 137

The copy constructor creates a new ZafDimensionConstraint object and initial-
izes its data from copy.

ZafDimensionConstraint(const ZafIChar *name,
ZafObjectPersistence &persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a dimension constraint follows:

// Create a status bar with geometry-managed children.
ZafStatusBar *stat = new ZafStatusBar(0, 0, 0, 1);
ZafString *string = new ZafString(0, 0, 15, new

ZafStringData("String"));
stat->Add(string);
ZafTime *time = new ZafTime(15, 0, 15, new ZafTimeData);
stat->Add(time);

// Time field will remain at the right side.
ZafAttachment *attach = new ZafAttachment(time, ZAF_ATCF_RIGHT);
attach->SetOffset(0);

// Create geometry manager and add the first constraint.
ZafGeometryManager *geo->Add(attach);

// The string field will occupy
// the remaining space of the status bar.
attach = new ZafAttachment(string, ZAF_ATCF_RIGHT);
attach->SetStretch(true);
attach->SetReference(time);
attach->SetOppositeSide(true);
attach->SetOffset(1);

// Add the second constraint to the geometry manager.
geo->Add(attach);

// The string field will never be
// smaller than 5 cells wide.
ZafDimensionConstraint *dim = new ZafDimensionConstraint(string,

ZAF_DNCF_WIDTH);
dim->SetMinimum(5);

// Add the third constraint to the geometry manager.
geo->Add(dim);

// Add the geometry manager to the status bar.

138 Zinc Application Framework 5

stat->Add(geo);

Destructor virtual ~ZafDimensionConstraint(void);

The destructor is used to free the memory associated with a ZafDimension-
Constraint object. It chains to the ZafConstraint and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafDimensionConstraint
object, since it is automatically destroyed when its parent geometry manager is
destroyed. For more information on child object deletion, see ZafWin-
dow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events sent to the ZafDimensionCon-
straint object. The events handled by ZafDimensionConstraint are as follows:

Maximum int Maximum(void) const;

int SetMaximum(int hzMaximum);

Maximum() specifies the maximum size Object() may be, and is specified in
the same coordinate type as Object()->Region(). For example, if Type() is
ZAF_DNCF_HEIGHT and Maximum() is 20, then the maximum height of
Object() is 20. If Maximum() is 0, this constraint does not impose a maximum
size. This attribute defaults to 0, but the programmer may change it with Set-
Maximum().

Minimum int Minimum(void) const;

int SetMinimum(int hzMinimum);

ZafEventType Description

S_COMPUTE_SIZE causes the constraint to compute and modify
the size of its window object

S_INITIALIZE causes the constraint to initialize its numberID,
stringID, and Object()

ZafDimensionConstraint 139

Minimum() specifies the minimum size Object() may be, and is specified in the
same coordinate type as Object()->Region(). For example, if Type() is
ZAF_DNCF_WIDTH and Minimum() is 5, then the minimum width of
Object() is 5. If Minimum() is 0, this constraint does not impose a minimum
size. This attribute defaults to 0, but the programmer may change it with Set-
Minimum().

Type ZafDimensionConstraintType Type(void) const;

ZafDimensionConstraintType
SetType(ZafDimensionConstraintType type);

Type() is the dimension constraint’s type, which specifies the dimension
(height or width) of Object() used when calculating its maximum and mini-
mum size. The programmer may use SetType() to change this attribute. The
possible values for Type() follow:

Type() Description

ZAF_DNCF_HEIGHT causes the constraint to affect the height of
Object()

ZAF_DNCF_WIDTH causes the constraint to affect the width of
Object()

140 Zinc Application Framework 5

ZafDiskFile

Inheritance ZafDiskFile : ZafFile : ZafElement

Declaration #include <z_dskfil.hpp>

Description ZafDiskFile and ZafDiskFileSystem provide support for file access on a disk
drive, and may be used portably on any environment. ZafDiskFile encapsu-
lates information for a single file on disk. See ZafDiskFileSystem for more
information.

Constructor ZafDiskFile(const ZafIChar *pathName, ZafFileMode mode);

This constructor initializes the members associated with a ZafDiskFile object,
and chains to the ZafFile and ZafElement constructors. pathName specifies
the file to be opened, and may be a full pathname, partial pathname, or just the
name of the file if it is in the current directory. mode specifies the mode in
which the file is opened (see the ZafFile constructor for more information).

Destructor virtual ~ZafDiskFile(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafDiskFile object and chains to the ZafFile and ZafElement destructors.

Members
fileCreator static OSType fileCreator;
fileType static OSType fileType;

Used only on the Macintosh, these public static members provide a way for the
programmer to specify the Macintosh file creator and file type of a disk file
created by ZafDiskFile. fileCreator defaults to ’Anon’ and fileType defaults to
’TEXT’, but the programmer may set them to any desired value.

Length virtual ZafOffset Length(void) const;

Length() returns the length of the disk file, or it returns -1 if an error occurs.

fileCreator ReadData WriteData
fileType Seek
Length Tell

ZafDiskFile 141

ReadData virtual int ReadData(void *buffer, int size);

ReadData() reads data from the disk file. The data is read into buffer, which
must have already been allocated by the programmer, and size specifies the
number of bytes to read. On success, ReadData() returns the number of bytes
read into buffer; otherwise zero is returned. Error() is also set to an appropriate
value.

Seek virtual int Seek(ZafOffset offset, ZafSeek location);

Seek() moves the file pointer of the disk file. location specifies the position in
the file from where offset specifies. Possible values of location and what they
mean follow:

Seek() returns 0 if successful, and -1 if an error occurs (in which case Error() is
also set appropriately).

Tell virtual ZafOffset Tell(void) const;

Tell() returns the current offset of the file pointer in the disk file, or it returns -1
if an error occurs.

WriteData virtual int WriteData(const void *buffer, int size);

WriteData() writes data to a derived file object. buffer is a pointer to the data
to be written, and size specifies the number of bytes to write. On success,
WriteData() returns the number of bytes written; otherwise zero is returned.
Error() is also set to an appropriate value.

ZafSeek ZafOffset

ZAF_SEEK_START the offset is measured from the beginning of the
file toward the end of the file

ZAF_SEEK_CURRENT a positive offset is measured from the current file
pointer, and a negative offset is measured toward
the beginning of the file.

ZAF_SEEK_END the offset is measured from the end of the file
toward the beginning of the file

142 Zinc Application Framework 5

ZafDiskFileSystem

Inheritance ZafDiskFileSystem : ZafFileSystem : ZafElement

Declaration #include <z_dskfil.hpp>

Description ZafDiskFileSystem and ZafDiskFile provide support for file access on a disk
drive, and may be used portably on any environment. ZafDiskFileSystem pro-
vides support for accessing the individual ZafDiskFiles. See ZafDiskFile for
more information.

Constructor ZafDiskFileSystem(void);

This constructor initializes the members associated with a ZafDiskFileSystem
object, and chains to the ZafFileSystem and ZafElement constructors.

Destructor virtual ~ZafDiskFileSystem(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafDiskFileSystem object and chains to the ZafFileSystem and ZafEle-
ment destructors.

Members static void ChangeExtension(ZafIChar *name, const
ZafIChar *newExtension);

ChangeExtension ChangeExtension() changes the file extension (the part of the name after the
period, if there is one) of the file on disk specified by name to newExtension.

ChDir virtual int ChDir(const ZafIChar *newPath, ZafStringID
stringID = ZAF_NULLP(ZafIChar), ZafNumberID numberID =
0);

ChDir() changes the current directory on disk to newPath. stringID and num-
berID are ignored in this class since they are used only by Zinc file systems
(such as ZafStorage), but are included in the prototype in order to provide the
correct method signature inherited from ZafFileSystem::ChDir(). ChDir()

ChangeExtension GetCWD RmDir
ChDir GetDriveNames SetDrive
Close MakeFullPath StripFullPath
DeleteDriveNames MkDir TempName
FindClose Open ValidName
FindFirst Remove
FindNext Rename

ZafDiskFileSystem 143

returns 0 on success, and -1 on failure. Error() is also set to an appropriate
value.

Close virtual void Close(ZafFile *file);

Close() closes file, which is a file previously opened with Open().

DeleteDriveNames void DeleteDriveNames(ZafIChar *driveName[]);

DeleteDriveNames() deletes the array of drive names created by GetDrive-
Names().

FindClose virtual int FindClose(ZafFileInfoStruct &fileInfo);

FindClose() finalizes a find operation begun with FindFirst(). fileInfo is the
same ZafFileInfoStruct object used by FindFirst() and FindNext(), and mem-
ory allocated in fileInfo is deleted by FindClose(). FindClose() returns 0 if the
operation was successful; otherwise it returns -1.

FindFirst virtual int FindFirst(ZafFileInfoStruct &fileInfo, const
ZafIChar *searchName, ZafStringID stringID =
ZAF_NULLP(ZafIChar), ZafNumberID numberID = 0);

FindFirst() initializes a find operation. FindFirst() searches for a file with the
search pattern specified by searchName. searchName may contain wildcards
appropriate to the system. fileInfo is a ZafFileInfoStruct object allocated by
the programmer, and fileInfo is initialized by FindFirst(). stringID and num-
berID are ignored. FindFirst() returns 0 if a file was found; otherwise it returns
-1.

FindNext virtual int FindNext(ZafFileInfoStruct &fileInfo, const
ZafIChar *searchName, ZafStringID stringID =
ZAF_NULLP(ZafIChar), ZafNumberID numberID = 0);

FindNext() continues a find operation initiated by FindFirst(). FindNext()
searches for the next file with the same searchName as was specified in the call
to FindFirst(). fileInfo is the same ZafFileInfoStruct object passed to Find-
First(). stringID and numberID are ignored. FindNext() returns 0 if a file was
found; otherwise it returns -1.

GetCWD virtual int GetCWD(ZafIChar *pathName, int pathLength);

144 Zinc Application Framework 5

GetCWD() copies the path name of the current directory of the disk file system
(without a terminating path separating character) into the buffer specified by
pathName. pathName must be allocated by the programmer, and pathLength
specifies the number of ZafIChar characters in pathName. GetCWD() returns
0 on success, and -1 on failure. Error() is also set to an appropriate value.

GetDriveNames int GetDriveNames(ZafIChar **driveName[]);

GetDriveNames() finds all the drives mounted on the system and allocates an
array where their names are copied. The array is returned in driveName.
driveName must be passed to DeleteDriveNames() to delete the memory when
it is no longer needed. GetDriveNames() returns -1 if no drive names were
found (and driveName is null); otherwise, the number of drive names found is
returned.

MakeFullPath static void MakeFullPath(ZafIChar *fullPath, const
ZafIChar *pathName, const ZafIChar *fileName, const
ZafIChar *extension = ZAF_NULLP(ZafIChar));

MakeFullPath() creates a full pathname for the file specified in the parameters
and returns the full pathname in fullPath. pathName specifies the directory,
fileName specifies the name of the file, and extension specifies the file name
extension (the characters after the dot).

MkDir virtual int MkDir(const ZafIChar *pathName, ZafStringID
stringID = ZAF_NULLP(ZafIChar), ZafNumberID numberID =
0);

MkDir() creates a new directory on disk. pathName specifies the path name of
the directory to be created. stringID and numberID are ignored. MkDir()
returns 0 on success, and -1 on failure. Error() is also set to an appropriate
value.

Open virtual ZafFile *Open(const ZafIChar *fileName, const
ZafFileMode mode, ZafStringID stringID =
ZAF_NULLP(ZafIChar), ZafNumberID numberID = 0);

Open() opens the disk file specified by fileName. mode specifies the mode the
file is opened with (see the ZafFile constructor for more information).
stringID and numberID are ignored. A pointer to the file opened is returned.

Remove virtual int Remove(const ZafIChar *name);

ZafDiskFileSystem 145

Remove() deletes the file on disk specified by name. Remove() returns 0 on
success, and -1 on failure. Error() is also set to an appropriate value.

Rename virtual int Rename(const ZafIChar *oldName, const
ZafIChar *newName, ZafStringID stringID =
ZAF_NULLP(ZafIChar), ZafNumberID numberID = 0);

Rename() renames the disk file or directory specified by oldName to
newName. stringID and numberID are ignored. Rename() returns 0 on suc-
cess, and -1 on failure. Error() is also set to an appropriate value.

RmDir virtual int RmDir(const ZafIChar *pathName, bool
deleteContents = false);

RmDir() deletes the directory specified by pathName. If deleteContents is
false, RmDir() will only delete the directory if it is empty; otherwise, RmDir()
will delete the contents of the directory along with the directory itself.
RmDir() returns 0 on success, and -1 on failure. Error() is also set to an appro-
priate value.

SetDrive int SetDrive(const ZafIChar *driveName);

On systems that support it, SetDrive() sets the current drive to the drive whose
name is passed in driveName. SetDrive() returns 0 on success, and -1 on fail-
ure.

StripFullPath static void StripFullPath(const ZafIChar *fullPath,
ZafIChar *pathName = ZAF_NULLP(ZafIChar), ZafIChar
*fileName = ZAF_NULLP(ZafIChar), ZafIChar *objectName
= ZAF_NULLP(ZafIChar), ZafIChar *objectPathName =
ZAF_NULLP(ZafIChar));

StripFullPath() does the opposite of MakeFullPath(). StripFullPath() returns
the pieces of a full pathname specified by fullPath. The directory is returned in
pathName and the name of the file is returned in fileName. If the file is a ZAF
storage file and it specifies an object’s ZafStorageFile path, the object’s name is
returned in objectName and the object’s storage pathname is returned in object-
PathName. If any of the return parameters is null, that piece is not returned.

TempName static void TempName(ZafIChar *tempname);

TempName() returns in tempname a unique file name generated by the system
that may be used to create a temporary file. If tempname contains a path name

146 Zinc Application Framework 5

on entry, the returned file name is unique for that path and the full path name
for the file is returned; otherwise the file name returned will be unique for the
current directory, and the returned file name is returned without any path infor-
mation. tempname must be allocated by the programmer before calling Temp-
Name().

ValidName static bool ValidName(const ZafIChar *name, bool create =
false);

ValidName() returns true if name specifies the name of an existing disk file. If
the file doesn’t exist and create is true, ValidName() tries to create the file and
returns true if it was successful. If ValidName() creates the file, it also deletes
it. Otherwise, false is returned.

ZafDisplay 147

ZafDisplay

Inheritance Root class

Declaration #include <z_dsp.hpp>

Description ZafDisplay is the abstract class that defines the basic functionality necessary to
interface with a display device such as a screen or a printer. Many of the meth-
ods defined in ZafDisplay are pure virtual, and must be defined in derived
classes such as ZafScreenDisplay and ZafPrinter.

ZafDisplay provides many useful graphic display primitives for use in a ZAF
application, such as Line(), Rectangle() and Text(). It also provides methods
for interfacing with images, such as bitmaps and icons. In specifying coordi-
nates at which a drawing operation is to occur, it is useful to utilize the ZafCo-
ordinate typedef for greater precision. The ZafCoordinate typedef is as
follows:

typedef long ZafCoordinate;

ZafDisplay is important to displayable ZAF classes because it provides the
interface necessary to interact with the screen. Since ZafDisplay is an abstract

AddColor DestroyZafBitmap Mode
AddFont DestroyZafIcon MonoBackground
Background DestroyZafMouse MonoForeground
BeginDraw DisplayContext Mouse
Bitmap DisplayMode Origin
CellHeight DisplayType Palette
CellWidth DrawContext Pixel
ClipRegion Ellipse pixelsPerInchX
ColorInfo EndDraw pixelsPerInchY
columns FillPattern Polygon
ConvertToOSBitmap Font preSpace
ConvertToOSIcon FontInfo postSpace
ConvertToOSMouse Foreground Rectangle
ConvertToZafBitmap Icon RectangleXORDiff
ConvertToZafIcon InitializeOSBitmap RegionCopy
ConvertToZafMouse InitializeOSIcon ResetOSBitmap
ConvertXValue InitializeOSMouse ResetOSIcon
ConvertYValue Line ResetOSMouse
CoordinateType lines RestoreDisplayContext
DestroyColor LineStyle RestoreDrawContext
DestroyFont miniDenominatorX Scale
DestroyOSBitmap miniDenominatorY SetCellSize
DestroyOSIcon miniNumeratorX Text
DestroyOSMouse miniNumeratorY TextSize

148 Zinc Application Framework 5

class, the programmer may not instantiate a ZafDisplay object. A ZafScreenD-
isplay object is instantiated by the ZafApplication class. When needed, the
method ZafWindowObject::Display() should be used to access the Zaf-
ScreenDisplay object instantiated automatically by the ZafApplication class.

Constructor The ZafDisplay constructor initializes the member variables associated with an
instantiated ZafDisplay object. The default values set by the ZafDisplay con-
structor follow, but these members may be initialized by derived class con-
structors.

ZafDisplay(void);

The constructor is useful in straight-code situations. This constructor should
not be called by the programmer, but will be called by the derived constructor.

Destructor virtual ~ZafDisplay(void);

The destructor is used to free the memory associated with a ZafDisplay object.
The destructor is called by the derived destructor.

Member Initializations

ZafDisplay
CellHeight() font-dependent

CellWidth() font-dependent

columns display-dependent

CoordinateType() display-dependent

DisplayMode() ZAF_DISPLAY_COLOR

DisplayType() "ZafDisplay"

lines display-dependent

miniDenominatorX 10

miniDenominatorY 10

miniNumeratorX 1

miniNumeratorY 1

Mode() ZAF_MODE_COPY

Origin() (0, 0)

pixelsPerInchX display-dependent

pixelsPerInchY display-dependent

postSpace environment-specific

preSpace environment-specific

Scale() 1/1

ZafDisplay 149

Members
AddColor virtual ZafLogicalColor AddColor(ZafLogicalColor index,

ZafUInt8 red, ZafUInt8 green, ZafUInt8 blue) = 0;
DestroyColor virtual ZafError DestroyColor(ZafLogicalColor color) = 0;

ZafDisplay allows the use of up to 127 colors. In order to save execution time
and memory, however, ZafDisplay automatically registers just the most com-
mon 16 colors with the environment.

The 16 colors registered by ZafDisplay, and usable in any ZAF program are:

• ZAF_CLR_BLACK

• ZAF_CLR_BLUE

• ZAF_CLR_GREEN

• ZAF_CLR_CYAN

• ZAF_CLR_RED

• ZAF_CLR_MAGENTA

• ZAF_CLR_BROWN

• ZAF_CLR_LIGHTGRAY

• ZAF_CLR_DARKGRAY

• ZAF_CLR_LIGHTBLUE

• ZAF_CLR_LIGHTGREEN

• ZAF_CLR_LIGHTCYAN

• ZAF_CLR_LIGHTRED

• ZAF_CLR_LIGHTMAGENTA

• ZAF_CLR_YELLOW

• ZAF_CLR_WHITE

Run-time support for any RGB color may be added via AddColor(). index
specifies the zero-based index (or logical color) into the ZAF internal color
table where the color is to be inserted (each display object has a unique color
table). The 16 colors preloaded by ZAF occupy indices 0-15. Zinc also
reserves indices 16-31 for internal use. For convenience, the
ZAF_CLR_USER_FIRST constant is defined to be 32, indicating the first
index not reserved by Zinc. The programmer may add colors with indices 32-
126. Indices of 0-31 may be used, but may affect other parts of the ZAF appli-
cation.

If ZAF_CLR_NULL is passed into index, the new color is loaded into the next
unused ZafLogicalColor index (beginning with 32). red, green, and blue spec-
ify the 8-bit RGB values of the new color.

Different native environments and different display modes may uniquely han-
dle AddColor(). For example, a Motif palette-mapped environment may be

150 Zinc Application Framework 5

unable to return the exact RGB color requested and may instead return a “clos-
est match” or no color at all. The color returned from AddColor(), and any
other entry in the color table may be checked using ColorInfo().

DestroyColor() causes the associated internal color table entry to be cleared.

The ZafLogicalColor to be used in referencing the new color is returned. If
ZAF_CLR_NULL is passed in, but there are no unused indices, then
ZAF_CLR_NULL is returned. Also, if index is out of range or already used, or
some other error occurs, ZAF_CLR_NULL is returned.

Below is an example using these functions:

// Add Antique White to the color table.
ZafLogicalColor antiqueWhite = Display()->AddColor(ZAF_CLR_NULL,

250, 235, 215);
SetForeground(antiqueWhite);
DrawSomethingWithColor(antiqueWhite);
...
// Remove Antique White from the color table.
Display()->DestroyColor(antiqueWhite);

AddFont virtual ZafLogicalFont AddFont(ZafLogicalFont index, char
*fontFamily, int pointSize, ZafFontWeight weight =
ZAF_FNT_WEIGHT_NORMAL, ZafFontSlant slant =
ZAF_FNT_SLANT_NORMAL) = 0;

DestroyFont virtual ZafError DestroyFont(ZafLogicalFont font) = 0;

ZafDisplay allows the use of up to 10 fonts. However, in order to save execu-
tion time and memory, ZafDisplay automatically registers just the most com-
mon 5 fonts with the environment.

The 5 fonts registered by ZafDisplay, and usable in any ZAF program are as
follows:

Logical font Description

ZAF_FNT_SMALL Small font, commonly used in icons

ZAF_FNT_DIALOG Dialog font, commonly used in dialog windows

ZAF_FNT_APPLICATION Application font, commonly used in multi-line
text fields

ZAF_FNT_SYSTEM System font, commonly used in buttons and
menus

ZAF_FNT_FIXED Fixed-width font, commonly used in code snip-
pets

ZafDisplay 151

Run-time support for any available font may be added via AddFont(). index
specifies the zero-based index (or logical font) into the ZAF internal font table
where the font is to be inserted (each display object has a unique font table).
The 5 fonts preloaded by ZAF occupy indices 0-4.

To allow more than 10 fonts in the internal font table, simply modify the
ZAF_MAXFONTS constant in the header file z_dsp.hpp and recompile the
libraries. Due to the size of the typedef ZafLogicalFont, ZAF_MAXFONTS
may be at most 127.

If ZAF_FNT_NULL is passed into index, the new font is loaded into the next
available ZafLogicalFont index. fontFamily specifies the name of the font
family, and pointSize specifies the desired point size of the font to be sup-
ported.

weight specifies the desired weight of the font, and may be one of the follow-
ing:

• ZAF_FNT_WEIGHT_NORMAL

• ZAF_FNT_WEIGHT_BOLD

slant specifies the desired slant of the font, and may be one of the following:

• ZAF_FNT_SLANT_NORMAL

• ZAF_FNT_SLANT_ITALIC

The ZafLogicalFont to be used in referencing the new font is returned. If
ZAF_FNT_NULL is passed in, but there are no unused indices, then
ZAF_FNT_NULL is returned. Also, if index is out of range or already used, or
some other error occurs, ZAF_FNT_NULL is returned.

It is important to note that AddFont() can only return a valid font when that
font exists in the native environment. Each native environment has different
methods of “closest matching” fonts based on a request. Therefore, an
AddFont() call that may return an acceptable font on one environment may
return an unacceptable font on another environment, or no font at all. Fon-
tInfo() may be used to examine the characteristics of the font returned, if any.

DestroyFont() causes a font to be unregistered with the environment, and the
associated internal font table entry to be cleared.

The following shows how to use these functions:

// Add 10 point Helvetica to the font table.
ZafLogicalFont helvetica10Font = Display()-

>AddFont(ZAF_FNT_NULL, "helvetica", 10);
SetFont(helvetica10Font);
DrawSomethingWithFont(helvetica10Font);
...

152 Zinc Application Framework 5

// Remove Helvetica from the font table.
Display()->DestroyFont(helvetica10Font);

Background virtual ZafLogicalColor Background(void) const;

virtual ZafLogicalColor SetBackground(ZafLogicalColor
color);

Background() specifies the color used by any drawing operation requiring a
background color. When drawing shapes or textual information, the back-
ground color is used as the fill color. See Rectangle() and Text() for more
information on the fill color. The default value for Background() is
ZAF_CLR_WHITE, but it may be changed by calling SetBackground().

BeginDraw virtual ZafError BeginDraw(OSDisplayContext
displayContext, OSDrawContext drawContext, const
ZafRegionStruct &draw, const ZafRegionStruct &clip) =
0;

EndDraw virtual ZafError EndDraw(void) = 0;

All actual drawing operations must occur between calls to BeginDraw() and
EndDraw(). BeginDraw() sets up the environment’s display to accept drawing
operations, and EndDraw() finalizes the drawing operation. The displayCon-
text parameter specifies the display context to use for the drawing operation
(see DisplayContext() for an explanation of display contexts). The drawCon-
text parameter specifies the draw context to use (see DrawContext() for an
explanation of draw contexts). The draw parameter specifies the region where
drawing is to occur, and the clip parameter specifies the region (usually inside
draw) where clipping will occur.

Each call to BeginDraw() must be matched with a call to EndDraw(), and
BeginDraw()/EndDraw() pairs should not be nested. In other words, a call to
BeginDraw() should not be followed by another call to BeginDraw() before
calling EndDraw() first. Nested calls do not properly restore display character-
istics.

These functions are advanced, and should not normally be called by the pro-
grammer. They are called internally in the Zinc libraries. ZafWindowOb-
ject::BeginDraw() and ZafWindowObject::EndDraw() should be used to
properly encapsulate drawing operations. See ZafWindowObject::Begin-
Draw() for a description of performing draw operations for an object.

Bitmap virtual ZafError Bitmap(ZafCoordinate column,
ZafCoordinate line, ZafBitmapStruct &bitmap) = 0;

ZafDisplay 153

Bitmap() is used to display the bitmap specified by bitmap, with its left top cor-
ner specified by the column and line parameters. This function is optimized for
bitmaps that have already been converted to the environment’s native format,
using ConvertToOSBitmap(). If the bitmap has not yet been converted, Bit-
map() calls ConvertToOSBitmap() automatically. See ZafBitmapStruct for
more information on bitmaps. Normally, Bitmap() returns
ZAF_ERROR_NONE.

Normally, bitmap should be a ZafBitmapData object, so that the OS bitmap
created by ConvertToOSBitmap() will be deleted by the ZafBitmapData
destructor when the ZafBitmapData object is deleted. If bitmap is a ZafBit-
mapStruct, the programmer is responsible for deleting the OS bitmap created
by ConvertToOSBitmap().

CellHeight int CellHeight() const;
CellWidth int CellWidth() const;
SetCellSize void SetCellSize(int cellHeight, int cellWidth);
miniDenominatorX long miniDenominatorX;
miniDenominatorY long miniDenominatorY;
miniNumeratorX long miniNumeratorX;
miniNumeratorY long miniNumeratorY;
pixelsPerInchX long pixelsPerInchX;
pixelsPerInchY long pixelsPerInchY;

These members are all initialized by each environment in the derived class
constructors. CellHeight() and CellWidth() depend on the system font, and
correspond to the number of pixels per cell in the ZAF_CELL coordinate sys-
tem. SetCellSize() is an advanced method only to be called before any window
is displayed. The programmer should normally not call SetCellSize().

A mini-cell corresponds to the ZAF_MINICELL coordinate system, and is cal-
culated using the pixel values of a cell. CellWidth() multiplied by miniNumer-
atorX divided by miniDenominatorX specifies the number of pixels per mini-
cell along the x-axis. CellHeight() multiplied by miniNumeratorY divided by
miniDenominatorY specifies the number of pixels per mini-cell along the y-
axis.

pixelsPerInchX specifies the number of pixels in an inch along the x-axis, and
pixelsPerInchY specifies the number of pixels in an inch along the y-axis.

ClipRegion virtual ZafRegionStruct ClipRegion(void) const;

virtual ZafRegionStruct SetClipRegion(const
ZafRegionStruct ®ion);

154 Zinc Application Framework 5

ClipRegion() specifies the region (usually inside the current drawing region)
that drawing operations will be clipped to. ClipRegion() defaults to the entire
drawing region, but it may be changed by calling SetClipRegion(). ClipRe-
gion() returns the current clipping region, and SetClipRegion() returns the clip-
ping region before it was changed.

For example, when drawing a 3-D button object whose text is longer than will
fit inside the button’s region, it is not desirable for the text to be drawn over the
shadow portion of the button. Calling SetClipRegion() with the region inside
the button’s shadow will cause Text() to clip its drawing operation inside the
shadow’s region, as shown below:

// Begin the drawing operation.
ZafRegionStruct drawRegion = BeginDraw();
// Draw a one pixel border.
DrawBorder(drawRegion, ccode);
// Draw the 3-D shadow.
DrawShadow(drawRegion, depth, ccode);
// Erase the background.
DrawBackground(drawRegion, ccode);
// Set the clipping region.
Display()->SetClipRegion(drawRegion);
// Set the text palette.
Display()->SetPalette(LogicalPalette(ZAF_PM_TEXT,

PaletteState()));
// Draw the text.
Display()->Text(drawRegion, "Long button name", -1);
// End the drawing operation.
EndDraw();

ColorInfo virtual ZafError ColorInfo(ZafLogicalColor index,
ZafUInt8 &red, ZafUInt8 &green, ZafUInt8 &blue) = 0;

ColorInfo() returns information about the logical ZAF color corresponding to
the zero-based index into the ZAF internal color table where the color is stored
(each display object has a unique color table). On return, red, green, and blue
specify the 8-bit RGB values of the logical color. If index is out of range red,
green, and blue are not modified and ZAF_ERROR_INVALID_INDEX is
returned. See AddColor() for more information about logical colors.

columns int columns;
lines int lines;

The columns and lines members are initialized in the ZafDisplay constructor,
and contain the width and height in pixels, respectively, of the main monitor or

ZafDisplay 155

display that the application is running on. On multiple-monitor systems such
as the Apple Macintosh, the main monitor is the display that contains the menu
bar.

ConvertToOS-
Bitmap

virtual ZafError ConvertToOSBitmap(ZafBitmapStruct
&bitmap);

ConvertToOSIcon virtual ZafError ConvertToOSIcon(ZafIconStruct &icon);
ConvertToOS-
Mouse

virtual ZafError ConvertToOSMouse(ZafMouseStruct &mouse);

ConvertToOSBitmap(), ConvertToOSIcon() and ConvertToOSMouse() con-
vert ZAF platform-independent images to completely native versions of the
images that may be passed to native API routines. The ZAF image is passed
into the routine, and the converted image is stored within the same structure.
Normally, ZAF_ERROR_NONE is returned, but one of the following may be
returned in special cases:

ConvertToZaf-
Bitmap

virtual ZafError ConvertToZafBitmap(ZafBitmapStruct
&bitmap);

ConvertToZafIcon virtual ZafError ConvertToZafIcon(ZafIconStruct &icon);
ConvertToZaf-
Mouse

virtual ZafError ConvertToZafMouse(ZafMouseStruct
&mouse);

ConvertToZafBitmap(), ConvertToZafIcon() and ConvertToZafMouse() con-
vert the native versions of images to ZAF platform-independent versions of the
images that may be stored and retrieved independent of the particular environ-
ment. The ZAF image structure containing the native image is passed into the
routine, and the converted image is stored within the same structure. Nor-
mally, ZAF_ERROR_NONE is returned, but one of the following may be
returned in special cases:

Return value Description

ZAF_ERROR_INVALID_SOURCE Indicates that the ZAF source image is
empty or invalid

ZAF_ERROR_INVALID_TARGET Indicates that the native image already
exists and is StaticHandle(), and may
not be re-converted

Return value Description

ZAF_ERROR_INVALID_SOURCE Indicates that the native source image
is empty or invalid

156 Zinc Application Framework 5

ConvertXValue long ConvertXValue(long value, ZafCoordinateType typeIn,
ZafCoordinateType ZafCoordinateType typeOut);

ConvertXValue() converts value, specified along the x-axis in the typeIn coor-
dinate system to the typeOut coordinate system, and returns the result.

ConvertYValue long ConvertYValue(long value, ZafCoordinateType typeIn,
ZafCoordinateType ZafCoordinateType typeOut);

ConvertYValue() converts value, specified along the y-axis in the typeIn coor-
dinate system to the typeOut coordinate system, and returns the result.

CoordinateType ZafCoordinateType CoordinateType(void) const;

virtual ZafCoordinateType
SetCoordinateType(ZafCoordinateType coordinateType);

CoordinateType() specifies the coordinate system used by the display device.
See ZafCoordinateType for more information on coordinate systems in ZAF.
The default value for CoordinateType() is display-dependent, but it may be
changed by calling SetCoordinateType(). SetCoordinateType() should nor-
mally not be called for ZafScreenDisplay, but may be called for ZafPrinter.

DestroyColor virtual ZafError DestroyColor(ZafLogicalColor color) = 0;

See AddColor().

DestroyFont virtual ZafError DestroyFont(ZafLogicalFont font) = 0;

See AddFont().

DestroyOSBitmap virtual ZafError DestroyOSBitmap(ZafBitmapStruct
&bitmap);

DestroyOSIcon virtual ZafError DestroyOSIcon(ZafIconStruct &icon);
DestroyOSMouse virtual ZafError DestroyOSMouse(ZafMouseStruct &mouse);

DestroyOSBitmap(), DestroyOSIcon() and DestroyOSMouse() destroy the
native versions of the images contained in the ZAF image structures passed

ZAF_ERROR_INVALID_TARGET Indicates that the ZAF image already
exists and is StaticArray(), and may
not be re-converted

Return value Description

ZafDisplay 157

into the functions. The ZAF image is untouched. If the native version of the
image is StaticHandle(), it is not destroyed. Normally, ZAF_ERROR_NONE
is returned.

DestroyZafBitmap virtual ZafError DestroyZafBitmap(ZafBitmapStruct
&bitmap);

DestroyZafIcon virtual ZafError DestroyZafIcon(ZafIconStruct &icon);
DestroyZafMouse virtual ZafError DestroyZafMouse(ZafMouseStruct &mouse);

DestroyZafBitmap(), DestroyZafIcon() and DestroyZafMouse() destroy the
ZAF versions of the images contained in the ZAF image structures passed into
the functions. The native image is untouched. If the ZAF version of the image
is StaticArray(), it is not destroyed. Normally, ZAF_ERROR_NONE is
returned.

DisplayContext virtual OSDisplayContext DisplayContext(void) const = 0;

virtual OSDisplayContext
SetDisplayContext(OSDisplayContext context) = 0;

RestoreDisplay-
Context

virtual OSDisplayContext RestoreDisplayContext(void) = 0;

The display context is environment-specific, and usually specifies the device
context used in display operations (for example, either a window’s or printer’s
logical port). These functions are advanced, and should not normally be called
by the programmer. They are called internally in the Zinc libraries to get, set
and restore a display context. See ZafWindowObject::BeginDraw() for a
description of performing draw operations for an object.

DrawContext virtual OSDrawContext DrawContext(void) const = 0;

virtual OSDrawContext SetDrawContext(OSDrawContext
context) = 0;

RestoreDraw-
Context

virtual OSDrawContext RestoreDrawContext(void) = 0;

The draw context is environment-specific, and usually specifies the logical
drawing port used in display operations. These functions are advanced, and
should not normally be called by the programmer. They are called internally in
the Zinc libraries to get, set and restore a draw context. See ZafWindowOb-
ject::BeginDraw() for a description of performing draw operations for an
object.

DisplayMode virtual ZafDisplayMode DisplayMode(void) const;

DisplayMode() returns whether the run-time system supports color or black
and white. On multiple-monitor systems such as is supported by the Macin-

158 Zinc Application Framework 5

tosh, DisplayMode() may be misleading, since it does not indicate what mode
each monitor connected to the system supports. In this case, though a system
supports color, it may have only a black and white monitor connected to it; so
DisplayMode() returns ZAF_DISPLAY_COLOR, even though there are no
displays connected to the system that support color.

One of the following may be returned by DisplayMode():

DisplayType virtual ZafClassName DisplayType(void) const;

DisplayType() returns a string that uniquely identifies the derived display
class. This allows a programmer to perform display-specific tasks when out-
putting to various devices. “ScreenDisplay” or “ZafPrinter” are returned for
the default ZAF display devices.

Ellipse virtual ZafError Ellipse(ZafCoordinate left,
ZafCoordinate top, ZafCoordinate right, ZafCoordinate
bottom, float startAngle, float endAngle, int width =
ZAF_HAIR_LINE, bool fill = false) = 0;

Ellipse() is used to display an elliptical shape specified by the parameters. The
shape is contained by the left, top, right and bottom parameters. The startAn-
gle and endAngle parameters are specified in degrees, beginning with the posi-
tive x-axis and moving counter-clockwise (using the polar model). If
startAngle and endAngle are the same, a closed elliptical shape is drawn; other-
wise a wedge is drawn beginning at startAngle and ending at endAngle. The
width parameter specifies the width of the shape's outline, and the outline is
drawn with the Foreground() color, using LineStyle(). The fill parameter spec-
ifies whether or not the inside of the shape should be filled with the Back-
ground() color, using FillPattern(). SetForeground(), SetBackground(),
SetFillPattern(), and SetLineStyle() (or just SetPalette()) must be called before
calling Ellipse(), to ensure that the correct settings are used when the ellipse is
drawn; otherwise, the palette information used may have been previously set
by some other object. Normally, Ellipse() returns ZAF_ERROR_NONE.

The following shows how to use Ellipse():

Return value Description

ZAF_DISPLAY_COLOR Indicates that the run-time system sup-
ports color or grayscale

ZAF_DISPLAY_MONO Indicates that the run-time system sup-
ports only black and white

ZafDisplay 159

void MyObject::Draw(void)
{
ZafRegionStruct drawRegion = BeginDraw();
// Draw a yellow ellipse with a blue border.
SetBackground(ZAF_CLR_YELLOW);
SetForeground(ZAF_CLR_BLUE);
Display()->Ellipse(drawRegion.left, drawRegion.top,
drawRegion.right, drawRegion.bottom, 0, 360, 1, true);

EndDraw();
}

FillPattern virtual ZafLogicalFillPattern FillPattern(void) const;

virtual ZafLogicalFillPattern
SetFillPattern(ZafLogicalFillPattern pattern);

FillPattern() specifies the fill pattern used by any drawing operation that speci-
fies filling. When drawing shapes or textual information, the fill pattern is
used when filling the shape or text. The default value for FillPattern() is
ZAF_PTN_SOLID_FILL, but it may be changed by calling SetFillPattern().
The fill patterns defined for use in ZAF are as follows:

Font virtual ZafLogicalFont Font(void) const;

virtual ZafLogicalFont SetFont(ZafLogicalFont font);

Font() specifies the logical font used by any textual drawing or sizing opera-
tion. When drawing or specifying textual information, the environment’s font
corresponding to the ZAF logical font is used. The ZafDisplay constructor ini-
tializes 5 fonts automatically, but support for additional fonts may be added.
See AddFont() for more information on the 5 default fonts and how to add sup-
port for additional fonts. The default value for Font() is ZAF_FNT_DIALOG,
but it may be changed by calling SetFont().

FontInfo virtual ZafError FontInfo(ZafLogicalFont index, char
*fontFamily, int bufferSize, int *pointSize,

Logical fill pattern Description

ZAF_PTN_SOLID_FILL Fills the entire area with the Back-
ground() color

ZAF_PTN_INTERLEAVE_FILL Fills the area with an 50% interleave
pattern of the Background() and Fore-
ground() colors

160 Zinc Application Framework 5

ZafFontWeight *weight = ZAF_NULLP(ZafFontWeight),
ZafFontSlant *slant = ZAF_NULLP(ZafFontSlant)) = 0;

FontInfo() returns information about the logical ZAF font corresponding to the
zero-based index into the ZAF internal font table where the font is stored (each
display object has a unique font table). If fontFamily is not null, the font fam-
ily name is copied into the buffer pointed to by fontFamily (at most bufferSize
characters are copied into the buffer). If pointSize is not null, the point size is
copied into the integer pointed to by pointSize. If weight is not null, the font
weight is copied into the ZafFontWeight pointed to by weight. If slant is not
null, the font slant is copied into the ZafFontSlant pointed to by slant. If index
is out of range fontFamily, pointSize, weight, and slant are not modified and
ZAF_ERROR_INVALID_INDEX is returned. See AddFont() for more infor-
mation about logical fonts.

Foreground virtual ZafLogicalColor Foreground(void) const;

virtual ZafLogicalColor SetForeground(ZafLogicalColor
color);

Foreground() specifies the color used by any drawing operation requiring a
foreground color. When drawing shapes or textual information, the foreground
color is used as the outline or text color. See Rectangle() and Text() for more
information on the outline or text color. The default value for Foreground() is
ZAF_CLR_BLACK, but it may be changed by calling SetForeground().

Icon virtual ZafError Icon(ZafCoordinate column, ZafCoordinate
line, ZafIconStruct &icon) = 0;

Icon() is used to display the icon specified by icon, with its left top corner spec-
ified by the column and line parameters. This function is optimized for icons
that have already been converted to the environment’s native format, using
ConvertToOSIcon(). If the icon has not yet been converted, Icon() calls Con-
vertToOSIcon() automatically. See ZafIconStruct for more information on
icons. Normally, Icon() returns ZAF_ERROR_NONE.

Normally, icon should be a ZafIconData object, so that the OS icon created by
ConvertToOSIcon() will be deleted by the ZafIconData destructor when the
ZafIconData object is deleted. If icon is a ZafIconStruct, the programmer is
responsible for deleting the OS icon created by ConvertToOSIcon().

InitializeOSBitmap static ZafError InitializeOSBitmap(ZafBitmapStruct
&bitmap);

InitializeOSIcon static ZafError InitializeOSIcon(ZafIconStruct &icon);
InitializeOSMouse static ZafError InitializeOSMouse(ZafMouseStruct &mouse);

ZafDisplay 161

InitializeOSBitmap(), InitializeOSIcon() and InitializeOSMouse() initialize the
native versions of the images contained in the ZAF image structures passed
into the functions. The ZAF image is untouched. These functions are
advanced, and should normally not be called by the programmer. They are
used internally by the Zinc libraries to initialize image structures during con-
struction. Normally, ZAF_ERROR_NONE is returned.

Line virtual ZafError Line(ZafCoordinate column1,
ZafCoordinate line1, ZafCoordinate column2,
ZafCoordinate line2, int width = ZAF_HAIR_LINE) = 0;

Line() is used to display a line specified by the parameters. The line is drawn
between the point (column1, line1) and (column2, line2). The width parameter
specifies the line’s width, and the line is drawn with the Foreground() color,
using LineStyle(). SetForeground() and SetLineStyle() (or just SetPalette())
must be called before calling Line(), to ensure that the correct settings are used
when the line is drawn; otherwise, the palette information used may have been
previously set by some other object. Normally, Line() returns
ZAF_ERROR_NONE.

lines int lines;

See columns.

LineStyle virtual ZafLogicalLineStyle LineStyle(void) const;

virtual ZafLogicalLineStyle
SetLineStyle(ZafLogicalLineStyle line);

LineStyle() specifies the line style used by any drawing operation. When
drawing shapes, the line style is used when drawing the shape’s outline. The
line styles defined for use in ZAF are ZAF_LINE_SOLID and
ZAF_LINE_DOTTED. The default value for LineStyle() is
ZAF_LINE_SOLID, but it may be changed by calling SetLineStyle().

Mode virtual ZafLogicalMode Mode(void) const;

virtual ZafLogicalMode SetMode(ZafLogicalMode mode);

162 Zinc Application Framework 5

Mode() specifies the drawing mode used by any drawing operation. The
default value for Mode() is ZAF_MODE_COPY, but it may be changed by
calling SetMode(). The drawing modes defined for use in ZAF are as follows:

MonoBackground virtual ZafLogicalColor MonoBackground(void) const;

virtual ZafLogicalColor SetMonoBackground(ZafLogicalColor
color);

MonoBackground() specifies the color used by any drawing operation requir-
ing a background color on a black and white display. When drawing shapes or
textual information, the background color is used as the fill color. See Rectan-
gle() and Text() for more information on the fill color. The default value for
MonoBackground() is ZAF_MONO_WHITE, but it may be changed by call-
ing Set MonoBackground().

MonoForeground virtual ZafLogicalColor MonoForeground(void) const;

virtual ZafLogicalColor SetMonoForeground(ZafLogicalColor
color);

MonoForeground() specifies the color used by any drawing operation requir-
ing a foreground color on a black and white display. When drawing shapes or
textual information, the foreground color is used as the outline or text color.
See Rectangle() and Text() for more information on the outline or text color.
The default value for MonoForeground() is ZAF_MONO_BLACK, but it may
be changed by calling Set MonoForeground().

Mouse virtual ZafError Mouse(ZafCoordinate column,
ZafCoordinate line, ZafMouseStruct &mouse) = 0;

Mouse() is used to display the mouse cursor specified by mouse, with its hot
spot specified by the column and line parameters. The column and line param-
eters are relative to the screen. This function is optimized for mouse cursors
that have already been converted to the environment’s native format, using
ConvertToOSMouse(). If the mouse cursor has not yet been converted,
Mouse() calls ConvertToOSMouse() automatically. See ZafMouseStruct for

Logical drawing mode Description

ZAF_MODE_COPY Draws normally, regardless of what was previously
in the same position

ZAF_MODE_XOR Performs a logical exclusive OR between the pixels
being drawn, and the pixels that were already in the
same position

ZafDisplay 163

more information on mouse cursors. Normally, Mouse() returns
ZAF_ERROR_NONE.

Normally, mouse should be a ZafMouseData object, so that the OS mouse cur-
sor created by ConvertToOSMouse() will be deleted by the ZafMouseData
destructor when the ZafMouseData object is deleted. If mouse is a ZafMouse-
Struct, the programmer is responsible for deleting the OS mouse cursor created
by ConvertToOSMouse().

Origin void Origin(ZafCoordinate &x, ZafCoordinate &y) const;

virtual void SetOrigin(ZafCoordinate x, ZafCoordinate y);

Origin() specifies the drawing origin used by the display device within the cur-
rent drawing context. For example, after calling ZafWindowObject::Begin-
Draw(), an object’s drawing context is itself (meaning its top left corner is at
(0, 0)). To draw relative to the position (2, 2), the object sets the origin to (2,
2). Thereafter, a call to draw a bitmap at position (0, 0) will actually draw
within the object’s region at (2, 2). The default value for Origin() is (0, 0), but
it may be changed by calling SetOrigin().

Palette virtual ZafPaletteStruct Palette(void) const;

virtual ZafPaletteStruct SetPalette(ZafPaletteStruct
palette);

Palette() specifies the drawing palette used by any drawing operation. The pal-
ette encases all the drawing properties in one structure. See ZafPaletteStruct
for more information on palettes. The default values for Palette() are as fol-
lows, but may be changed by calling SetPalette():

Pixel virtual ZafError Pixel(ZafCoordinate column,
ZafCoordinate line, ZafLogicalColor color =

Palette() fields Default values

palette.lineStyle ZAF_LINE_SOLID

palette.fillPattern ZAF_PTN_SOLID_FILL

palette.colorForeground ZAF_CLR_BLACK

palette.colorBackground ZAF_CLR_WHITE

palette.monoForeground ZAF_MONO_BLACK

palette.monoBackground ZAF_MONO_WHITE

palette.font ZAF_FNT_DIALOG

164 Zinc Application Framework 5

ZAF_CLR_DEFAULT, ZafLogicalColor mono =
ZAF_MONO_DEFAULT) = 0;

Pixel() is used to display a single pixel at the position (column, line). The
color and mono parameters specify logical colors for the pixel. If the screen on
which the pixel appears supports color or grayscale, then the pixel will use the
logical color color. Otherwise, the pixel will use the logical black and white
color mono. Normally, Pixel() returns ZAF_ERROR_NONE.

Polygon virtual ZafError Polygon(int numPoints, const
ZafCoordinate *polygonPoints, int width =
ZAF_HAIR_LINE, bool fill = false, bool close = false)
= 0;

Polygon() is used to display a polygon specified by the parameters. The
parameter numPoints specifies the number of points in the parameter polygon-
Points, and polygonPoints is a list of points that specify the vertices of the
polygon. The width parameter specifies the width of the shape’s outline, and
the outline is drawn with the Foreground() color, using LineStyle(). The fill
parameter specifies whether or not the inside of the shape should be filled with
the Background() color, using FillPattern(). The close parameter specifies
whether the polygon should be closed. For example, a polygon specified by
three points will have only two sides if close is false; but it will have three
sides if close is true, since Polygon() will draw the third side by joining the last
point with the first point. SetForeground(), SetBackground(), SetFillPattern(),
and SetLineStyle() (or just SetPalette()) must be called before calling Poly-
gon(), to ensure that the correct settings are used when the polygon is drawn;
otherwise, the palette information used may have been previously set by some
other object. Normally, Polygon() returns ZAF_ERROR_NONE.

The following shows how to use Polygon():

void MyObject::Draw(void)
{
ZafRegionStruct drawRegion = BeginDraw();
// Set up the array of vertices for the triangle.
ZafCoordinate points[6];
points[0] = drawRegion.left; // (x1, y1)
points[1] = drawRegion.bottom;
points[2] = drawRegion.left+drawRegion.Width()/2; // (x2, y2)
points[3] = drawRegion.top;
points[4] = drawRegion.right; // (x3, y3)
points[5] = drawRegion.bottom;
// Draw a magenta triangle with a red border.
SetBackground(ZAF_CLR_MAGENTA);
SetForeground(ZAF_CLR_RED);

ZafDisplay 165

Display()->Polygon(3, points, 1, true, true);
EndDraw();
}

preSpace int preSpace, postSpace;
postSpace The preSpace and postSpace members are initialized in the ZafDisplay con-

structor, and contain the space above and below a window object in pixels,
respectively. They are used in positioning window objects on their parents in
such a way as to avoid crowding by adding a small amount of whitespace
between them. These members are advanced, and should normally not be
accessed by the programmer. They are used internally by the Zinc libraries.

Rectangle ZafError Rectangle(const ZafRegionStruct ®ion, int
width = ZAF_HAIR_LINE, bool fill = false);

virtual ZafError Rectangle(ZafCoordinate left,
ZafCoordinate top, ZafCoordinate right, ZafCoordinate
bottom, int width = ZAF_HAIR_LINE, bool fill = false)
= 0;

These overloaded functions display a rectangle specified by the parameters.
With the first function, the region parameter specifies the region of the rectan-
gle; with the second, the same information is passed into the left, top, right, and
bottom parameters. The width parameter specifies the width of the shape’s out-
line, and the outline is drawn with the Foreground() color, using LineStyle().
The fill parameter specifies whether or not the inside of the shape should be
filled with the Background() color, using FillPattern(). SetForeground(), Set-
Background(), SetFillPattern(), and SetLineStyle() (or just SetPalette()) must
be called before calling Rectangle(), to ensure that the correct settings are used
when the rectangle is drawn; otherwise, the palette information used may have
been previously set by some other object. Normally, Rectangle() returns
ZAF_ERROR_NONE.

RectangleXORDiff virtual ZafError RectangleXORDiff(const ZafRegionStruct
*oldRegion, const ZafRegionStruct *newRegion) = 0;

RectangleXORDiff() is useful in implementing a rectangle that appears to be
moved around. An example of this operation can be seen in Zinc Designer,
when an object is dragged around on the parent window. During this drag
operation, a rectangle the size of the object being dragged follows the mouse
until it is dropped.

The oldRegion parameter specifies the rectangle to be erased, and the newRe-
gion parameter specifies the rectangle to be drawn. The first time RectangleX-
ORDiff() is called, null should be passed for oldRegion, and the first region

166 Zinc Application Framework 5

specifying the rectangle to be drawn should be passed for newRegion. Then
during the rectangle’s movement, the region previously passed to newRegion
should be passed to oldRegion, and the region specifying where the rectangle
should be drawn next should be passed to newRegion. The final call to Rect-
angleXORDiff() should be passed null for newRegion. Normally, RectangleX-
ORDiff() returns ZAF_ERROR_NONE.

The following is an example of how to use RectangleXORDiff():

void MyWindow::DrawRubberBand(ZafPositionStruct
downClickPosition)

{
// Prepare for drawing operations.
ZafRegionStruct drawRegion = BeginDraw();
SetBackground(ZAF_CLR_WHITE);
SetForeground(ZAF_CLR_BLACK);
// Draw a sizing rubber-band following the mouse.
ZafRegionStruct newRegion, oldRegion;
oldRegion.left = oldRegion.right = drawRegion.left +
downClickPosition.column;

oldRegion.top = oldRegion.bottom = drawRegion.top +
downClickPosition.line;

newRegion = oldRegion;
RectangleXORDiff(ZAF_NULLP(ZafRegionStruct), &newRegion);
ZafEventStruct event;
ZafEventType ccode = L_BEGIN_SELECT;
do
{
// Get the mouse movement events.
eventManager->Get(event, Q_NORMAL);
// LogicalEvent() normalizes the mouse position.
ccode = LogicalEvent(event);
// Put the new mouse position into the region.
newRegion.right = drawRegion.left + event.position.column;
newRegion.bottom = drawRegion.bottom + event.position.line;
RectangleXORDiff(&oldRegion, &newRegion);
oldRegion = newRegion;

} while (ccode != L_END_SELECT);
// Erase the rubber-band and clean up.
RectangleXORDiff(&oldRegion, ZAF_NULLP(ZafRegionStruct));
EndDraw();

}

RegionCopy virtual ZafError RegionCopy(const ZafRegionStruct
&oldRegion, int newColumn, int newLine) = 0;

ZafDisplay 167

RegionCopy() visually copies whatever appears in oldRegion to the new posi-
tion (newColumn, newLine). Since RegionCopy() performs a copy operation
instead of a move operation, the original pixels copied are not erased. What-
ever appears at (newColumn, newLine) will be overwritten by the copy. The
position (newColumn, newLine) may be inside oldRegion, in which case some
(or all) of the pixels in oldRegion will be overwritten. This type of operation is
commonly used in scrolling the client region associated with a scroll bar (such
as in a scrollable text object). Normally, RegionCopy() returns
ZAF_ERROR_NONE.

ResetOSBitmap static ZafError ResetOSBitmap(ZafBitmapStruct &bitmap,
const ZafBitmapStruct ©);

ResetOSIcon static ZafError ResetOSIcon(ZafIconStruct &icon, const
ZafIconStruct ©);

ResetOSMouse static ZafError ResetOSMouse(ZafMouseStruct &mouse, const
ZafMouseStruct ©);

ResetOSBitmap(), ResetOSIcon() and ResetOSMouse() reset the native ver-
sions of the images contained in the ZAF image structures passed into the
functions to the values stored in the copy parameters. The ZAF image is
untouched. These functions are advanced, and should normally not be called
by the programmer. They are used internally by the Zinc libraries to reset
image structures. Normally, ZAF_ERROR_NONE is returned.

RestoreDisplayCon-
text

virtual OSDisplayContext RestoreDisplayContext(void) = 0;

See DisplayContext().

RestoreDrawCon-
text

virtual OSDrawContext RestoreDrawContext(void) = 0;

See DrawContext().

Scale int Scale(int *scaleNumerator = ZAF_NULLP(int), int
*scaleDenominator = ZAF_NULLP(int)) const;

virtual int SetScale(int scaleNumerator, int
scaleDenominator);

Scale() specifies the scaling fraction used by the display device. For example,
if Scale() is 1/2, any drawing will occur at one-half the size specified and at
one-half the position specified. So if a bitmap is requested at position (4, 4)
and Scale() is 1/2, it will actually be drawn at (2, 2) and at half its normal size.
The default value for Scale() is 1/1, but it may be changed by calling Set-
Scale().

168 Zinc Application Framework 5

Text virtual ZafError Text(ZafCoordinate left, ZafCoordinate
top, const ZafIChar *text, int length = -1, int
hotKeyIndex = -1, bool fill = false) = 0;

ZafError Text(const ZafRegionStruct ®ion, const
ZafIChar *text, int length = -1, ZafHzJustify
hzJustify = ZAF_HZ_LEFT, ZafVtJustify vtJustify =
ZAF_VT_CENTER, int hotKeyIndex = -1, bool fill =
false);

virtual ZafError Text(ZafCoordinate left, ZafCoordinate
top, ZafCoordinate right, ZafCoordinate bottom, const
ZafIChar *text, int length = -1, ZafHzJustify
hzJustify = ZAF_HZ_LEFT, ZafVtJustify vtJustify =
ZAF_VT_CENTER, int hotKeyIndex = -1, bool fill =
false) = 0;

These overloaded functions display the text specified by the text parameter.
With the first function, the left top corner of the text is drawn at the position
(left, top). If length is -1, the entire string is drawn, and is assumed to be null-
terminated; otherwise, only length characters (as opposed to bytes) are drawn.
If hotKeyIndex is -1, none of the characters in the string is drawn as a hot key
character; otherwise, the character at the position hotKeyIndex (zero-based) is
drawn as a hot key character. A hot key character is usually presented with an
underline. The fill parameter specifies whether or not the background of the
text should be filled with the Background() color, using FillPattern(). SetFore-
ground(), SetBackground(), SetFillPattern(), SetFont(), and SetLineStyle() (or
just SetPalette()) must be called before calling Text(), to ensure that the correct
settings are used when the text is drawn; otherwise, the palette information
used may have been previously set by some other object. Normally, Text()
returns ZAF_ERROR_NONE.

The second and third functions are like the first, but provide additional func-
tionality for justifying the text within a region. With the second function, the
region parameter specifies the region of the rectangle; with the third, the same
information is passed into the left, top, right and bottom parameters. The
hzJustify parameter specifies the horizontal justification of the text within the
specified region, and the vtJustify parameter specifies its vertical justification.
Possible values for hzJustify are ZAF_HZ_LEFT, ZAF_HZ_CENTER and
ZAF_HZ_RIGHT. Possible values for vtJustify are ZAF_VT_TOP,
ZAF_VT_CENTER and ZAF_VT_BOTTOM. If true is passed as the fill
parameter into these two functions, the background of the entire region speci-
fied will be filled, whether or not the text occupies the entire region.

ZafDisplay 169

TextSize virtual ZafRegionStruct TextSize(const ZafIChar *text,
int length = -1) = 0;

TextSize() calculates the width and height of the text being passed in, using the
current Font(). The text parameter specifies the string to be measured. If
length is -1, the entire string is calculated, and is assumed to be null-termi-
nated; otherwise, only length characters (as opposed to bytes) are calculated.
The region returned contains the string’s width in its right field, and the string’s
height in its bottom field. The region returned also returns its Width() and
Height() attributes correctly.

170 Zinc Application Framework 5

ZafElement

Inheritance Root class

Declaration #include <z_list.hpp>

Description ZafElement, the ultimate base class for most ZAF classes, provides member
variables and functions for list participation, class identification, and object
identification. Almost all ZAF classes act as list heads and/or list elements.
For example, windows, menus, vertical lists, horizontal lists, notebooks, tables,
the event manager, the window manager, the data manager, and many other
classes act as list heads, maintaining lists of ZAF objects. Other classes like
strings, buttons, devices, and data act as list elements. All list elements derive
from ZafElement, which provides previous and next member variables.

In addition to providing list element functionality, ZafElement also provides
member variables and functions for class and object identification.

ZafElement is important as a base class, providing list and identification char-
acteristics to a substantial number of derived classes. You will probably never
instantiate this class directly, but you may want to derive your own classes
from ZafElement. Many ZAF classes derive directly from ZafElement. Fol-
lowing are important examples:

• ZafData: low-level data such as dates, numbers, and bitmaps

• ZafConstraint: places size and location constraints on window objects

• ZafWindowObject: graphical user interface objects

• ZafRegionElement: region that reserves portions of the screen

• ZafQueueElement: stores run-time event information

• ZafDevice: input devices such as keyboard and mouse

Constructor ZafElement initializes its members to the following default values:

ClassID IsA NumberID
ClassName ListIndex StringID
EvaluateIsA Next
Find Previous

Member Initializations

ZafElement
ClassID() ID_ZAF_ELEMENT

ClassName() "ZafElement"

Next() null

ZafElement 171

ZafElement(void);

The ZafElement class constructor should only be instantiated from a derived
class’s constructor such as ZafButton, ZafStringData, or ZafKeyboard.

ZafElement(const ZafElement ©);

The copy constructor creates a new ZafElement object and initializes its data
from copy.

Destructor virtual ~ZafElement(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafElement object. The ZafElement portion of the destructor destroys the
StringID() associated with the object, if one has been specified.

Generally, the programmer will not directly destroy a ZafElement object, but
rather the derived object. The following code shows how this destruction is
accomplished:

// Create a string data object.
ZafElement *string = new ZafStringData("Hello World!");
...
// Free the string.
delete string;

The pointer assignment shown above is permitted because ZafElement is a
base class to ZafStringData. When the object’s destructor is called, the actual
contents of the ZafStringData instance are freed because the base class destruc-
tor is declared virtual.

For complete information on the type of memory that is freed as a result of a
call to the destructor, see the reference chapter on the particular object you
instantiated.

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()

NumberID() 0

Previous() null

StringID() null

Member Initializations

172 Zinc Application Framework 5

function does not successfully change the state as requested, it will instead
return the current state.

ClassID virtual ZafClassID ClassID(void) const;
ClassName virtual ZafClassNameChar ClassName(void) const;

These two functions return the class identification and name for the object.
The const value ID_ZAF_ELEMENT and string “ZafElement” are the identifi-
ers associated with the ZafElement class, but each Zinc Application Frame-
work class has a unique class identification. For example, here is a partial list
of classes and their associated identifications:

The identification associated with the class is always a const declaration, found
in the source file gbl_def.cpp, that is the class name with an “ID_” prefix (e.g.,
ZafButton -> ID_ZAF_BUTTON). The associated name is a string equivalent
to the actual class declaration (e.g., ZafKeyboard -> “ZafKeyboard”).

The use of ClassName() is preferred over the use of ClassID(). Every class in
ZAF has a unique ClassID(), but classes that the programmer derives from
ZAF classes are all assigned the same ClassID() unless specifically set to
another value by the programmer.

Class identifications are normally used in conjunction with the IsA() member
function to indicate if an object is derived from a particular class. For instance,
the following code shows how the ClassName() and ClassID() functions can
be used with the IsA() function to determine the matching identification of a
given window object.

// Check for an exact match.
if (object1->ClassID() == object2->ClassID())
printf("Objects are of the same class!\n");

// Look for inheritance relationships.
if (object1->IsA(object2->ClassID())
printf(Object1 (%s) is derived from object2 (%s).\n",
object1->ClassName(), object2->ClassName());

else if (object2->IsA(object1->ClassID())
printf(Object2 (%s) is derived from object1 (%s).\n",

Class ClassID() ClassName()

ZafWindowObject ID_ZAF_WINDOW_OBJECT "ZafWindowObject"

ZafButton ID_ZAF_BUTTON "ZafButton"

ZafDateData ID_ZAF_DATE_DATA "ZafDateData"

ZafKeyboard ID_ZAF_KEYBOARD "ZafKeyboard"

ZafElement 173

object2->ClassName(), object1->ClassName());

Since ClassID() and ClassName() are virtual functions, you will only receive
the most derived name or identification of the object (most derived meaning
the lowest derivation in the Zinc Application Framework hierarchy, or the
exact type of class that was instantiated). For example, a ClassName() call to
an instantiated ZafButton will result in the return value of “ZafButton”, not
“ZafWindowObject” or “ZafElement”, even though you may have stored the
contents of the new operation into a ZafElement pointer.

// Print the type of object we just created.
ZafElement *element = new ZafButton(0, 0, 10, 1,

ZAF_NULLP(ZafIChar), myBitmap);
printf("The element is: %s\n", element->ClassName());
==========
The element is: ZafButton

The only way to override these return values is to scope the ClassID() call:

// Print the type of object we just created.
ZafElement *element = new ZafButton(0, 0, 10, 1,

ZAF_NULLP(ZafIChar), myBitmap);
printf("The element is: %s\n", element->

ZafWindowObject::ClassName());
==========
The element is: ZafWindowObject

EvaluateIsA static ZafElement *EvaluateIsA(ZafElement *element,
ZafClassID compareID);

If a compiler doesn’t support RTTI via dynamic_cast(), ZAF provides similar
functionality for classes derived from ZafElement with a DynamicPtrCast()
macro. DynamicPtrCast() calls EvaluateIsA(), which in turn calls IsA(). The
intermediate step of EvaluateIsA() is necessary in order to avoid calling IsA()
twice in the macro DynamicPtrCast(). It is important to note that for compilers
that support RTTI, DynamicPtrCast() simply calls dynamic_cast().

EvaluateIsA() simply passes its parameters to IsA(). The element parameter
specifies a pointer to the object to be checked, and the compareID parameter
specifies the class identification to be checked against. See IsA() for more
information.

174 Zinc Application Framework 5

Find virtual ZafElement *Find(ZafNumberID numberID);

virtual ZafElement *Find(ZafStringID stringID);

Find() provides a base for doing searches in lists of ZafElement objects.
ZafElement::Find() returns null if numberID or stringID do not match this
object, and it returns "this" if it is a match.

Though Find() returns a ZafElement pointer, the programmer may use the
overloaded function GetObject() in classes derived from ZafList to get a
pointer of the same type.

IsA virtual bool IsA(ZafClassID compareID) const;

virtual bool IsA(ZafClassName compareName) const;

These overloaded functions provide the base definition for the hierarchical
chain of inheritance relationships used in Zinc Application Framework. A par-
ticular instantiation of an element will not only match IsA() queries for ZafEle-
ment, but also for the derived class. These functions return true if one of the
following two conditions is met:

• the object is an instantiation of the specified class

• the object is derived from the specified class

Otherwise, the function returns false.

Pre-defined Zinc Application Framework values and strings can be passed to
the IsA function. Following are examples of these values:

In addition to ZAF pre-defined values and strings, new values and strings can
be defined for objects derived from a Zinc Application Framework class. Con-
sider the following code that defines a new class called MyClass:

const ZafClassID ID_MY_CLASS = 10000;

ZafClassID MyClass::classID = ID_MY_CLASS;
ZafClassNameChar MyClass::className[] = "MyClass";

Class ClassID() ClassName()

ZafElement ID_ZAF_ELEMENT "ZafElement"

ZafWindow ID_ZAF_WINDOW "ZafWindow"

ZafKeyboard ID_ZAF_KEYBOARD "ZafKeyboard"

ZafStringData ID_ZAF_STRING_DATA "ZafStringData"

ZafButton ID_ZAF_BUTTON "ZafButton"

ZafElement 175

Zinc reserves the values 0 through 9,999 for their class identifications and the
“Zaf” and “Zdc” prefix for their class names (“Zdc” is reserved for the Zinc
DataConnect product). All other values and prefixes can be used by develop-
ers in their applications.

For up-to-date information on these constant declarations, refer to the source
file gbl_def.cpp and the full Zinc Application Framework class hierarchy.

The following code shows the proper use of the IsA function with various
argument methods:

// Check for a string object using the identifier.
if (object->IsA(ID_ZAF_STRING))
break;

// Check for a main window using the class name.
if (object->IsA("ZafWindow"))
eventManager->Put(S_EXIT);

// Check for a mouse using the mouse classID.
if (device->IsA(ZafMouse::classID))
device->SetDeviceState(DM_VIEW);

// Check for a date data class.
ZafDateData *date;
if (data->IsA(ZafDateData::className))
date = DynamicPtrCast(data, ZafDateData);

ListIndex int ListIndex(void);

This function is an element level method (as opposed to the list method
ZafList::Index()) used to determine an object’s position in a list. It returns a
zero-based value representing the position. Consider the following code:

ZafElement element1, element2;

ZafList list;
list.Add(&element1);
list.Add(&element2);

printf("List position of element2 = %d\n",
element2.ListIndex());

printf("List position of element1 = %d\n",
list.Index(element1));

==========
List position of element2 = 1
List position of element1 = 0

176 Zinc Application Framework 5

As a special warning, in addition to a 0 value representing the first position in a
list, if the ZafElement is not a member of a list, this function also returns zero.
If you are not sure that the element is indeed attached to a list, you should use
the ZafList::Index() function instead of this function, since the list function
returns -1 when the element is not found in the list.

Next ZafElement *Next(void) const;
Previous ZafElement *Previous(void) const;

These functions return a pointer to the next/previous element in the list. If the
ZafElement is not a member of a list, or if the element is the first member of a
list and the Previous() function is called, or the last member in a list and the
Next() function is called, the return value is null. Consider the following code:

// Initialize all my children.
for (ZafWindowObject *object = window->First(); object; object =

object->Next())
object->Event(S_INITIALIZE);

// Find the previous object in the list.
if (element->Previous())
printf("previous sibling %s\n", element->Previous()->
StringID());

In addition to the ZafElement class, the following classes overload the Next()
and Previous() functions:

These functions are overloaded to enable you to obtain the proper type of class
pointer for a given parent object. The code shown above showed a common
use for the overloaded ZafWindowObject::Next() function, as used with the
ZafWindow::First() function. For more information on these overloads, see
the appropriate class object’s definition.

Class Return value Used by

ZafData ZafData * ZafDataManager

ZafDevice ZafDevice * ZafEventManager

ZafWindowObject ZafWindowObject * derived ZafWindows

ZafConstraint ZafConstraint * ZafGeometryManager

ZafRegionElement ZafRegionElement * ZafDisplay

ZafQueueElement ZafQueueElement * ZafEventManager

ZafTableRecord ZafTableRecord * ZafTable

ZafElement 177

NumberID ZafNumberID NumberID(void) const;

ZafNumberID SetNumberID(ZafNumberID numberID);

These functions are used to associate a number identification with an instanti-
ated Zinc Application Framework object. The base element constructor sets
the number identification to 0, and in general, you are responsible for changing
this value if you want a unique identifier for your object. There are several
occasions, however, where the number identification is automatically set by
Zinc Application Framework:

• If you instantiate a window object and attach it to a root window without a number
identification, the ZafWindowObject::Event() function will automatically create
an ascending identifier for each child object when the S_INITIALIZE message is
processed (such as when the object’s root window is added to the window man-
ager). For example, the following code would create a window whose children
had number identifications of 0 and 1:

ZafWindow *window = new ZafWindow(0, 0, 40, 10);
window->Add(new ZafButton(0, 0, 20, 1, ZAF_NULLP(ZafIChar),
ZAF_NULLP(ZafBitmapData)));

window->Add(new ZafString(0, 1, 20,
ZAF_NULLP(ZafStringData)));

windowManager->Add(window);

• If you instantiate any of a number of special support window objects (there will
only be one of these objects per window hierarchy). The following support
objects have default number identifications (the const declarations are given in
z_numid.hpp):

Class NumberID()

ZafBorder ZAF_NUMID_BORDER

ZafGeometryManager ZAF_NUMID_GEOMETRY_MANAGER

ZafMaximizeButton ZAF_NUMID_MAXIMIZE

ZafMinimizeButton ZAF_NUMID_MINIMIZE

ZafIcon (minimize) ZAF_NUMID_MIN_ICON

ZafPullDownMenu ZAF_NUMID_PULL_DOWN_MENU

ZafSystemButton ZAF_NUMID_SYSTEM

ZafSystemButton::menu ZAF_NUMID_SYSTEM_BUTTON_MENU

ZafScrollBar (corner) ZAF_NUMID_C_SCROLL

ZafScrollBar (horizontal) ZAF_NUMID_HZ_SCROLL

ZafScrollBar (vertical) ZAF_NUMID_VT_SCROLL

178 Zinc Application Framework 5

• If you instantiate special pop-up items that use the special ZafPopUpItemType
enumeration value defined in z_popup.hpp (the const declarations are given in
z_numid.hpp):

StringID const ZafStringID StringID(void) const;

ZafStringID SetStringID(const ZafStringID stringID);

These functions are used to associate a string identification with an instantiated
Zinc Application Framework object. The base element constructor sets the
string identification to null, and in general, you are responsible for changing
this value if you want a unique identifier for your object. There are several
occasions, however, where the string identification is automatically set by Zinc
Application Framework:

• If you instantiate a window object and attach it to a root window, without a string
identification, the ZafWindowObject::Event() function will automatically create
an incremented field identifier when the S_INITIALIZE message is processed
(such as when the object’s root window is added to the window manager). For
example, the following code would create a window whose children had string
identifications of “FIELD_0” and “FIELD_1”:

ZafWindow *window = new ZafWindow(0, 0, 40, 10);
window->Add(new ZafButton(0, 0, 20, 1, ZAF_NULLP(ZafIChar),
ZAF_NULLP(ZafBitmapData)));

window->Add(new ZafString(0, 1, 20,
ZAF_NULLP(ZafStringData)));

windowManager->Add(window);

ZafTitle ZAF_NUMID_TITLE

Enumeration NumberID()

ZAF_CLOSE_OPTION ZAF_NUMID_OPT_CLOSE

ZAF_MAXIMIZE_OPTION ZAF_NUMID_OPT_MAXIMIZE

ZAF_MINIMIZE_OPTION ZAF_NUMID_OPT_MINIMIZE

ZAF_MOVE_OPTION ZAF_NUMID_OPT_MOVE

ZAF_RESTORE_OPTION ZAF_NUMID_OPT_RESTORE

ZAF_SIZE_OPTION ZAF_NUMID_OPT_SIZE

ZAF_SWITCH_OPTION ZAF_NUMID_OPT_SWITCH

Class NumberID()

ZafElement 179

• If you instantiate any of a number of special support window objects (there will
only be one of these objects per window hierarchy). The following support
objects have default string identifications:

Class StringID()

ZafBorder "ZAF_NUMID_BORDER"

ZafGeometryManager "ZAF_NUMID_GEOMETRY"

ZafMaximumButton "ZAF_NUMID_MAXIMIZE"

ZafMinimizeButton "ZAF_NUMID_MINIMIZE"

ZafIcon (minimize) "ZAF_NUMID_MIN_ICON"

ZafPullDownMenu "ZAF_NUMID_PULL_DOWN_MENU"

ZafSystemButton "ZAF_NUMID_SYSTEM"

ZafSystemButton::menu "ZAF_NUMID_SYSTEM_BUTTON_MENU"

180 Zinc Application Framework 5

ZafEraStruct

Inheritance Root struct

Declaration #include <z_loc.hpp>

Description ZafEraStruct is used by ZafLocaleStruct to store information about an era of
time. An array of ZafEraStruct objects is used for each locale, where each
ZafEraStruct object stores information about a single era.

Members
direction ZafUInt16 direction;

If direction is non-zero, the era begins on or after the year 1 AD, and the year
value increases chronologically for the era; otherwise the year value decreases
chronologically for the era, such as BC values.

endDate ZafUInt32 endDate;

endDate is the Julian value of the era’s last day.

eraFormat ZafIChar eraFormat[8];

eraFormat is the output format string for the era when the format specifier
"%E" is used. Follow source code in ZafUTime::OutputFormat() for details.

eraName ZafIChar eraName[6];

eraName is the name of the era. For example, "BC" is the name of the era
before the year 1 AD.

offset ZafUInt16 offset;

offset specifies the local beginning year number of the era, usually 1 or 2 (or
4713 for the BC era). For example, the "AD" era has an offset of 1, meaning
the first year of the era is 1 AD.

direction eraFormat offset
endDate eraName startDate

ZafEraStruct 181

startDate ZafUInt32 startDate;

startDate is the Julian value of the era’s first day.

182 Zinc Application Framework 5

ZafErrorStub

Inheritance Root class

Declaration #include <z_error.hpp>

Description ZafErrorStub serves solely as a base class for ZafErrorSystem, so that ZafEr-
rorSystem is not linked into a program that does not make use of it. ZafEr-
rorStub provides a ReportError() function that formats a sscanf-style error
message and calls the pure virtual function ErrorMessage() for ZafErrorSystem
to display the error. The programmer should normally not derive from this
class.

Constructor ZafErrorStub(void);

This constructor creates a ZafErrorStub object. Since ZafErrorStub is a virtual
class, the programmer will normally not call this constructor.

Destructor virtual ~ZafErrorStub(void);

The destructor is used to free the memory associated with a ZafErrorStub
object. Since ZafErrorStub is a virtual class, the programmer will not normally
call this destructor.

Members
Beep static void Beep(void);

Beep() causes the system to emit an audible alert appropriate to the system. On
systems that allow the end user to modify the system’s audible alert, Beep()
emits the alert chosen by the end user.

ErrorMessage virtual ZafDialogEvent ErrorMessage(ZafWindowObject
*object, const ZafIChar *title, ZafDialogFlags
dlgFlags, const ZafIChar *message) = 0;

ErrorMessage() is a pure virtual function. ZafErrorSystem overloads this func-
tion to provide basic error display functionality.

Beep ErrorMessage ReportError

ZafErrorStub 183

ReportError ZafDialogEvent ReportError(ZafWindowObject *object, const
ZafIChar *title, ZafDialogFlags dlgFlags, const
ZafIChar *format, ...);

ZafDialogEvent ReportError(ZafWindowObject *object, const
ZafIChar *title, ZafDialogFlags dlgFlags, ZafUInt16
bufferSize, const ZafIChar *format, ...);

ReportError() formats a sscanf-style error message and calls the pure virtual
function ErrorMessage() for ZafErrorSystem to display the error. object is the
window object that generated the error message, title is the text to appear in the
title bar of the error window, and format specifies the format string used to
build the error message (along with the variable arguments) to appear in the
window. dlgFlags specifies which buttons are to be placed on the error win-
dow, controlling what the user may respond. The first method allocates a tem-
porary 1024 character buffer for the entire message, and the second allocates a
temporary buffer of bufferSize characters for the entire message. See
ErrorMessage() for more information.

184 Zinc Application Framework 5

ZafErrorSystem

Inheritance ZafErrorSystem : ZafErrorStub

Declaration #include <z_error.hpp>

Description ZafErrorSystem is ZAF’s built-in support for error-reporting. If a ZafErrorSys-
tem has been instantiated, the error system may be used to beep and present a
modal error window. The user must respond by selecting one of the available
buttons such as "OK" or "Cancel". As with other ZAF classes, ZafErrorSys-
tem utilizes the native environment’s API, if available.

Some classes have built-in error handling, and the programmer needn’t do any-
thing beyond instantiating a ZafErrorSystem for it to work. Some of these
classes are ZafBignum, ZafDate, ZafInteger, ZafReal, ZafTime, and ZafU-
Time. The programmer may utilize ZafErrorSystem at any time.

Constructors All ZafErrorSystem constructors initialize the member variables associated
with an instantiated ZafErrorSystem object. The default values set by the
ZafErrorSystem follow.

ZafErrorSystem(void);

This constructor creates a ZafErrorSystem object, initializes information used
by ZafErrorSystem, and sets the global zafErrorSystem. There should only be
one ZafErrorSystem instantiated during the life of an application.

ZafErrorSystem(const ZafErrorSystem ©);

The copy constructor creates a new ZafErrorSystem object and initializes its
data from copy.

ErrorMessage

Member Initializations

ZafErrorSystem
ClassID() ID_ZAF_ERROR_SYSTEM

ClassName() "ZafErrorSystem"

ZafErrorSystem 185

Destructor virtual ~ZafErrorSystem(void);

The destructor is used to free the memory associated with a ZafErrorSystem
object. It chains to the ZafErrorStub destructor.

Members

ErrorMessage virtual ZafDialogEvent ErrorMessage(ZafWindowObject
*object, const ZafIChar *title, ZafDialogFlags
dlgFlags, const ZafIChar *message);

ErrorMessage() causes the error system to present a modal error dialog win-
dow. object is the window object that generated the error message, title is the
text to appear in the title bar of the error window, and message is the error mes-
sage to appear in the window. The error window is sized such that the entire
message is visible. dlgFlags specifies which buttons are to be placed on the
error window, controlling what the user may respond. dlgFlags is made up of
one or more of the following values, that may be logically OR’d together:

Since ZafErrorSystem may be used to indicate errors in ZAF itself, ErrorMes-
sage() uses a native window when available to display the message instead of a
ZafWindow.

ZafDialogFlags Description

ZAF_DIALOG_ABORT Provides an "Abort" button

ZAF_DIALOG_CANCEL Provides a "Cancel" button

ZAF_DIALOG_HELP Provides a "Help" button for those environ-
ments that allow it

ZAF_DIALOG_IGNORE Provides an "Ignore" button

ZAF_DIALOG_NO Provides a "No" button

ZAF_DIALOG_OK Provides an "OK" button

ZAF_DIALOG_RETRY Provides a "Retry" button

ZAF_DIALOG_YES Provides a "Yes" button

186 Zinc Application Framework 5

ZafEventManager

Inheritance ZafEventManager : ZafList

Declaration #include <z_evtmgr.hpp>

Description ZafEventManager is the top-level class used to manage all the events and sup-
ported devices on the system. Some systems have a native event manager that
ZafEventManager monitors. In these cases, the ZafEventManager packages
the native events into ZAF events and posts them on its event queue for pro-
cessing by the ZAF system. Generally, native devices such as mice and key-
boards are automatically polled by the native environment, so ZAF receives
device events directly from the native event manager. Some environments
such as DOS must poll each input device using its Poll() function (see ZafDe-
vice for more information). The Poll() function posts any device events on the
event manager’s queue.

To cause the event manager to manage a device, simply add the device to the
event manager’s list with the Add() function.

Constructor ZafEventManager(int noOfQueueEvents = 100);

This constructor should normally not be called by the programmer, since it is
called by the ZafApplication constructor. The noOfQueueEvents parameter
specifies the maximum number of events the internal event queue should hold.
Static members of ZafDevice are initialized in this constructor. These include
display and eventManager.

Destructor virtual ~ZafEventManager(void);

This destructor is used to free the memory associated with a ZafEventManager
object. It chains to the ZafList destructor.

Generally, the programmer will not directly destroy a ZafEventManager
object, since it is automatically destroyed when the ZafApplication object is
destroyed.

Blocked GetObject ReadFromEnd
DestroyEvent PollDevices SetDeviceImage
Event Put SetDevicePosition
Get ReadFromBeginning SetDeviceState

ZafEventManager 187

Members
Blocked bool Blocked(ZafQFlags qFlags) const;

Blocked() returns false if qFlags contains the Q_NO_BLOCK flag. Other-
wise, it returns true, reflecting the default of Q_BLOCK. See Get() for more
information.

DestroyEvent bool DestroyEvent(ZafQFlags qFlags) const;

DestroyEvent() returns false if qFlags contains the Q_NO_DESTROY flag.
Otherwise, it returns true, reflecting the default of Q_DESTROY. See Get()
for more information.

Event virtual ZafEventType Event(const ZafEventStruct &event,
ZafDeviceType deviceType = E_DEVICE);

The Event() function passes an event to devices attached to the event manager.
If deviceType is E_DEVICE, the event is passed to all the devices for process-
ing. Otherwise, the event is passed only to the devices of type deviceType.
Event() returns the return code from the last device that processed the event.
See ZafDevice::Event() for more information.

Get virtual int Get(ZafEventStruct &event, ZafQFlags flags =
Q_NORMAL);

Get() returns the next available event in the ZafEventManager’s queue, accord-
ing to the flags passed into the flags parameter. The default behavior is speci-
fied with Q_NORMAL. The following are the flags that may be OR’d
together and passed to Get():

In environments that have native event managers, Get() looks at the native
event manager’s queue and puts the next available event packaged up as a ZAF
event on the ZAF event queue. Native events packaged up as ZAF events have
an event.type of E_OSEVENT, and must be processed by ZafWindowOb-

Flag Description

Q_END Causes Get() to retrieve the event at the end of the queue
(default is Q_BEGIN)

Q_NO_BLOCK Causes Get() to always return, even if no event is avail-
able (default is Q_BLOCK)

Q_NO_DESTROY Causes Get() to leave the event on the queue for retrieval
later also (default is Q_DESTROY)

Q_NO_POLL Causes Get() to not poll the devices (default is Q_POLL)

188 Zinc Application Framework 5

ject::LogicalEvent() before the ZAF event structure is fully initialized. See
ZafWindowObject::Event() and ZafWindowObject::LogicalEvent() for more
information.

During Get(), the ZafEventManager calls Poll() once for all the devices
attached to its queue if the Q_NO_POLL flag is not set. If Q_NO_BLOCK
was not passed into the flags parameter and no event is put on the queue during
device polling, Get() will keep polling the devices (or looking at the native
event manager’s queue) until an event is posted.

Get() returns the next available event on the ZAF event queue, usually from the
beginning of the queue, but if Q_END is passed into the flags parameter, it will
return the event on the end of the queue. If a valid event was returned in the
event parameter, Get() returns 0. Otherwise, some non-zero value is returned.

GetObject virtual ZafDevice *GetObject(ZafNumberID numberID);

virtual ZafDevice *GetObject(const ZafIChar *stringID);

These overloaded functions return a pointer to the device attached to the event
manager specified by numberID or stringID. If the device was not found, null
is returned.

PollDevices bool PollDevices(ZafQFlags qFlags) const;

PollDevices() returns false if qFlags contains the Q_NO_POLL flag. Other-
wise, it returns true, reflecting the default of Q_POLL. See Get() for more
information.

Put virtual bool Put(const ZafEventStruct &event, ZafQFlags
flags = Q_END);

Put() posts the event passed into the event parameter on the ZafEventMan-
ager’s queue, according to the flag passed into the flags parameter. If Q_END
is specified, the event is placed on the end of the queue. If Q_BEGIN is speci-
fied, the event is placed on the beginning of the queue. Put() returns true if the
event was successfully added to the queue; otherwise Put() returns false.

ReadFromBegin-
ning

bool ReadFromBeginning(ZafQFlags qFlags) const;

ReadFromBeginning() returns false if qFlags contains the Q_END flag. Oth-
erwise, it returns true, reflecting the default of Q_BEGIN. See Get() and Put()
for more information.

ZafEventManager 189

ReadFromEnd bool ReadFromEnd(ZafQFlags qFlags) const;

ReadFromEnd() returns false if qFlags does not contain the Q_END flag. Oth-
erwise, it returns true, reflecting the default of Q_BEGIN. See Get() and Put()
for more information.

SetDeviceImage ZafEventType SetDeviceImage(ZafDeviceType deviceType,
ZafDeviceImage deviceImage);

The SetDeviceImage() function finds the first device of type deviceType
attached to the event manager and changes its device image to deviceImage.
The return value is usually deviceImage.

An example of calling this function follows:

// Change the mouse image to DM_WAIT.
eventManager->SetDeviceImage(E_MOUSE, DM_WAIT);

SetDevicePosition ZafEventType SetDevicePosition(ZafDeviceType deviceType,
int column, int line);

The SetDevicePosition() function finds the first device of type deviceType
attached to the event manager and sends it a D_POSITION event, with
event.position (column, line). The return value is D_POSITION for environ-
ments that allow the device to be programmatically positioned, or
S_UNKNOWN for environments that disallow it.

An example of calling this function follows:

// Change the mouse image to the top left of the screen.
eventManager->SetDevicePosition(E_MOUSE, 0, 0);

SetDeviceState ZafEventType SetDeviceState(ZafDeviceType deviceType,
ZafDeviceState deviceState);

The SetDeviceState() function finds the first device of type deviceType
attached to the event manager and changes its device state to deviceState. If
deviceState is D_STATE, the current state of the device is not changed, but is
returned. The return value is usually deviceState.

An example of calling this function follows:

190 Zinc Application Framework 5

// Find the mouse state.
ZafEventType mouseState = eventManager->SetDeviceState(E_MOUSE,

D_STATE);

ZafEventMap 191

ZafEventMap

Inheritance Root struct

Declaration #include <z_win.hpp>

Description ZafEventMap objects are used in tables to associate native events with ZAF
logical events. For example, when the <Enter> key is typed, a ZafEventMap
entry for a default button would specify the equivalent logical ZAF event
L_SELECT. The last entry in a table of ZafEventMap entries should specify
the special logical ZAF event L_NONE to terminate a table search. See Zaf-
WindowObject::LogicalEvent() for more information.

Members ZafLogicalEvent logicalValue;
logicalValue logicalValue specifies the logical ZAF event to be associated with the native

event. Possible values of this member are any of the logical event values
defined in the header file z_logevt.hpp. This member should be L_NONE for
the last entry in a table.

eventType ZafEventType eventType;

eventType specifies the type of the native event. Possible values of this mem-
ber are E_KEY (for keyboard events) and E_MOUSE (for mouse events).

rawCode ZafRawCode rawCode;

rawCode specifies the raw value of the native event. For keyboard events
(eventType == E_KEY), rawCode is the raw key value, such as ENTER or F1
(see the header file z_keymap.hpp for the possible values). For mouse events
(eventType == E_MOUSE), rawCode is the raw mouse value, which may be
any combination of the following bitwise values:

eventType modifiers
logicalValue rawCode

Raw Code Description

M_LEFT Indicates the left (or only) mouse button is down

M_LEFT_CHANGE Indicates the left (or only) mouse button was just
pressed or released

M_MIDDLE Indicates the middle mouse button (if any) is down

192 Zinc Application Framework 5

modifiers ZafRawCode modifiers;

modifiers specifies modifier keys that were pressed at the time of the event.
This member may be any combination of the following bitwise values:

M_MIDDLE_CHANGE Indicates the middle mouse button (if any) was just
pressed or released

M_RIGHT Indicates the right mouse button (if any) is down

M_RIGHT_CHANGE Indicates the right mouse button (if any) was just
pressed or released

S_DOUBLE_CLICK Indicates the button was double-clicked

Raw Code Description

Modifiers Description

S_ALT Indicates that the <alt> key was depressed

S_CAPS_LOCK Indicates that the <caps lock> key was depressed

S_CMD Indicates that the <command> key was depressed

S_CTRL Indicates that the <control> key was depressed

S_INSERT Indicates that the <insert> key was depressed

S_KEYDOWN Indicates that the key was pressed

S_KEYUP Indicates that the key was released

S_LEFT_SHIFT Indicates that the left <shift> key was depressed

S_NUM_LOCK Indicates that the <num lock> key was depressed

S_OPT Indicates that the <option> key was depressed

S_RIGHT_SHIFT Indicates that the right <shift> key was depressed

S_SCROLL_LOCK Indicates that the <scroll lock> key was depressed

S_SHIFT Indicates that either <shift> key was depressed

ZafEventStruct 193

ZafEventStruct

Inheritance Root structure

Declaration #include <z_event.hpp>

Description ZafEventStruct provides support for ZAF’s portable event structure. Portable
ZAF events and native events alike are sent via ZafEventStruct objects through
the ZAF system. Native events are packaged up into ZafEventStruct objects
for portable event passing.

Constructors All ZafEventStruct constructors initialize the member variables associated
with an instantiated ZafEventStruct object. The default values set by the ZafE-
ventStruct follow.

ZafEventStruct(void);

The default constructor creates a null event. This constructor is called when an
event is declared but not defined, and should be used carefully. If this con-
structor is used, the programmer must initialize all event information necessary
for the desired event before any object may try to evaluate it.

converted modifiers Scroll
data osEvent text
Device Position type
Display rawCode VoidData
EventManager Region Window
InputType route WindowManager
Key ScreenID WindowObject

Member Initializations

ZafEventStruct
converted null

data null

modifiers 0

osEvent user-supplied parameter

rawCode 0

route null

text null

type 0

194 Zinc Application Framework 5

ZafEventStruct(ZafEventType type, OSEventStruct
*osEvent);

This constructor initializes the event’s type to type and copies all the native
event information from osEvent into the event’s osEvent.

ZafEventStruct(ZafEventType type, ZafRawCode rawCode =
0);

This constructor initializes the event’s type to type and the event’s rawCode is
copied from rawCode. Since rawCode is a default parameter, this constructor
may be used to create an event whose type requires no additional event infor-
mation.

ZafEventStruct(ZafEventType type, ZafRawCode rawCode,
ZafKeyStruct key);

This constructor initializes the event’s type to type, the event’s rawCode to raw-
Code, and the key flavor of the event’s union to key.

ZafEventStruct(ZafEventType type, ZafRawCode rawCode,
ZafPositionStruct position);

This constructor initializes the event’s type to type, the event’s rawCode to raw-
Code, and the position flavor of the event’s union to position.

ZafEventStruct(ZafEventType type, ZafRawCode rawCode,
ZafRegionStruct region);

This constructor initializes the event’s type to type, the event’s rawCode to raw-
Code, and the region flavor of the event’s union to region.

ZafEventStruct(ZafEventType type, ZafRawCode rawCode,
ZafScrollStruct scroll);

This constructor initializes the event’s type to type, the event’s rawCode to raw-
Code, and the scroll flavor of the event’s union to scroll.

An example of how to create and send an event follows:

// Create and post a close event.
ZafEventStruct closeEvent(S_CLOSE);
zafEventManager->Put(closeEvent);

ZafEventStruct 195

// Create a copy event and send it to the string field.
ZafEventStruct copyEvent(S_COPY);
string->Event(copyEvent);

Members ZafWindowObject *converted;
converted If this member is null, the event’s information has not been converted in the

context of a window object. If it is non-null, it points to the object in whose
context the event information was converted. For example, a mouse event’s
position is specified with the object’s top left being (0,0), so the event’s position
information must be converted in the context of the object in question.

union

{

ZafKeyStruct key;

ZafRegionStruct region;

ZafPositionStruct position;

ZafScrollStruct scroll;

ZafDevice *device;

ZafDisplay *display;

ZafEventManager *eventManager;

const ZafIChar *helpContext;

ZafWindowObject *windowObject;

ZafWindow *window;

ZafWindowManager *windowManager;

OSWindowID screenID;

data void *data;

};

The anonymous union stores additional information needed by various events.
User events may utilize the union as needed. Union information may be
accessed using the following methods.

Device ZafDevice *Device(void) const;

void SetDevice(ZafDevice *tDevice);

196 Zinc Application Framework 5

Device() returns the device flavor of the event’s anonymous union, and SetDe-
vice() may be used to set it.

Display ZafDisplay *Display(void) const;

void SetDisplay(ZafDisplay *tDisplay);

Display() returns the display flavor of the event’s anonymous union, and Set-
Display() may be used to set it.

EventManager ZafEventManager *EventManager(void) const;

void SetEventManager(ZafEventManager *tEventManager);

EventManager() returns the eventManager flavor of the event’s anonymous
union, and SetEventManager() may be used to set it.

HelpContext const ZafIChar *HelpContext(void) const;

void SetHelpContext(const ZafIChar *tHelpContext);

HelpContext() returns the helpContext flavor of the event’s anonymous union,
and SetHelpContext() may be used to set it.

InputType ZafEventType InputType(ZafEventType ccode = 0) const;

InputType() returns the type of event this is, whether it be a native event or a
ZAF event. The possible return values are as follows:

Key const ZafKeyStruct *Key(void) const;

void SetKey(ZafKeyStruct *tKey);

Key() returns the key flavor of the event’s anonymous union, and SetKey()
may be used to set it.

InputType() Description

E_KEY Keyboard events

E_MOUSE Mouse events

S_SYSTEM_EVENT ZAF system events

L_LOGICAL_EVENT ZAF logical events

E_DEVICE_EVENT ZAF device events

ZafEventStruct 197

modifiers ZafRawCode modifiers;

This member stores the modifier keys that are associated with a keyboard or
mouse event. The different modifier keys are represented with flags that may
be combined into bit patterns. See ZafKeyStruct::shiftState for more informa-
tion.

osEvent OSEventStruct osEvent;

This member stores the native event information for environment-specific
events. When the event’s type member is E_OSEVENT, this member contains
native event information.

Position const ZafPositionStruct *Position(void) const;

void SetPosition(ZafPositionStruct *tPosition);

Position() returns the position flavor of the event’s anonymous union, and Set-
Position() may be used to set it.

rawCode ZafRawCode rawCode;

This member stores raw information about an event. If the event is a keyboard
event, rawCode stores the raw key value returned from the native environment
(see ZafKeyStruct::value for more information). If the event is a mouse event,
rawCode stores which buttons are depressed as bit values combined together.
The possible values for rawCode in a mouse event are as follows:

Region const ZafRegionStruct *Region(void) const;

void SetRegion(ZafRegionStruct *tRegion);

Mouse event’s raw-
Code

Description

M_LEFT The left mouse button has been depressed

M_LEFT_CHANGE The mouse is moving with the left button depressed,
or the left button has been released

M_MIDDLE The middle mouse button has been depressed

M_MIDDLE_CHANGE The mouse is moving with the middle button
depressed, or the middle button has been released

M_RIGHT The right mouse button has been depressed

M_RIGHT_CHANGE The mouse is moving with the right button
depressed, or the right button has been released

198 Zinc Application Framework 5

Region() returns the region flavor of the event’s anonymous union, and SetRe-
gion() may be used to set it.

route ZafWindowObject *route;

If this member is non-null, the window manager sends the event directly to the
object specified.

ScreenID OSWindowID ScreenID(void) const;

void SetScreenID(OSWindowID tScreenID);

ScreenID() returns the screenID flavor of the event’s anonymous union, and
SetScreenID() may be used to set it.

Scroll const ZafScrollStruct *Scroll(void) const;

void SetScroll(ZafScrollStruct *tScroll);

Scroll() returns the scroll flavor of the event’s anonymous union, and Set-
Scroll() may be used to set it.

text ZafIChar *text;

This member allows textual information to be associated with an event. If the
event was generated by ZAF or the native environment, the object handling an
event where text is non-null must delete it. See the appendix on Event Defini-
tions under the application events for more information.

type ZafEventType type;

This member specifies the event’s type. See the appendix on Event Definitions
for more information on the event types supported by ZAF.

VoidData void *VoidData(void) const;

void SetVoidData(void *tData);

VoidData() returns the data flavor of the event’s anonymous union, and Set-
VoidData() may be used to set it. This particular flavor of the event’s anony-
mous union is provided for programmer use to allow associating data of any
type with an event.

ZafEventStruct 199

Window ZafWindow *Window(void) const;

void SetWindow(ZafWindow *tWindow);

Window() returns the window flavor of the event’s anonymous union, and Set-
Window() may be used to set it.

WindowManager ZafWindowManager *WindowManager(void) const;

void SetWindowManager(ZafWindowManager *tWindowManager);

WindowManager() returns the windowManager flavor of the event’s anony-
mous union, and SetWindowManager() may be used to set it.

WindowObject ZafWindowObject *WindowObject(void) const;

void SetWindowObject(ZafWindowObject *tWindowObject);

WindowObject() returns the windowObject flavor of the event’s anonymous
union, and SetWindowObject() may be used to set it.

200 Zinc Application Framework 5

ZafFile

Inheritance ZafFile : ZafElement

Declaration #include <z_file.hpp>

Description ZafFile is the base class for all file classes such as ZafDiskFile and ZafStorage-
File. ZafFile is an abstract class since it defines pure virtual functions.

Constructor The ZafFile class constructor initializes the members associated with a ZafFile
object and its base classes. The default values set by ZafFile are listed below.

ZafFile(ZafFileMode mode);

This constructor is called by subclass constructors, initializes the members
associated with a ZafFile object, and chains to the ZafElement constructor.
mode specifies the mode in which the file is opened, and may be a combination
of the following bitwise values:

BinaryMode Read Temporary
Create ReadData TextMode
DerivedAccess ReadOnly Write
Error ReadWrite WriteData
Length Seek operator >>
OpenCreate Tell operator <<

Member Initializations

ZafFile
Error() ZAF_ERROR_NONE

ZafFileMode Description

ZAF_FILE_BINARY Causes the file to open in binary
mode, meaning that ’\n’ and ’\r’ charac-
ters are not translated when reading or
writing

ZAF_FILE_CREATE Causes the file to be created, even if it
already exists

ZAF_FILE_DERIVED_ACCESS Causes the file to open in derived
access mode, meaning that it is not
actually opened or closed by ZAF, but
by a derived class

ZafFile 201

Destructor virtual ~ZafFile(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafFile object and chains to the ZafElement destructor.

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

BinaryMode bool BinaryMode(void) const;

If BinaryMode() is true, the file is opened in binary mode, meaning that ’\n’ and
’\r’ characters are not translated when reading or writing.

Create bool Create(void) const;

If Create() is true, the file is created, even if it already exists.

ZAF_FILE_OPENCREATE Causes the file to be opened if it
exists, or to be created if it doesn’t
exist

ZAF_FILE_READ Causes the file to be opened in read-
only mode, meaning that the file can-
not be written

ZAF_FILE_READWRITE Causes the file to be opened in read-
write mode, meaning the file can be
read and written

ZAF_FILE_TEMPORARY Causes a temporary file to be opened,
meaning that the file is deleted auto-
matically after it is closed

ZAF_FILE_TEXT Causes the file to open in text mode,
meaning that ’\n’ and ’\r’ characters are
translated appropriately for the envi-
ronment when reading or writing

ZafFileMode Description

202 Zinc Application Framework 5

DerivedAccess bool DerivedAccess(void) const;

If DerivedAccess() is true, the file is opened in derived access mode, meaning
that it is not actually opened or closed by ZAF, but by a derived class.

Error ZafError Error(void) const;

ZafError SetError(ZafError error);

Error() stores the last error that occurred with the file. The default value of
Error() is ZAF_ERROR_NONE, but it may be set by the file or file system
whenever an error occurs, and SetError() may be called to change it. Note that
the programmer is responsible for setting this attribute back to
ZAF_ERROR_NONE when appropriate. The types of errors that can be set
are defined in the header file z_env.hpp. Generally, however, only the follow-
ing error values will be used by a file:

In addition to the error types described above, error values greater than or
equal to 10,000 are reserved for use on user-defined files.

Length virtual ZafOffset Length(void) const = 0;

Length() abstractly defines returning the length of a derived file object.
Length() returns -1 if an error occurs.

Error() Description

ZAF_ERROR_FILE_OPEN The file specified could not be opened

ZAF_ERROR_FILE_POSITION The file pointer could not be posi-
tioned

ZAF_ERROR_FILE_READ An error occurred trying to read the
file

ZAF_ERROR_FILE_WRITE An error occurred trying to write the
file

ZAF_ERROR_INVALID_ID A file or directory could not be found
with the numeric or string ID specified

ZAF_ERROR_INVALID_NAME A file or directory could not be found
with the name specified

ZAF_ERROR_INVALID_TARGET The file could not be saved, since it is
read-only

ZAF_ERROR_NONE No error has occurred

ZAF_ERROR_STORAGE_VERSION The storage file specified is the wrong
version, and must be converted

ZafFile 203

OpenCreate bool OpenCreate(void) const;

If OpenCreate() is true, the file is opened if it exists, or it is created if it doesn’t
exist.

Read virtual int Read(ZafInt8 &value);

virtual int Read(ZafUInt8 &value);

virtual int Read(ZafInt16 &value);

virtual int Read(ZafUInt16 &value);

virtual int Read(ZafInt32 &value);

virtual int Read(ZafUInt32 &value);

int Read(int &value);

virtual int Read(double &value);
operator >> ZafFile &operator>>(ZafInt8 &value);

ZafFile &operator>>(ZafUInt8 &value);

ZafFile &operator>>(ZafInt16 &value);

ZafFile &operator>>(ZafUInt16 &value);

ZafFile &operator>>(ZafInt32 &value);

ZafFile &operator>>(ZafUInt32 &value);

ZafFile &operator>>(int &value);

ZafFile &operator>>(double &value);

These overloaded members and operators simply call ReadData() and pass in
value and the appropriate size of value. The Read() members return what
ReadData() returns to them.

virtual int Read(ZafIChar *string, int length);

ZafFile &operator>>(ZafIChar *string);

This overloaded function and operator read a string out of the file into the
string buffer. If length is -1, the whole string is read into string; otherwise, if
the string to be read is longer than length, it is not read. The number of bytes
read is returned. On success, this is the number of bytes in the string plus two
for the size of the string. Error() is also set to an appropriate value.

virtual int Read(ZafIChar **string);

ZafFile &operator>>(ZafIChar **string);

This overloaded function and operator create a buffer large enough for the
string to be read plus a null terminator, read the string out of the file into the

204 Zinc Application Framework 5

new buffer, and return a pointer to the buffer in string. The number of bytes
read is returned. On success, this is the number of bytes in the string plus two
for the size of the string. Error() is also set to an appropriate value.

virtual int Read(void *buffer, int size, int num);

This overloaded function simply calls ReadData(), passing it buffer and size *
num. Read() returns whatever ReadData() returns.

ReadData virtual int ReadData(void *buffer, int size) = 0;

ReadData() abstractly defines reading data from a derived file object. The data
is read into buffer, which must have already been allocated by the programmer,
and size specifies the number of bytes to read. On success, ReadData() returns
the number of bytes read into buffer; otherwise zero is returned. Error() is also
set to an appropriate value.

ReadOnly bool ReadOnly(void) const;

If ReadOnly() is true, the file cannot be written.

ReadWrite bool ReadWrite(void) const;

If ReadWrite() is true, the file may be read and written.

Seek virtual int Seek(ZafOffset offset, ZafSeek location) = 0;

Seek() abstractly defines moving the file pointer of a derived file object. loca-
tion specifies the position in the file from where offset specifies. Possible val-
ues of location and what they mean follow:

Seek() returns 0 if successful, and -1 if an error occurs (in which case Error() is
also set appropriately).

ZafSeek ZafOffset

ZAF_SEEK_START The offset is measured from the beginning of the
file toward the end of the file

ZAF_SEEK_CURRENT A positive offset is measured from the current
file pointer, and a negative offset is measured
toward the beginning of the file.

ZAF_SEEK_END The offset is measured from the end of the file
toward the beginning of the file

ZafFile 205

Tell virtual ZafOffset Tell(void) const = 0;

Tell() abstractly defines returning the current offset of the file pointer in a
derived file object. -1 is returned if an error occurs.

Temporary bool Temporary(void) const;

If Temporary() is true, the file is temporary, and is deleted automatically after it
is closed.

TextMode bool TextMode(void) const;

If TextMode() is true, the file is opened in text mode, meaning that ’\n’ and ’\r’
characters are translated appropriately for the environment when reading or
writing.

Write virtual int Write(ZafInt8 value);

virtual int Write(ZafUInt8 value);

virtual int Write(ZafInt16 value);

virtual int Write(ZafUInt16 value);

virtual int Write(ZafInt32 value);

virtual int Write(ZafUInt32 value);

int Write(int value);

virtual int Write(double value);
operator << ZafFile &operator<<(ZafInt8 value);

ZafFile &operator<<(ZafUInt8 value);

ZafFile &operator<<(ZafInt16 value);

ZafFile &operator<<(ZafUInt16 value);

ZafFile &operator<<(ZafInt32 value);

ZafFile &operator<<(ZafUInt32 value);

ZafFile &operator<<(int value);

ZafFile &operator<<(double value);

These overloaded members and operators simply call WriteData() and pass in
value and the appropriate size of value. The Write() members return what
WriteData() returns to them.

virtual int Write(const ZafIChar *string);

ZafFile &operator<<(const ZafIChar *string);

206 Zinc Application Framework 5

This overloaded function and operator write string to the file. The number of
bytes written is returned. On success, this is the number of bytes in the string
plus two for the size of the string. Error() is also set to an appropriate value.

virtual int Write(const void *buffer, int size, int num);

This overloaded function simply calls WriteData(), passing it buffer and size *
num. Write() returns whatever WriteData() returns.

WriteData virtual int WriteData(const void *buffer, int size) = 0;

WriteData() abstractly defines writing data to a derived file object. buffer is a
pointer to the data to be written, and size specifies the number of bytes to write.
On success, WriteData() returns the number of bytes written; otherwise zero is
returned. Error() is also set to an appropriate value.

ZafFileDialog 207

ZafFileDialog

Inheritance ZafFileDialog : ZafDialogWindow : ZafWindow :
((ZafWindowObject : ZafElement), ZafList)

Declaration #include <z_fildlg.hpp>

Description ZafFileDialog provides support for easily presenting a dialog that asks the end
user to either choose an existing file or type the name of a new file to be cre-
ated. ZafFileDialog utilizes the native file services on each environment, if
available, so the dialog is familiar to the end user.

Constructors All ZafFileDialog constructors initialize the member variables associated with
an instantiated ZafFileDialog object. The default values set by the ZafFileDia-
log and its base class constructors follow, if they differ from those set by the
base class constructor, or if a blocking function is implemented in ZafFileDia-
log. “†” Indicates a blocking function that prevents changes to the attribute in
this class.

ZafFileDialog(int left, int top, int width, int height);

This constructor is useful in straight-code situations, creating a file dialog
object without putting it on the screen (see GetFile()). left, top, width, and
height specify the size and position of the file dialog for environments that sup-

allFilesFilter File FullPath
Directory Filter GetFile

Member Initializations

ZafFileDialog
allFilesFilter[] (platform-dependent)

Directory() "" (empty string)

File() "" (empty string)

Filter() "" (empty string)

ZafWindow
Modal() true†

ZafElement
ClassID() ID_ZAF_FILE_DIALOG

ClassName() "ZafFileDialog"

208 Zinc Application Framework 5

port custom size and location for file dialogs; otherwise the file dialog is sized
and positioned appropriately by the environment.

Since Destroyable() is false by default, the programmer may create one Zaf-
FileDialog and use it many times by calling GetFile() repeatedly for each new
filename.

ZafFileDialog(const ZafFileDialog ©);

The copy constructor creates a new ZafFileDialog object and initializes its data
from copy.

An example of how to create a file dialog follows:

// Create a file dialog.
ZafFileDialog fileDialog(5, 5, 60, 14);

// Bring up the file dialog to open an existing file.
ZafEventType result = fileDialog.GetFile(ZAF_FILE_DIALOG_OPEN);

// Get the file name without any path information.
const ZafIChar *filename = fileDialog.File();

// Get the full path name for the file.
ZafIChar fullPath[ZAF_MAXPATHLEN];
fileDialog.FullPath(fullPath, ZAF_MAXPATHLEN);

Destructor virtual ~ZafFileDialog(void);

The destructor is used to free the memory associated with a ZafFileDialog
object. It chains to the ZafDialogWindow, ZafWindow, ZafWindowObject,
ZafList, and ZafElement destructors. For more information on child object
deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

allFilesFilter static ZafIChar ZAF_FARDATA allFilesFilter[];

allFilesFilter[] is a portable string that specifies a filter that accepts all files.
See Filter() for more information.

ZafFileDialog 209

Directory const ZafIChar *Directory(void) const;

virtual void SetDirectory(const ZafIChar *directory);

Directory() specifies the full pathname of the parent directory of File() without
a terminating path separator. SetDirectory() may be used to change it, but calls
to GetFile() will change this attribute according to the file chosen by the end
user.

File const ZafIChar *File(void) const;

virtual void SetFile(const ZafIChar *file);

File() specifies the filename chosen by the end user. SetFile() may be used to
change it, but calls to GetFile() will change this attribute according to the file
chosen by the end user.

Filter const ZafIChar *Filter(void) const;

virtual void SetFilter(const ZafIChar *filter);

Filter() specifies the non-portable file filter used by some environments when
listing files the end user may choose from. For example, the Zinc Designer for
Microsoft Windows sets the filter to "*.znc", allowing the user to choose Zinc
data files. The end user may also type any preferred file name, but the environ-
ment’s file dialog only displays the files the filter specifies in the file list. all-
FilesFilter[] may be used to portably specify all files. SetFilter() may be used
to change this attribute.

FullPath void FullPath(ZafIChar *pathBuffer, int bufferSize);

FullPath() specifies the full pathname of the file chosen by the end user. path-
Buffer must be allocated by the programmer before calling FullPath(), and
bufferSize is the maximum number of characters that will be written to path-
Buffer, guarding against writing past the end of the buffer.

GetFile ZafDialogEvent GetFile(ZafFileDialogRequest request);

GetFile() causes the file dialog to be presented on the screen, and GetFile()
returns after the user has either cancelled the file dialog, or successfully chosen

210 Zinc Application Framework 5

a file. request specifies the type of file dialog to present, and may be one of the
following:

GetFile() returns one of the following values, indicating the result of the file
dialog:

ZafFileDialogRequest Description

ZAF_FILE_DIALOG_NEW Allows the end user to browse to the
desired directory and type a new or
used filename

ZAF_FILE_DIALOG_OPEN Allows the end user to browse to the
desired directory and choose an exist-
ing file

ZAF_FILE_DIALOG_SAVEAS Allows the end user to browse to the
desired directory and type a new or
used filename

Return value Description

S_DLG_CANCEL A file was not successfully chosen, so
Directory(), File(), and FullPath() are
invalid

S_DLG_OK A file was successfully chosen, so
Directory(), File(), and FullPath() are
valid

ZafFileInfoStruct 211

ZafFileInfoStruct

Inheritance Root struct

Declaration #include <z_file.hpp>

Description ZafFileInfoStruct is used internally by ZafFileSystem’s subclasses’ Find*()
methods during file searches. The programmer must provide a ZafFileInfo-
Struct object to these methods, but FindFirst() initializes the object. See Zaf-
FileSystem for more information.

Members ZafFileAttribute attributes;
attributes attributes specifies what type of object was found. The possible values of

attribute are as follows:

Directory bool Directory(void);

If Directory() is true, the object found is a directory; otherwise it is a file.

internalHandle void *internalHandle;

internalHandle is used internally by subclasses of ZafFileSystem to keep track
of the current file search, and should not be accessed by the programmer.

length ZafOffset length;

If the object found is a file, length specifies the number of bytes the file con-
tains.

attributes length ReadOnly
Directory name stringID
internalHandle numberID

ZafFileAttribute Description

ZAF_FATTRIB_NONE The object is a file, and may be written to

ZAF_FATTRIB_DIRECTORY The object is a directory

ZAF_FATTRIB_READONLY The object is read-only, so it may not be
written to

212 Zinc Application Framework 5

name const ZafIChar *name;

name specifies the name of the file or directory that was found. No path infor-
mation is included in the name.

numberID ZafNumberID numberID;

numberID specifies the ZafNumberID of the object found, if appropriate. For
example, since ZafDiskFileSystem finds objects on disk, they don’t have num-
berIDs. But ZafStorage finds objects in a Zinc data file, which do have num-
berIDs.

ReadOnly bool ReadOnly(void);

If ReadOnly() is true, the object found is read-only, meaning that it cannot be
written to.

stringID ZafStringID stringID;

stringID specifies the ZafStringID of the object found, if appropriate. For
example, since ZafDiskFileSystem finds objects on disk, they don’t have
stringIDs. But ZafStorage finds objects in a Zinc data file, which do have
stringIDs.

ZafFileSystem 213

ZafFileSystem

Inheritance ZafFileSystem : ZafElement

Declaration #include <z_file.hpp>

Description ZafFileSystem is the base class for all file system classes such as ZafDiskFile-
System and ZafStorage. ZafFileSystem is an abstract class since most of its
functions are pure virtual.

Constructor The ZafFileSystem class constructor initializes the members associated with a
ZafFileSystem object and its base classes. The default values set by ZafFile-
System are listed below.

ZafFileSystem(void);

This constructor is called by subclass constructors, initializes the members
associated with a ZafFileSystem object, and chains to the ZafElement con-
structor.

Destructor virtual ~ZafFileSystem(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafFileSystem object and chains to the ZafElement destructor.

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

ChDir FindFirst parentDirectoryName
Close FindNext Remove
currentDirectoryName GetCWD Rename
Error MkDir RmDir
FindClose Open rootDirectoryName

Member Initializations

ZafFileSystem
Error() ZAF_ERROR_NONE

214 Zinc Application Framework 5

ChDir virtual int ChDir(const ZafIChar *newPath, ZafStringID
stringID = ZAF_NULLP(ZafIChar),ZafNumberID numberID =
0) = 0;

ChDir() abstractly defines changing the current directory for a derived file sys-
tem. newPath specifies the path name of the directory to be changed to.
stringID specifies the string identification constant associated with the direc-
tory, if applicable (such as in ZafStorage). numberID specifies the numeric
identification constant associated with the directory, if applicable (such as in
ZafStorage). ChDir() returns 0 on success, and -1 on failure. Error() is also set
to an appropriate value.

Close virtual void Close(ZafFile *file) = 0;

Close() abstractly defines closing file, which is a file in the file system previ-
ously opened with Open().

currentDirectory-
Name

static ZafIChar *currentDirectoryName;

currentDirectoryName is a public static specifying the name of the current
directory in a file system, which is ".".

Error ZafError Error(void) const;

ZafError SetError(ZafError error);

Error() stores the last error that occurred with the file system. The default
value of Error() is ZAF_ERROR_NONE, but it may be set by the file system
whenever an error occurs, and SetError() may be called to change it. Note that
the programmer is responsible for setting this attribute back to
ZAF_ERROR_NONE when appropriate. The types of errors that can be set
are defined in the header file z_env.hpp. Generally, however, only the follow-
ing error values will be used by a file system:

Error() Description

ZAF_ERROR_FILE_OPEN The file specified could not be opened

ZAF_ERROR_FILE_POSITION The file pointer could not be posi-
tioned

ZAF_ERROR_FILE_READ An error occurred trying to read the
file

ZAF_ERROR_FILE_WRITE An error occurred trying to write the
file

ZafFileSystem 215

In addition to the error types described above, error values greater than or
equal to 10,000 are reserved for use on user-defined file systems.

FindClose virtual int FindClose(ZafFileInfoStruct &fileInfo) = 0;

FindClose() abstractly defines finalizing a find operation begun with Find-
First(). fileInfo is the same ZafFileInfoStruct object used by FindFirst() and
FindNext(), and memory allocated in fileInfo is deleted by FindClose(). Find-
Close() returns 0 if the operation was successful; otherwise it returns -1.

FindFirst virtual int FindFirst(ZafFileInfoStruct &fileInfo, const
ZafIChar *searchName, ZafStringID stringID =
ZAF_NULLP(ZafIChar), ZafNumberID numberID = 0) = 0;

FindFirst() abstractly defines initializing a find operation. FindFirst() searches
for a file with the search pattern specified by searchName, or with the string
identification constant (if applicable, such as in ZafStorage) specified by
stringID, or with the numeric identification constant (if applicable, such as in
ZafStorage) specified by numberID. searchName may contain wildcards
appropriate to the file system. For example, in ZafStorage, "?" means any sin-
gle character, and "*" means any string of characters. fileInfo is a ZafFileInfo-
Struct object allocated by the programmer, and fileInfo is initialized by
FindFirst(). FindFirst() returns 0 if a file was found; otherwise it returns -1.

FindNext virtual int FindNext(ZafFileInfoStruct &fileInfo, const
ZafIChar *searchName, ZafStringID stringID =
ZAF_NULLP(ZafIChar), ZafNumberID numberID = 0) = 0;

FindNext() abstractly defines continuing a find operation initiated by Find-
First(). FindNext() searches for the next file with the same values for search-
Name, stringID, or numberID as were specified in the call to FindFirst().

ZAF_ERROR_INVALID_ID A file or directory could not be found
with the numeric or string ID specified

ZAF_ERROR_INVALID_NAME A file or directory could not be found
with the name specified

ZAF_ERROR_INVALID_TARGET The file could not be saved, since it is
read-only

ZAF_ERROR_NONE No error has occurred

ZAF_ERROR_STORAGE_VERSION The storage file specified is the wrong
version, and must be converted

Error() Description

216 Zinc Application Framework 5

fileInfo is the same ZafFileInfoStruct object passed to FindFirst(). FindNext()
returns 0 if a file was found; otherwise it returns -1.

GetCWD virtual int GetCWD(ZafIChar *pathName, int pathLength) =
0;

GetCWD() abstractly defines copying the path name of the current directory
for a derived file system (without a terminating path separating character) into
the buffer specified by pathName. pathName must be allocated by the pro-
grammer, and pathLength specifies the number of ZafIChar characters in path-
Name. GetCWD() returns 0 on success, and -1 on failure. Error() is also set to
an appropriate value.

MkDir virtual int MkDir(const ZafIChar *pathName, ZafStringID
stringID = ZAF_NULLP(ZafIChar), ZafNumberID numberID =
0) = 0;

MkDir() abstractly defines creating a new directory for a derived file system.
pathName specifies the path name of the directory to be created. stringID
specifies the string identification constant associated with the directory, if
applicable (such as in ZafStorage). numberID specifies the numeric identifica-
tion constant associated with the directory, if applicable (such as in ZafStor-
age). MkDir() returns 0 on success, and -1 on failure. Error() is also set to an
appropriate value.

Open virtual ZafFile *Open(const ZafIChar *fileName, const
ZafFileMode mode, ZafStringID stringID =
ZAF_NULLP(ZafIChar), ZafNumberID numberID = 0) = 0;

Open() abstractly defines opening the file in the file system specified by file-
Name. mode specifies the mode the file is opened with (see the ZafFile con-
structor for more information). stringID specifies the string identification
constant associated with the file, if applicable (such as in ZafStorage). num-
berID specifies the numeric identification constant associated with the file, if
applicable (such as in ZafStorage). A pointer to the file opened is returned.

parentDirectory-
Name

static ZafIChar *parentDirectoryName;

parentDirectoryName is a public static specifying the name of the parent direc-
tory in a file system, which is "..".

ZafFileSystem 217

Remove virtual int Remove(const ZafIChar *name) = 0;

Remove() abstractly defines deleting the file in the file system specified by
name. Remove() returns 0 on success, and -1 on failure. Error() is also set to
an appropriate value.

Rename virtual int Rename(const ZafIChar *oldName, const
ZafIChar *newName, ZafStringID stringID =
ZAF_NULLP(ZafIChar), ZafNumberID numberID = 0) = 0;

Rename() abstractly defines renaming the file or directory in the file system
specified by oldName to newName. A non-null stringID specifies the string
identification constant to be copied to the file or directory, if applicable (such
as in ZafStorage). A non-zero numberID specifies the numeric identification
constant to be copied to the file or directory, if applicable (such as in ZafStor-
age). If oldName and newName are the same, stringID and numberID are still
copied to the file or directory (if not null and 0, respectively). Rename()
returns 0 on success, and -1 on failure. Error() is also set to an appropriate
value.

RmDir virtual int RmDir(const ZafIChar *pathName, bool
deleteContents = false) = 0;

RmDir() abstractly defines deleting a directory for a derived file system. path-
Name specifies the path name of the directory to be deleted. If deleteContents
is false, RmDir() will only delete the directory if it is empty; otherwise,
RmDir() will delete the contents of the directory along with the directory itself.
RmDir() returns 0 on success, and -1 on failure. Error() is also set to an appro-
priate value.

rootDirectoryName static ZafIChar *rootDirectoryName;

rootDirectoryName is a public static specifying the name of the root directory
in a file system, which is "~".

218 Zinc Application Framework 5

ZafFormatData

Inheritance ZafFormatData : ZafData : (ZafElement, ZafNotification)

Declaration #include <z_fdata.hpp>

Description ZafFormatData serves as the base class to all formattable ZAF data classes,
including ZafBignumData, ZafDateData, ZafIntegerData, ZafStringData, Zaf-
RealData, ZafTimeData, and ZafUTimeData. A common aspect of these
derived classes is their use of string manipulation functions, the most apparent
being the public FormattedText() member. In addition to this function, how-
ever, ZafFormatData also provides protected Sprintf() and Sscanf() members
that allow derived objects to format and manipulate string information that can
be used for the screen presentation of their data.

ZafFormatData is an abstract class. Its abstract nature is implied by the base
ZafData pure virtual functions and by the newly declared pure virtual function
called FormattedText(). Thus, derived format classes must resolve the abstrac-
tions inherited from the base ZafData and ZafFormatData classes.

Constructors All ZafFormatData constructors initialize the member variables associated
with an instantiated ZafFormatData object. The default values set by the Zaf-
FormatData constructor or overridden from those set by base class constructors
follow:

ZafFormatData(void);

The ZafFormatData class constructor, like the ZafData constructor, is pro-
tected. The primary purpose of this constructor is to chain the ZafData portion
of the class with its base class constructors. Please refer to the specific data
object you are using for complete information about the object’s construction.

FormattedText

Member Initializations

ZafElement
ClassID() ID_ZAF_FORMAT_DATA

ClassName() "ZafFormatData"

ZafFormatData 219

ZafFormatData(const ZafIChar *name, ZafDataPersistence
&persist);

This constructor is used for persistence. The parameters and values of this
constructor are deferred to the ZafWindow section of this manual, since most
persistence is done at the ZafWindow level.

Destructor virtual ~ZafFormatData(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafFormatData object. Since ZafFormatData does not define any new
members, its destructor simply chains to the ZafData class destructor.

A ZafFormatData pointer may be deleted even though the class definition is
abstract. This is done by allocating a derived data object and then by setting
the returned object to a format data pointer. The following code shows the cor-
rect use of the ZafFormatData destructor under these conditions:

// Create a string data object.
ZafFormatData *string = new ZafStringData("Hello World!");
...
// Free the string.
delete string;

The pointer assignment shown above is permitted because ZafFormatData is a
base class to ZafStringData. When the string object’s destructor is called, the
actual contents of the ZafStringData instance are freed because the base class
destructor is declared virtual.

For complete information on the type of memory that is freed as a result of a
call to the destructor, see the reference chapter on the particular object you cre-
ated.

Members virtual int FormattedText(ZafIChar *buffer, int
maxLength, const ZafIChar *format = 0) const = 0;

FormattedText This is a pure virtual function that abstractly defines “formatted text retrieval”
functionality for a derived object. The following example illustrates what the
FormattedText() function returns for several derived data objects:

// Show various results of FormattedText().
ZafIChar buffer[256];

ZafDateData date(1, 1, 59);
date->FormattedText(buffer, 256);
printf("date - %s\n", buffer);

220 Zinc Application Framework 5

ZafIntegerData integer(100);
integer->FormattedText(buffer, 256, "%d");
printf("integer - %s\n", buffer);

ZafStringData string("hello");
string->FormattedText(buffer, 256);
printf("string - %s\n", buffer);

==========
date - 01/01/1959
integer - 100
string - hello

The specific set of formatting capabilities is defined by the derived class. (See
the FormattedText() description of each class for additional information.)

Zinc Application Framework uses this function in conjunction with its window
objects to get the formatted presentation of a data object that can be presented
to the screen. This allows the user interface component to pass and manipulate
string information, while allowing the data portion to remain in a compact and
precise internal representation.

ZafFormattedString 221

ZafFormattedString

Inheritance ZafFormattedString : ZafString : ZafWindowObject :
ZafElement

Declaration #include <z_fmtstr.hpp>

Description ZafFormattedString is a single-line text object that allows keyboard input
using a programmer-defined input format. All strings entered into a ZafFor-
mattedString are validated on a character-by-character basis against a pre-
defined input mask. Additional functionality is inherited from ZafString.

Constructors All ZafFormattedString constructors initialize the member variables associated
with an instantiated ZafFormattedString object. The default values set by the
ZafFormattedString and its base class constructors follow, if they differ from
those set by the base class constructor, or if a blocking function is implemented
in ZafFormattedString. “†” Indicates a blocking function that prevents
changes to the attribute in this class.

CompressedData FormatData SetFormatText
DeleteData SetCompressedText SetExpandedText
ExpandedData SetDeleteText

Member Initializations

ZafFormattedString
CompressedData() null

DeleteData() null

ExpandedData() null

FormatData() null

ZafString
LowerCase() false†

OutputFormat() null†

Password() false†

RangeData() null†

UpperCase() false†

VariableName() false†

ZafElement
ClassID() ID_ZAF_FORMATTED_STRING

ClassName() "ZafFormattedString"

222 Zinc Application Framework 5

ZafFormattedString(int left, int top, int width, const
ZafIChar *compressedText, const ZafIChar *format,
const ZafIChar *deleteText);

This constructor is useful in straight-code situations, particularly if the ZafFor-
mattedString object is to create, maintain and destroy its own ZafStringData
objects automatically. left, top, and width specify the position and size of the
object on its parent. All values are specified in cell coordinates by default, but
may be specified using another coordinate system if desired (see ZafWin-
dowObject::SetCoordinateType). compressedText is the unformatted value
that initially appears in the new ZafFormattedString object, format is the for-
mat “mask”, and deleteText specifies the “null” characters to appear in the Zaf-
FormattedString when no valid character has been entered. See
CompressedData(), FormatData(), and DeleteData() for more information on
these parameters.

ZafFormattedString(int left, int top, int width,
ZafStringData *compressedText, ZafStringData *format,
ZafStringData *deleteText);

This constructor is useful in straight-code situations where ZafStringData
objects have already been created. For more information on using ZafString-
Data objects, see the chapter on ZafStringData. left, top, and width are the
same as the previous constructor.

ZafFormattedString(const ZafFormattedString ©);

The copy constructor calls the overloaded Duplicate() to create a new ZafFor-
mattedString object and initialize its data from copy. If the original data
objects are StaticData() then the new ZafFormattedString object simply points
to the original data, otherwise copies are made.

ZafFormattedString(const ZafIChar *name,
ZafObjectPersistence &persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Sample ZafFormattedString creation techniques follow:

// Create a sample window with formatted string objects.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);
// Create a formatted string and pass in the values directly.

ZafFormattedString 223

window1->Add(new ZafFormattedString(1, 1, 20, "8017858900",
"LNNNLLNNNLNNNN", "(...) ...-...."));

// Create string data objects.
ZafStringData *compressData = new ZafStringData("8017858996");
ZafStringData *formatData = new ZafStringData("LNNNLLNNNLNNNN");
ZafStringData *deleteData = new ZafStringData("(...) ...-....");
// Create a formatted string that uses the data
// previously created.
ZafFormattedString *phoneNumber = new ZafFormattedString(1, 2,

20, compressData, formatData, deleteData));
window1->Add(phoneNumber);

// Get the expanded text of the formatted string object.
// expandedText will be "(801) 785-8900".
ZafIChar *expandedText = phoneNumber->ExpandedData()->Text();

Destructor virtual ~ZafFormattedString(void);

The destructor is used to free the memory associated with a ZafFormatted-
String object, including all the data object pieces that are Destroyable(). It
chains to the ZafString, ZafWindowObject, and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafFormattedString
object, since it is automatically destroyed when its parent window is destroyed.
For more information on child object deletion, see ZafWindow::~ZafWin-
dow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

CompressedData ZafStringData *CompressedData(void) const;

virtual ZafError SetCompressedData(ZafStringData
*compressedData);

SetCompressed-
Text

virtual ZafError SetCompressedText(const ZafIChar
*compressedText);

The CompressedData() object stores the actual raw data without the format lit-
erals (see FormatData() for more information on format literals). For example,
if a formatted phone number were “(801) 785-8900” the CompressedData
would probably be “8017858900”.

224 Zinc Application Framework 5

CompressedData() may be shared among several objects, or it may belong to a
single ZafFormattedString object. If shared, all the associated objects will be
notified when the CompressedData() changes. SetCompressedData() may be
used to associate a CompressedData() object with a ZafFormattedString object.
For more information on data sharing in ZAF, see ZafDataManager. SetCom-
pressedData() will delete the previous CompressedData() object if it is
Destroyable() and no other object uses it.

SetCompressedText() may be used instead of SetCompressedData(). In this
case compressedText is placed into the existing CompressedData() member of
ZafFormattedString.

The return value for CompressedData() is a pointer to the CompressedData()
object associated with the ZafFormattedString object. The return value for
SetCompressedData() and SetCompressedText() is normally
ZAF_ERROR_NONE.

DeleteData ZafStringData *DeleteData(void) const;

virtual ZafError SetDeleteData(ZafStringData
*deleteData);

SetDeleteText virtual ZafError SetDeleteText(const ZafIChar
*deleteText);

The DeleteData() object stores the data to be placed in character positions for
which no CompressedData() character is present. DeleteData() also stores the
characters to be used as literal, uneditable characters (specified in the corre-
sponding FormatData() character by ’L’). See the constructor code snippet for
an example.

DeleteData() may be shared by multiple objects, or it may belong to a single
ZafFormattedString. If shared, all the associated objects will be notified when
DeleteData() changes. For more information on data sharing in ZAF, see Zaf-
DataManager. SetDeleteData() will delete the previous DeleteData() object if
it is Destroyable() and no other object uses it.

SetDeleteText() may be used instead of SetDeleteData(). In this case, delete-
Text is placed into the existing DeleteData() member of ZafFormattedString.

The return value for DeleteData() is a pointer to the DeleteData() object associ-
ated with the ZafFormattedString object. The return value for SetDeleteData()
and SetDeleteText() is normally ZAF_ERROR_NONE.

ExpandedData ZafStringData *ExpandedData(void) const;

virtual ZafError SetExpandedData(ZafStringData
*expandedData);

ZafFormattedString 225

SetExpandedText virtual ZafError SetExpandedText(const ZafIChar
*expandedText);

The ExpandedData() object stores the actual data displayed, including format
literals and applicable DeleteData(). (see FormatData() for more information
on format literals). The constructor code snippet shows an example.

ExpandedData() piece may be shared by multiple objects, or it may belong to a
single ZafFormattedString object. If shared, all the associated objects will be
notified when ExpandedData() changes. SetExpandedData() may be used to
associate a ExpandedData() object with a ZafFormattedString object. For
more information on data sharing in ZAF, see ZafDataManager. SetExpanded-
Data() will delete the previous ExpandedData() object if it is Destroyable() and
no other object uses it.

SetExpandedText() may be used instead of SetExpandedData(). In this case,
expandedText is placed into the existing ExpandedData() member of ZafFor-
mattedString.

The return value for ExpandedData() is a pointer to the ExpandedData() object
associated with the ZafFormattedString object. The return value for SetEx-
pandedData() and SetExpandedText() is normally ZAF_ERROR_NONE.

FormatData ZafStringData *FormatData(void) const;

virtual ZafError SetFormatData(ZafStringData
*formatData);

SetFormatText virtual ZafError SetFormatText(const ZafIChar
*formatText);

FormatData() stores the formatting data including format literals and valida-
tion options. This formatData provides the input mask used to format and val-
idate all input.

For example, to allow entry in a US phone number format, FormatData() might
be set to

"LNNNLLNNNLNNNN aaaa"

and DeleteData() set to

"() - ".

If the user then typed the characters

"123456abc7890x321"

The final, formatted text (ExpandedData()) would be

"(123) 456-7890 x321".

And the final CompressedData() would be

226 Zinc Application Framework 5

"1234567890x321".

Note that the embedded "abc" keystrokes would be seen as invalid due to the
FormatData() and therefore discarded.

Valid characters in the FormatData() input mask include the following:

FormatData() may be shared by multiple objects, or it may belong to a single
ZafFormattedString. If shared, all the associated objects will be notified when
the FormatData() changes. SetFormatData() may be used to associate a For-
matData() object with a ZafFormattedString object. For more information on
data sharing in ZAF, see ZafDataManager. SetFormatData() will delete the
previous FormatData() object if it is Destroyable() and no other object uses it.

SetFormatText() may be used instead of SetFormatData(). In this case format-
Text is placed into the existing FormatData() member of ZafFormattedString.

The return value for FormatData() is a pointer to the FormatData() object asso-
ciated with the ZafFormattedString object. The return value for SetFormat-
Data() and SetFormatText() is normally ZAF_ERROR_NONE.

FormatData()
option

Description

a Allows a space (’ ’) or any alphabetic character (’a’
through ’z’ or ’A’ through ’Z’)

A Same as the ’a’ option except that a lower-case character
is automatically converted to upper-case

c Allows a space (’ ’), any numeric digit (’0’ through ’9’), or
any alphabetic character (’a’ through ’z’ or ’A’ through ’Z’)

C Same as the ’c’ option except that a lower-case character
is automatically converted to upper-case

L Uses the literal character specified in DeleteData(), and
skips this position while the end user types

N Allows any numeric digit

x Allows any printable character

X Same as the ’x’ option except that a lower-case character
is automatically converted to upper-case

ZafGdiDisplay 227

ZafGdiDisplay
Inheritance ZafGdiDisplay : ZafDisplay

Declaration #include <w_gdidsp.hpp>

Description ZafGdiDisplay defines the basic functionality necessary to interface with
Microsoft Windows display devices. For Microsoft Windows only, Zaf-
ScreenDisplay and ZafPrinter are both derived from ZafGdiDisplay. All the
functionality documented for ZafScreenDisplay and ZafPrinter are portable,
and some of this functionality is provided for Microsoft Windows transpar-
ently through ZafGdiDisplay. See the base class ZafDisplay for complete
descriptions of the display functions provided by ZafScreenDisplay and Zaf-
Printer.

228 Zinc Application Framework 5

ZafGeometryManager

Inheritance ZafGeometryManager : (ZafWindowObject : ZafElement),
ZafList

Declaration #include <z_gmgr.hpp>

Description ZafGeometryManager provides support for non-absolute positioning of child
objects. For example, an object may be positioned relative to an edge of
another object; or an object may size itself relative to the size of a window, per-
haps constrained to a minimum and maximum size.

The programmer may specify combinations of constraints and attachments for
any child object by adding ZafAttachment, ZafDimensionConstraint, and
ZafRelativeConstraint objects to the ZafGeometryManager for the window.
See ZafConstraint, ZafAttachment, ZafDimensionConstraint, and ZafRelative-
Constraint for more information.

Constructors All ZafGeometryManager constructors initialize the member variables associ-
ated with an instantiated ZafGeometryManager object. The default values set
by the ZafGeometryManager and its base class constructors follow, if they dif-
fer from those set by the base class constructor, or if a blocking function is
implemented in ZafGeometryManager. “†” Indicates a blocking function that
prevents changes to the attribute in this class.

Event

Member Initializations

ZafWindowObject
AcceptDrop() false†

AutomaticUpdate() true†

BackgroundColor() ZAF_CLR_NULL†

Bordered() false†

CoordinateType() ZAF_PIXEL†

CopyDraggable() false†

Disabled() true†

Focus() false†

Font() ZAF_FNT_NULL†

HelpContext() null†

HelpObjectTip() null†

LinkDraggable() false†

MoveDraggable() false†

ZafGeometryManager 229

ZafGeometryManager(void);

This constructor is useful in straight-code situations, and creates a ZafGeome-
tryManager object to be added to a window.

ZafGeometryManager(const ZafGeometryManager ©);

The copy constructor creates a new ZafGeometryManager object and initial-
izes its data from copy.

ZafGeometryManager(const ZafIChar *name,
ZafObjectPersistence &persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a geometry manager follows:

// Create a status bar with geometry-managed children.
ZafStatusBar *stat = new ZafStatusBar(0, 0, 0, 1);

Noncurrent() true†

OSDraw() false†

ParentDrawBorder() false†

ParentDrawFocus() false†

ParentPalette() false†

QuickTip() null†

RegionType() ZAF_AVAILABLE_REGION†

Selected() false†

SupportObject() true†

TextColor() ZAF_CLR_NULL†

UserFunction() null†

UserPalette() null†

Visible() false†

ZafElement
ClassID() ID_ZAF_GEOMETRY_MANAGER

ClassName() "ZafGeometryManager"

NumberID() ZAF_NUMID_GEOMETRY

StringID() "ZAF_NUMID_GEOMETRY"

Member Initializations

230 Zinc Application Framework 5

ZafString *string = new ZafString(0, 0, 15, new
ZafStringData("String"));

stat->Add(string);
ZafTime *time = new ZafTime(15, 0, 15, new ZafTimeData);
stat->Add(time);

// Time field will remain at the right side of the status bar.
ZafAttachment *attach = new ZafAttachment(time, ZAF_ATCF_RIGHT);
attach->SetOffset(0);

// Create the geometry manager and add the first constraint.
ZafGeometryManager *geo = new ZafGeometryManager;
geo->Add(attach);

// String field will occupy the remaining space.
attach = new ZafAttachment(string, ZAF_ATCF_RIGHT);
attach->SetStretch(true);
attach->SetReference(time);
attach->SetOppositeSide(true);
attach->SetOffset(1);

// Add the second constraint to the geometry manager.
geo->Add(attach);

// Add the geometry manager to the status bar.
stat->Add(geo);

Destructor virtual ~ZafGeometryManager(void);

The destructor is used to free the memory associated with a ZafGeometryMan-
ager object. It chains to the ZafWindowObject, ZafElement, and ZafList
destructors.

Generally, the programmer will not directly destroy a ZafGeometryManager
object, since it is automatically destroyed when its parent window is destroyed.
For more information on child object deletion, see ZafWindow::~ZafWin-
dow().

Members virtual ZafEventType Event(const ZafEventStruct &event);
Event This overloaded function handles all events sent to the ZafGeometryManager

object. The following events are handled:

ZafEventType Description

S_ADD_OBJECT causes event.windowObject to be added to the
geometry manager’s constraint list

ZafGeometryManager 231

S_COMPUTE_SIZE causes the geometry manager to recompute its
size and to notify all its constraints that the par-
ent window has changed size by passing the
S_COMPUTE_SIZE message to them

S_INITIALIZE causes the geometry manager to initialize itself
and to pass the S_INITIALIZE message to all
its constraints

S_SUBTRACT_OBJECT causes event.windowObject to be removed
from the geometry manager’s constraint list

ZafEventType Description

232 Zinc Application Framework 5

ZafGroup

Inheritance ZafGroup : ZafWindow : (ZafWindowObject : ZafElement),
ZafList

Declaration #include <z_group.hpp>

Description ZafGroup is a container object used to logically group other objects. A Zaf-
Group may have a title and or a border. ZafGroups are typically used to con-
tain controls such as radio buttons that must act as a set and are therefore more
sophisticated than simple line boxes. Once “inside” a ZafGroup, common key-
strokes may act somewhat differently than in other contexts. For example,
arrow keys may move between controls in a ZafGroup, and the tab key moves
away from the group.

Constructors All ZafGroup constructors initialize the member variables associated with an
instantiated ZafGroup object. The default values set by the ZafGroup and its
base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafGroup. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

AutoSelect HotKeyIndex
HotKeyChar StringData

Member Initializations

ZafGroup
AutoSelect() false

HotKeyChar() ’\0’

HotKeyIndex() -1

StringData() null

ZafWindow
Destroyable() false †

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

Sizeable() false†

Temporary() false†

ZafGroup 233

ZafGroup(int left, int top, int width, int height, const
ZafIChar *text);

This constructor is useful in straight-code situations and allows the ZafGroup
object to create, maintain and destroy its own ZafStringData object. left, top,
width, and height specify the position and size on a parent window. All values
are specified in cell coordinates by default, but may be specified using another
coordinate system if desired. See ZafWindowObject::SetCoordinateType() for
more information. text specifies the string to initially appear in the new Zaf-
Group object.

ZafGroup(int left, int top, int width, int height,
ZafStringData *stringData);

This constructor is useful in straight-code situations where a ZafStringData
object has already been created. This constructor could be used when manu-
ally maintaining a ZafStringData object, rather than having the ZafGroup class
create and maintain the data object automatically. (See ZafStringData). See
the previous constructor for a description of left, top, width and height.

ZafGroup(const ZafGroup ©);

The copy constructor calls the overloaded Duplicate() to create a new Zaf-
Group object and initialize its data from copy. If the original data objects are
StaticData() then the new ZafGroup object simply points to the original data,
otherwise copies are made.

ZafGroup(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

ZafWindowObject
AcceptDrop() false†

Bordered() true

ZafElement
ClassID() ID_ZAF_GROUP

ClassName() "ZafGroup"

Member Initializations

234 Zinc Application Framework 5

The following code shows how to create a ZafGroup object.

// Create a sample window with a group of radio buttons.
ZafWindow *window = new ZafWindow(10, 10, 40, 10);
ZafGroup *group = new ZafGroup(1, 1, 30, 5, "Group");

// Add the radio buttons to the group.
group->SetAutoSelect(true);
group->Add(new ZafButton(1, 0, 25, 1, "Choice 1",

ZAF_NULLP(ZafBitmapData), ZAF_RADIO_BUTTON));
group->Add(new ZafButton(1, 1, 25, 1, "Choice 2",

ZAF_NULLP(ZafBitmapData), ZAF_RADIO_BUTTON));
group->Add(new ZafButton(1, 2, 25, 1, "Choice 3",

ZAF_NULLP(ZafBitmapData), ZAF_RADIO_BUTTON));
group->Add(new ZafButton(1, 3, 25, 1, "Choice 4",

ZAF_NULLP(ZafBitmapData), ZAF_RADIO_BUTTON));

// Finally, add the group of radio buttons to the window.
window->Add(group);

Destructor virtual ~ZafGroup(void);

The destructor is used to free the memory associated with a ZafGroup object,
including all the data object pieces that are Destroyable(). It chains to the Zaf-
Window, ZafList, ZafWindowObject and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafGroup object, since it
is automatically destroyed when its parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

AutoSelect bool AutoSelect(void) const;

virtual bool SetAutoSelect(bool autoSelect);

If AutoSelect() is true, the first group item in a ZAF_SINGLE_SELECTION
group becomes selected when the group initially appears on screen. AutoSe-
lect() also causes a group item to be selected when it receives focus. The
default value of this attribute is false, but SetAutoSelect() may be called to
change it.

ZafGroup 235

HotKeyChar ZafIChar HotKeyChar(void) const;
HotKeyIndex int HotKeyIndex(void) const;

virtual ZafIChar SetHotKey(ZafIChar hotKeyChar, int index
= -1);

When typed with a modifier key (such as <ALT> or <Command>) the hotKey-
Char causes a group to receive keyboard focus. The hot key index is the zero-
based index specifying which character to visually distinguish in the group’s
title.

The hot key character does not cause any display modification, and the hot key
index does not cause any action to be performed when that character is typed
with the modifier key. The default value of HotKeyChar() is 0, indicating that
there is no hot key character associated with the group, and the default value of
HotKeyIndex() is -1, indicating that no character is to be visually distinguished
as the hot key character.

The following code shows how to create a group with a hot key:

// Create a group with a hot key.
ZafGroup *group = new ZafGroup(1, 1, 12, 4, "Group");
group->SetHotKey(’G’, 0);

StringData ZafStringData *StringData(void) const;

virtual ZafError SetStringData(ZafStringData *string);

The StringData() object is where the textual data for the title is stored for the
ZafGroup object. The StringData() piece may be shared by multiple “users”,
or it may belong to a single object. If shared, all the associated objects will be
notified when the StringData() changes. SetStringData() may be used to asso-
ciate a StringData() object with an object. For more information on data shar-
ing in ZAF, see ZafDataManager. SetStringData() will delete the previous
StringData() object if it is Destroyable() and no other object uses it.

The return value for StringData() is a pointer to the StringData() object associ-
ated with the ZafGroup object. The return value for SetStringData() is nor-
mally ZAF_ERROR_NONE.

The function SetText(), inherited from ZafWindowObject, may be used to set
the title on the group without the programmer having to create a ZafStringData
object.

236 Zinc Application Framework 5

ZafHelpStub 237

ZafHelpStub

Inheritance Root class

Declaration #include <z_help.hpp>

Description ZafHelpStub serves solely as a base class for ZafHelpSystem, so that ZafHelp-
System and its base classes are not linked into a program that does not make
use of them. ZafHelpStub declares a pure virtual function DisplayHelp() that
is defined in ZafHelpSystem. The programmer should normally not derive
from this class.

Constructor ZafHelpStub(void);

This constructor creates a ZafHelpStub object. Since ZafHelpStub is a virtual
class, the programmer will normally not call this constructor.

Destructor virtual ~ZafHelpStub(void);

The destructor is used to free the memory associated with a ZafHelpStub
object. Since ZafHelpStub is a virtual class, the programmer will not normally
call this destructor.

Members virtual void DisplayHelp(const ZafIChar *name) = 0;
DisplayHelp DisplayHelp() is a pure virtual function. ZafHelpSystem overloads this func-

tion to provide basic help display functionality

DisplayHelp

238 Zinc Application Framework 5

ZafHelpSystem

Inheritance ZafHelpSystem : ZafHelpStub, ZafWindow :
(ZafWindowObject : ZafElement), ZafList

Declaration #include <z_help.hpp>

Description ZafHelpSystem is ZAF’s built-in support for context-sensitive help. If a Zaf-
HelpSystem has been instantiated (see the code snippet under the construc-
tors), and the end user types the help key (such as <F1> or <Command-?>), the
ZafHelpSystem is presented. If the window object that has keyboard focus has
been assigned a help context via ZafWindowObject::HelpContext(), that help
context is presented; otherwise, a list of help contexts available is presented.

ZafHelpSystem presents a help context from the user-specified data file in a
top-level window with a scrollable text field, and provides a button that when
clicked causes an index of all available help contexts to be displayed. When
the index of help contexts is presented, the end user may choose any of the help
contexts with the keyboard or the mouse and select it to be displayed.

Advanced programmers may derive from ZafHelpSystem to tie into native or
third-party engines.

Constructors All ZafHelpSystem constructors initialize the member variables associated
with an instantiated ZafHelpSystem object. The default values set by the Zaf-
HelpSystem and its base class constructors follow, if they differ from those set
by the base class constructor.

DisplayHelp Event ResetStorage

Member Initializations

ZafWindow
Destroyable() false

ZafElement
ClassID() ID_ZAF_HELP_SYSTEM

ClassName() "ZafHelpSystem"

ZafHelpSystem 239

ZafHelpSystem(ZafFileSystem *helpStorage);

This constructor creates a ZafHelpSystem object, initializes information used
by ZafHelpSystem, and sets the global zafHelpSystem. There should only be
one ZafHelpSystem instantiated during the life of an application. helpStorage
specifies an instantiated data file that contains the help contexts to be used by
ZafHelpSystem.

ZafHelpSystem(const ZafHelpSystem ©);

The copy constructor creates a new ZafHelpSystem object and initializes its
data from copy.

The following code shows how to create a ZafHelpSystem object.

int ZafApplication::Main(void)
{

. . .

// Open the data file.
ZafStorage *storage = new ZafStorage("main.znc",
ZAF_FILE_READWRITE);

// Create the help system.
if (!storage->Error())
zafHelpSystem = new ZafHelpSystem(storage,
ZAF_NULLP(ZafIChar));

. . .

// Get user input.
Control();

// Clean up.
if (zafHelpSystem)
delete zafHelpSystem;

if (storage)
delete storage;

// Return success.
return (0);

}

240 Zinc Application Framework 5

Destructor virtual ~ZafHelpSystem(void);

The destructor is used to free the memory associated with a ZafHelpSystem
object. It chains to the ZafHelpStub, ZafWindow, ZafList, ZafWindowObject
and ZafElement destructors.

Since the ZafHelpSystem constructor sets Destroyable() to false, the program-
mer must destroy a ZafHelpSystem object when appropriate to the application.
Generally, the ZafHelpSystem should be deleted as the application is shutting
down, as seen in the code snippet above.

Members virtual void DisplayHelp(const ZafIChar *name);
DisplayHelp DisplayHelp() causes the help system window to appear. If it is minimized,

then it is first restored. If it is already open, it is brought to the front of all the
other windows on the window manager. name is the name of the help context
that will be displayed in the help system window.

Generally, ZAF calls DisplayHelp() automatically with the appropriate help
context name when the end user requests help, but the programmer may call it
at any time. The end user may resize, minimize, or close the help system win-
dow, and it may be left open in the background if the user selects another win-
dow.

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events sent to ZafHelpSystem, either by
processing the events itself, or by passing them to ZafWindow::Event() for
base class processing. Events (actually "requests") handled directly by Zaf-
HelpSystem follow:

See ZafWindow for more information.

Event Description

S_HLP_CLOSE causes the help system window to close

S_HLP_SHOW_INDEX causes the help system window to display the
index of all available help contexts

S_HLP_SHOW_TOPIC causes the help system window to display
event.windowObject’s help context

S_HLP_SELECT_TOPIC causes the help system window to display the
help context corresponding to the name dis-
played in the help system window’s string field

S_HLP_UPDATE_NAME causes the help system window to set its string
field corresponding to its selected list item

ZafHelpSystem 241

ResetStorage virtual void ResetStorage(ZafFileSystem *helpStorage);

ResetStorage() causes the help system to find help contexts in a different stor-
age file. helpStorage specifies the instantiated data file that contains the help
contexts to be used by ZafHelpSystem.

ResetStorage() is particularly useful when changing languages for help con-
texts. The following code snippet shows how to use this function:

// Use the spanish help contexts instead of english.
ZafStorage *oldHelpStorage = myHelpStorage;
myHelpStorage = new ZafStorage("help_es.znc",

ZAF_FILE_READWRITE);

if (!myHelpStorage->Error())
{
// Reset the help system storage.
myHelpSystem->ResetStorage(myHelpStorage);
delete oldHelpStorage;

}

242 Zinc Application Framework 5

ZafHelpTips

Inheritance ZafHelpTips : ZafDevice : ZafElement

Declaration #include <z_htips.hpp>

ZafHelpTips is a device class that can display limited help information when a
user moves the mouse over a viewable object. The information displayed may
consist of a “quick tip,” a “help tip,” or both.

“Quick tips” are small, temporary windows that contain a short message.
ZAF’s implementation is similar to Microsoft Windows style “tool tips” except
that quick tips may be invoked by almost any user interface object—not just
toolbars. Quick tips may include single or multiple lines of text.

To invoke a quick tip the user must move the mouse over an object, then pause
briefly. The quick tip is removed if the user moves the mouse outside the
region of the object, clicks the mouse, or presses any key. SetQuickTip() must
be called by each ZafWindowObject to set the text to be displayed. (See Zaf-
WindowObject for more information.)

“Help tips” are help messages that are displayed in a traditional user interface
object instead of a temporary window. For example, a status bar may display a
string that changes as the mouse moves over different objects.

To invoke a help tip the user must move the mouse over an object. The help tip
is removed when the user moves the mouse outside the object. SetHelpObject-
Tip() must be called by each ZafWindowObject to set the text to be displayed.
(See ZafWindowObject for more information.) SetHelpObject() must also be
called once to initialize ZafHelpTips to point at the object that will display the
help tip. SetHelpObject() must be called by the programmer since this pointer
is often global to an application.

Note: Quick tips and help tips require that the ZafHelpTips device first be
added to the ZafEventManager.

Constructor The ZafHelpTips constructor initializes the member variables associated with a
new ZafHelpTips object. The default values set by ZafHelpTips follow, if they
are overridden from those set by base class constructors:

Event InitialDelay SetUserPalette
HelpObject NewHelpTipDelay
HelpTipsType Poll

ZafHelpTips 243

ZafHelpTips(ZafDeviceState state = D_OFF, ZafHelpTipsType
helpTipsType = ZAF_HELPTIPS_QUICKTIP);

This constructor is used to instantiate a ZafHelpTips object to be added to a
ZafEventManager object. helpTipsType specifies the type of help tips to be
handled by the ZafHelpTips object. For a discussion on device state, see the
ZafDevice section of this manual.

To enable help tips in an application the following code could be used:

int ZafApplication::Main(void)
{
...

// Enable help tips in my application.
ZafHelpTips *helpTips = new ZafHelpTips(D_ON,
ZAF_HELPTIPS_BOTH);

zafEventManager->Add(helpTips);

...
}

Destructor virtual ~ZafHelpTips(void);

The virtual destructor is used to free the memory associated with an instanti-
ated ZafHelpTips object. Normally ZafHelpTips will be destroyed when the
ZafEventManager is destroyed during normal application termination.

Member Initializations

ZafHelpTips
HelpObject() null

HelpTipsType() ZAF_HELPTIPS_QUICKTIP

InitialDelay() 500 (milliseconds)

NewHelpTipDelay() 500 (milliseconds)

ZafDevice
DeviceType() E_HELPTIPS

ZafElement
ClassID() ID_ZAF_HELPTIPS

ClassName() "ZafHelpTips"

NumberID() ID_ZAF_HELPTIPS

StringID() "ZafHelpTips"

244 Zinc Application Framework 5

Members virtual ZafEventType Event(const ZafEventStruct &event);
Event ZafHelpTips processes several events in addition to those handled by all

ZafDevice objects.

HelpObject ZafWindowObject *HelpObject(void) const;

virtual void SetHelpObject(ZafWindowObject *helpObject);

SetHelpObject() sets the pointer to the help object of a ZafHelpTips instance.
helpObject should point at the text-capable ZafWindowObject that will display
future help tips. HelpObject() returns a pointer to the current help object.

Users may find it helpful to have different help objects in different windows.
For example, as a user moves from one window to another, the help object may
also move to the new window. The following code shows this technique.

// Handle the N_CURRENT message inside a derived window’s
// Event() function. Change the help object to point at
// helpBarObject (a string object displayed on the status bar
// of the current window).

case N_CURRENT:
{

ZafEventStruct htipEvent(DH_SET_HELP_OBJECT);
htipEvent.windowObject = helpBarObject;

Event (Device Request) Action

DH_HELP_TIPS_TIMER Immediately expires the ZafHelpTips
timer causing the device to display
event.windowObject-> QuickTip().

DH_SET_HELP_OBJECT Causes ZafHelpTips to reassign its help
tips object to event.windowObject. See
SetHelpObject().

DH_UPDATE_HELP_OBJECT Causes ZafHelpTips to display
event.windowObject->HelpObjectTip()
in the current help object.

N_MOUSE_LEAVE Causes ZafHelpTips to remove its quick
tip and to update help object with its
previous text contents.

N_MOUSE_ENTER Causes ZafHelpTips to activate the
timer that must elapse before a quick tip
is displayed. The help object is immedi-
ately updated with event.windowOb-
ject-> HelpObjectTip().

ZafHelpTips 245

eventManager->Event(htipEvent, E_HELPTIPS);
}
break;

HelpTipsType ZafHelpTipsType HelpTipsType(void) const;

virtual ZafHelpTipsType SetHelpTipsType(ZafHelpTipsType
helpTipsType);

HelpTipsType() returns the type of help tips which are controlled by a Zaf-
HelpTips object. The default value of this attribute is
ZAF_HELPTIPS_QUICKTIP but the user may call SetHelpTipsType() to
change it. Here are the possible types of help tips:

InitialDelay int InitialDelay(void);

static int SetInitialDelay(int initialDelay);

SetInitialDelay() sets the initial delay of a ZafHelpTips device. initialDelay is
specified in milliseconds and indicates the timer interval that must elapse
before the quick tip of a user interface object is displayed on the desktop.

NewHelpTipDelay int NewHelpTipDelay(void);

static int SetNewHelpTipDelay(int newHelpTipDelay);

SetNewHelpTipDelay() indicates the newHelpTipDelay of a ZafHelpTips
device in milliseconds. This interval timer begins after exiting an object for
which a quick tip has been displayed, and continues until another object is
entered for which a quick tip exists, or until the timer expires. If this timer
interval does not expire before the sibling is reached the sibling’s quick tip is
immediately displayed instead of waiting the normal InitialDelay() period.

ZafHelpTipsType Description

ZAF_HELPTIPS_QUICKTIP Causes ZafHelpTips display only
quick tips.

ZAF_HELPTIPS_HELPOBJECT Causes ZafHelpTips to display only
help tips.

ZAF_HELPTIPS_BOTH Causes ZafHelpTips to manage both
quick tips and help tips.

246 Zinc Application Framework 5

Poll virtual void Poll(void);

This virtual function is called by ZafEventManager::Get(). Get() checks the
timer of the active ZafHelpTips device. Get() may cause a quick tip to be dis-
played, removed, or the timer to be reseeded. Users will not typically call this
function.

SetUserPalette void SetUserPalette(ZafPaletteStruct *userPalette);

SetUserPalette() allows quick tips to be displayed using custom colors or fonts.
userPalette is a pointer to a valid ZafPaletteStruct that should already contain
complete color and font information. If a userPalette is not assigned to the Zaf-
HelpTips device, the quick tip will be displayed in its default colors. (Default
colors are platform-specific and are assigned when the ZafHelpTips device is
initially constructed.)

ZafHzList 247

ZafHzList

Inheritance ZafHzList : ZafWindow : (ZafWindowObject :
ZafElement), ZafList

Declaration #include <z_hlist.hpp>

Description ZafHzList object is a custom list object that arranges items horizontally in as
many rows as will fit in the client region. A ZafHzList object may have a hor-
izontal scroll bar associated with it. Like ZafVtList it supports single, multiple
and extended selection methods, and list children may not be Noncurrent().

Constructors All ZafHzList constructors initialize the member variables associated with an
instantiated ZafHzList object. The default values set by the ZafHzList and its
base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafHzList. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

AutoSortData SelectionType SetTextColor
CellHeight SetBackgroundColor
CellWidth SetFont

Member Initializations

ZafHzList
AutoSortData() false

CellHeight() user-supplied parameter

CellWidth() user-supplied parameter

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() false†

Sizeable() false†

ZafWindowObject
Bordered() true

ZafElement

248 Zinc Application Framework 5

ZafHzList(int left, int top, int width, int height, int
cellWidth, int cellHeight);

This constructor is useful in straight-code situations. left, top, width and height
specify the list’s position and size on its parent. cellWidth and cellHeight spec-
ify the fixed width and height of each list item for positioning purposes. All
values are specified in cell coordinates by default, but may be specified using
another coordinate system if desired (see ZafWindowObject::SetCoordinate-
Type).

ZafHzList(const ZafHzList ©);

The copy constructor calls the overloaded Duplicate() to create a new ZafH-
zList object and initialize its data from copy.

ZafHzList(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Sample ZafHzList creation techniques follow:

// Create a sample window with a horizontal list of strings.
ZafWindow *window1 = new ZafWindow(0, 0, 50, 10);

// Create the horizontal list object.
ZafHzList *hList1 = new ZafHzList(1, 1, 20, 5, 10, 1);

// Add a scroll bar and the strings to the horizontal list.
hList1->Add(new ZafScrollBar(0, 0, 0, 0,

ZAF_NULLP(ZafScrollData), ZAF_HORIZONTAL_SCROLL));
hList1->Add(new ZafString(0, 0, 20, "String 1", -1));
hList1->Add(new ZafString(0, 0, 20, "String 2", -1));
hList1->Add(new ZafString(0, 0, 20, "String 3", -1));
hList1->Add(new ZafString(0, 0, 20, "String 4", -1));
hList1->Add(new ZafString(0, 0, 20, "String 5", -1));
hList1->Add(new ZafString(0, 0, 20, "String 6", -1));

ClassID() ID_ZAF_HZ_LIST

ClassName() "ZafHzList"

Member Initializations

ZafHzList 249

// Add the list to the window.
window1->Add(hList1);
...
// Create a sample window with a horizontal list of buttons.
ZafWindow *window2 = new ZafWindow(10, 10, 50, 10);

// Create the horizontal list object and its children.
ZafHzList *hList2 = new ZafHzList(1, 1, 20, 5, 10, 1);

// Allow the list children to draw bitmap information.
hList2->SetOSDraw(false);
extern ZafBitmapData *bitmap1, *bitmap2, *bitmap3, *bitmap4;
hList2->Add(new ZafButton(0, 0, 20, 1, ZAF_NULLP(ZafIChar),

bitmap1));
hList2->Add(new ZafButton(0, 0, 20, 1, ZAF_NULLP(ZafIChar),

bitmap2));
hList2->Add(new ZafButton(0, 0, 20, 1, ZAF_NULLP(ZafIChar),

bitmap3));
hList2->Add(new ZafButton(0, 0, 20, 1, ZAF_NULLP(ZafIChar),

bitmap4));

// Add the list to the window.
window2->Add(hList2);

Destructor virtual ~ZafHzList(void);

The destructor is used to free the memory associated with a ZafHzList object.
It chains to the ZafWindow, ZafList, ZafWindowObject and ZafElement
destructors.

Generally, the programmer will not directly destroy a ZafHzList object, since it
is automatically destroyed when its parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. If the Set*() function
does not successfully change the state as requested, however, it will instead
return the current state.

AutoSortData bool AutoSortData(void) const;

virtual bool SetAutoSortData(bool autoSortData);

If AutoSortData() is true, the list will automatically sort its children as they are
added to the list. The function returned by CompareFunction() is used to sort
the children. By default, sorting is done in alphabetical order, but SetCom-

250 Zinc Application Framework 5

pareFunction() may be called to provide a custom sorting function. See
ZafList::CompareFunction() for more information about sorting list children.
The default value of this attribute is false, but the user may call SetAutoSort-
Data() to change it.

SetBackground-
Color

virtual ZafLogicalColor
SetBackgroundColor(ZafLogicalColor color,
ZafLogicalColor mono = ZAF_MONO_NULL);

To provide consistency in the appearance of list children, the ZafHzList object
sets the ParentPalette() attribute on each of its children—therefore all children
use the background color of the ZafHzList (see ZafWindowObject::ParentPal-
ette()). This overloaded function allows this color to be changed.

CellHeight int CellHeight(void) const;
CellWidth int CellWidth(void) const;

virtual int SetCellHeight(int cellHeight);

virtual int SetCellWidth(int cellWidth);

CellHeight() and CellWidth() specify the height and width of each item in the
list. Each list item is allocated this size for spacing purposes. CellHeight() and
CellWidth() are specified by CoordinateType() (see ZafWindowObject). The
constructor assumes cell coordinates unless SetCoordinateType is used.

SelectionType ZafSelectionType SelectionType(void) const;

virtual ZafSelectionType
SetSelectionType(ZafSelectionType selectionType);

ZafHzLists may allow different types of selection behavior. SetSelection-
Type() allows this behavior to be changed from the single-selection default.
Valid values are listed.

SelectionType() Description

ZAF_SINGLE_SELECTION Allows only one item to be selected.
If another item is selected any previ-
ously selected item is deselected.

ZAF_MULTIPLE_SELECTION Allows multiple items to be selected.
"Selection actions," including mouse
clicks, cause the selection state of an
item to be toggled. The state of other
list items is unchanged.

ZafHzList 251

SetFont virtual ZafLogicalFont SetFont(ZafLogicalFont font);

To provide consistency in the appearance of list children, the ZafHzList object
sets the ParentPalette() attribute on each of its children—therefore all children
use the font of the ZafHzList (see ZafWindowObject::ParentPalette()). This
overloaded function allows the font to be changed.

SetTextColor virtual ZafLogicalColor SetTextColor(ZafLogicalColor
color, ZafLogicalColor mono = ZAF_MONO_NULL);

To provide consistency in the appearance of list children, the ZafHzList object
sets the ParentPalette() attribute on each of its children—therefore all children
use the text color of the ZafHzList (see ZafWindowObject::ParentPalette()).
This overloaded function allows the text color to be changed.

ZAF_EXTENDED_SELECTION Allows multiple items to be selected,
and does this using native multiple-
and extended-selection techniques.
For example, a single click might act
as single-select, shift-click might
select a range of items, and ctrl-click
might act as multiple-select.

SelectionType() Description

252 Zinc Application Framework 5

ZafI18nData

Inheritance ZafI18nData : ZafData : ZafNotification, ZafElement

Declaration #include <z_idata.hpp>

Description ZafI18nData is the base class for the three internationalization classes: Zaf-
CodeSetData, ZafLanguageData, and ZafLocaleData. It is not intended to be
instantiated directly and has no public constructor. ZafI18nData provides a
standard interface used to manipulate the individual internationalization com-
ponents. ZafLanguageManager is also a core internationalization class.

Programmers will typically use only the ResetI18n() member of this class, but
a thorough understanding of ZafI18nData is essential to developers intending
to manipulate the internationalization capabilities of Zinc Application Frame-
work.

ZafI18nData performs many functions, but three are key:

• Determine the proper language, locale, and codeset (mapping) during application
initialization.

• Initialize global ZafCodeSetData, ZafLocaleData, and ZafLanguageManager
pointers.

• Maintain global internationalization information used by other objects.

I18n initialization
process

ZAF initializes internationalization components during library initialization
prior to calling ZafApplication::Main(). These components may be reinitial-
ized by the programmer later. The algorithm used to initialize the internation-
alization components follows:

Identify i18n context 1. Get the internationalization identification information using the following
process:

• Obtain the ZAF_LANG environment variable if it exists;

• or obtain information from the operating system if possible;

• or finally use the values compiled into the application if no better alternative is
available.

AddStaticModule I18nName SubtractStaticModule
CountryCodeToZafLocale OSI18nName ZafLanguageToZafLocale
I18nAllocate OSLanguageToZafLanguage ZafLocaleToZafLanguage
I18nFree ResetI18n

ZafI18nData 253

A complete internationalization specification takes the form “en_US.437” and
indicates the language (en=English), country (US=United States), and codeset
(437=map local codepage 437 to/from ISO or Unicode). This string may be
directly replaced using SetI18nName() or ResetI18n().

Initialize global variables 2. Each of the individual internationalization components is initialized and glo-
bal variables are set. Important variables include zafI18nStorage, zafLocale-
Data, zafCodeSetData, and zafLanguageManager.

Load or build locale
information

3. A complete locale definition is built using the following process (based on
the country code found in step 1):

• I18N.ZNC is opened, if possible, and the correct locale information loaded;

• or the compiled-in locale defaults are used to initialized the locale and individual
locale members replaced with as much information as can be obtained from the
operating system.

Load message strings 4. International message strings are loaded by the ZafLanguageManager as
they are requested by ZafWindowObjects. This portion of i18n initialization
does not happen before ZafApplication::Main() but rather on demand as the
application runs. For more information on this process, see ZafLanguageMan-
ager.

Constructors ZafI18nData constructors are all protected. See the constructors for Zaf-
CodeSetData, ZafLanguageData, and ZafLocaleData.

ZafI18nData is initially constructed inside ZAF prior to ZafApplication::Main.
Programmers can reset this initialization using ResetI18n() as shown below.

int ZafApplication::Main()
{
LinkMain();

 // Reinitialize for specified language, locale, and codeset.
ZafI18nData::ResetI18n("FR_fr.ISO8859-1");

zafWindowManager->Add(new HellowWindow());

Control();
}

Destructor virtual ~ZafI18nData(void);

254 Zinc Application Framework 5

The destructor is used to free the memory associated with the ZafI18nData
object. This destructor chains to the ZafData, ZafNotification, and ZafElement
destructors.

Members
AddStaticModule static bool AddStaticModule(ZafFreeModule freeModule,

ZafAllocateModule allocateModule =
ZAF_NULLF(ZafAllocateModule), ZafClassID category =
ID_DEFAULT);

SubtractStatic-
Module

static bool SubtractStaticModule(ZafFreeModule
freeModule, ZafAllocateModule allocateModule =
ZAF_NULLF(ZafAllocateModule));

AddStaticModule() is a mechanism for freeing and allocating static data at pro-
gram runtime. It is used internally by ZAF, and is not intended to be used by
the programmer. freeModule is a pointer to a function that is to be called dur-
ing program termination or when internationalization is reset. allocateModule
is a pointer to a function that is to be called to allocate static data. category
specifies the class identifier associated with the static data.

SubtractStaticModule() removes support for freeModule and allocateModule
after they have been passed to AddStaticModule(). The definition of ZafAllo-
cateModule and ZafFreeModule are shown below:

typedef void (*ZafAllocateModule)(void);
typedef void (*ZafFreeModule)(bool);

CountryCodeTo-
ZafLocale

static const ZafIChar *CountryCodeToZafLocale(int
countryCode);

This function maps countryCode to a string description of the locale. The
country code passed in depends on the operating system that the software is
running on. This function is used by OSI18nName().

OSLanguageTo-
ZafLanguage

static const ZafIChar *OSLanguageToZafLanguage(const
ZafIChar *osLanguage);

On systems that need it, this function maps osLanguage to a string describing
the language being used. osLanguage is a system dependent string. This func-
tion is used by OSI18nName().

ZafLocaleToZaf-
Language

static const ZafIChar *ZafLocaleToZafLanguage(const
ZafIChar *zafLocale);

ZafI18nData 255

This function maps zafLocale to the appropriate language string. zafLocale is a
string describing the location the program is running in (e.g. Spain or Ger-
many). Two character ISO country codes are valid input for zafLocale.

ZafLanguageTo-
ZafLocale

static const ZafIChar *ZafLanguageToZafLocale(const
ZafIChar *zafLanguage);

This function maps zafLanguage to the appropriate locale string. zafLanguage
is a string describing the language of the operating system (e.g. Spanish or
German). Two character ISO language codes are valid input for zafLanguage.

OSI18nName static const ZafIChar *OSI18nName(void);

This function determines the internationalization name for the current system.
The name will take the form language[_locale[.codeset]]. For instance the
string "es_ES.850" means that the language is Spanish, the locale is Spain, and
the codeset is 850.

I18nName static const ZafIChar *I18nName(void);

static ZafError SetI18nName(const ZafIChar *i18nName);

static ZafError SetI18nName(const ZafIChar *languageName,
const ZafIChar *localeName, const ZafIChar
*codeSetName);

I18nName() allows the user to query the program about which international-
ization settings it is running with. SetI18nName allows the user to set the inter-
nationalization components of the program using i18nName. i18nName
should be of the form language[_locale[.codeset]]. These functions use the
ISO string form to denote the internationalization settings. For more informa-
tion on the form of the string used see OSI18nName().

The second SetI18nName() method initializes the internationalization compo-
nents. codeSetName should be a string describing the codeset that is required.
The string pointers are passed to the corresponding initialization routine for
each component. If the pointer is NULL the component will initialize with the
compiled-in defaults.

I18nAllocate static void I18nAllocate(const ZafIChar *i18nName =
ZAF_NULLP(ZafIChar));

This function allocates the internationalization components. If i18nName is
NULL then the function queries the system to determine the internationaliza-
tion name. If a string is passed in, it must be of the form lan-

256 Zinc Application Framework 5

guage[_locale[.codeset]]. See the OSI18nName() section for more
information.

I18nFree static void I18nFree(bool globalRequest = false);

This function frees the global internationalization components, if globalRe-
quest is true.

ResetI18n static const ZafIChar *ResetI18n(const ZafIChar *newName
= ZAF_NULLP(ZafIChar));

This function checks if the newName is different than the current international-
ization settings. If the settings are different it frees and reallocate the interna-
tionalization components using newName. If newName is NULL then the
function queries the system to determine the internationalization name to use.
If a string is passed in it should be of the form language[_locale[.codeset]].
See the OSI18nName() section of this chapter for more information. An exam-
ple of a typical use for ResetI18n() is shown in the Constructors section of this
chapter.

ZafIcon 257

ZafIcon

Inheritance ZafIcon : ZafButton : ZafWindowObject : ZafElement

Declaration #include <z_icon1.hpp>

Description ZafIcon displays a native icon (miniature bitmap). ZafIcon is used to display
icons representing minimized windows, if supported by the environment.
Where the environment provides a system default icon image, ZafIcon will use
it. Most ZafIcon functionality is inherited from its base class, ZafButton.

Constructors All ZafIcon constructors initialize the member variables associated with an
instantiated ZafIcon object. The default values set by the ZafIcon and its base
class constructors follow, if they differ from those set by the base class con-
structor, or if a blocking function is implemented in ZafIcon. “†” Indicates a
blocking function that prevents changes to the attribute in this class.

IconData IconType SetIconImage

Member Initializations

ZafIcon
IconData() null

IconType() ZAF_NATIVE_ICON

ZafButton
AllowDefault() false†

AllowToggling() false†

AutoRepeatSelection() false†

BitmapData() null†

ButtonType() ZAF_FLAT_BUTTON†

Depth() 0 (2 in Motif)†

HotKeyChar() 0†

HotKeyIndex() -1†

SelectOnDoubleClick() true

ZafWindowObject
Bordered() true (only in Motif)

RegionType() ZAF_INSIDE_REGION†

SupportObject() true (only if ZAF_MINIMIZE_ICON)

ZafElement
ClassID() ID_ZAF_ICON

258 Zinc Application Framework 5

ZafIcon(int left, int top, const ZafIChar *text,
ZafIconData *iconData = ZAF_NULLP(ZafIconData),
ZafIconType iconType = ZAF_NATIVE_ICON);

This constructor is useful in straight-code situations, particularly if you wish
the ZafIcon object to create, maintain and destroy its own ZafStringData object
automatically. left and top specify the position where the left and top of the
icon will be placed on its parent. All values are specified in cell coordinates by
default, but may be specified using another coordinate system if desired. text
specifies the string to be displayed under the icon image.

iconData specifies the icon to be displayed on the ZafIcon object. iconType
specifies the type of icon to be created. (See IconType() for more information.)

ZafIcon(int left, int top, ZafStringData *title,
ZafIconData *iconData = ZAF_NULLP(ZafIconData),
ZafIconType iconType = ZAF_NATIVE_ICON);

This constructor is also useful in straight-code situations, particularly if you
have already created a ZafStringData object to be associated with the icon.
(See ZafStringData for more information.) title specifies the string data object
to be associated with the icon. Either title or iconData may be null, to provide
an image-only or a string-only icon. Otherwise, this constructor is the same as
the first.

iconData may be shared by many ZafIcons to conserve system resources or
ensure consistency. See ZafDataManager for information on sharing data
objects.

ZafIcon(const ZafIcon ©);

The copy constructor calls the overloaded Duplicate() to create a new ZafIcon
object and initialize its data from copy. If the original data objects are Static-
Data() then the new ZafIcon object simply points to the original data, other-
wise copies are made.

ClassName() "ZafIcon"

NumberID() ZAF_NUMID_MIN_ICON (if
ZAF_MINIMIZE_ICON)

StringID() "ZAF_NUMID_MIN_ICON" (if
ZAF_MINIMIZE_ICON)

Member Initializations

ZafIcon 259

ZafIcon(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. The parameters and values of this
constructor are deferred to the ZafWindow section of this manual, since most
persistence is done at the ZafWindow level.

Here are some code snippets that show various ZafIcon object creation tech-
niques.

// Create a sample window with some icon objects.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);

// Add the icons to the window.
extern ZafIconData *iconData;
window1->Add(new ZafIcon(1, 4, ZAF_NULLP(ZafStringData),

iconData));
// Add a hand icon.
ZafIcon *handIcon = new ZafIcon(20, 4, "Stop",

ZAF_NULLP(ZafIconData)));
handIcon->SetIconImage(ZAF_HAND_ICON);
window1->Add(handIcon);
...
// Create a sample window with a minimize icon.
ZafWindow *window2 = new ZafWindow(10, 10, 40, 10);
extern ZafIconData *windowIconData;
window2->Add(new ZafIcon(1, 4, ZAF_NULLP(ZafStringData),

windowIconData, ZAF_MINIMIZE_ICON));

Destructor virtual ~ZafIcon(void);

The destructor is used to free the memory associated with a ZafIcon object,
including all the data object pieces that are Destroyable(). It chains to the Zaf-
Button, ZafWindowObject, and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafIcon object, since it is
automatically destroyed when its parent window is destroyed. For more infor-
mation on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

IconData ZafIconData *IconData(void) const;

260 Zinc Application Framework 5

virtual ZafError SetIconData(ZafIconData *iconData);

The IconData() object is where the actual image data is stored. The IconData()
may be shared among several ZafIcon objects (perhaps to save memory by
allowing many icon objects to use the same image data), or it may belong to a
single ZafIcon object. If shared among several ZafIcon objects, all the associ-
ated ZafIcon objects will be updated when the IconData() changes. SetIcon-
Data() may be used to associate an IconData() object with a ZafIcon object.
For more information on data sharing in ZAF, see ZafDataManager. SetIcon-
Data() will delete the previous IconData() object if it is Destroyable() and no
other object uses it.

The return value for IconData() is a pointer to the IconData() object associated
with the ZafIcon object. The return value for SetIconData() is normally
ZAF_ERROR_NONE.

IconType ZafIconType IconType(void) const;

virtual ZafIconType SetIconType(ZafIconType iconType);

IconType() specifies a ZafIcon object type. The type is used to control plat-
form-specific and context-specific display behavior. The default value of this
attribute is ZAF_NATIVE_ICON, but the user may call SetIconType() to
change it. Possible icon types include:

SetIconImage virtual ZafIconData *SetIconImage(ZafIconImage
iconImage);

ZAF provides several icon images for use with applications, and where avail-
able, ZafIcon may use a system default icon image. The programmer may call
SetIconImage() to utilize a default image provided by ZAF or the system. Sup-
plied icon images include:

IconType() Description

ZAF_NATIVE_ICON Creates a native icon object (may look different
from environment to environment)

ZAF_MINIMIZE_ICON Creates a minimize icon object for a window

ZafIconImage Description

ZAF_APPLICATION_ICON Default application icon

ZAF_ASTERISK_ICON Asterisk icon, commonly used for note mes-
sages

ZafIcon 261

ZAF_EXCLAMATION_ICON Exclamation icon, commonly used for warn-
ing messages

ZAF_HAND_ICON Hand or stop icon, commonly used for error
messages

ZAF_QUESTION_ICON Question icon, commonly used for help mes-
sages

ZafIconImage Description

262 Zinc Application Framework 5

ZafIconData

Inheritance ZafIconData : (ZafImageData : ZafData :
(ZafNotification, ZafElement)), ZafIconStruct

Declaration #include <z_icon.hpp>

Description ZafIconData objects can be used to store and manipulate icon information.
ZafIconData is generally used in conjunction with the ZafIcon class.

Constructors All ZafIconData constructors initialize the member variables associated with
an instantiated ZafIconData object. The default values set by the ZafIconData
and its base class constructors follow, if they differ from those set by the base
class constructor.

ZafIconData(const ZafImageStruct &data);

ZafIconData(const ZafIconStruct &data);

These constructors allocate a ZafIconData instance and initialize its data to the
values in data.

ZafIconData(const ZafIChar *resourceName, int resourceID
= -1);

This constructor is useful in straight-code situations when loading a native icon
(if supported by the environment). resourceName specifies the resource name
of the icon in the application file or an open system file. resourceID specifies
the resource ID number of the image in the application file or an open system
file. Usually, either resourceName or resourceID will be used, but not both. If
resourceName is null, it is ignored. If resourceID is -1, it is ignored.

Array Height Width
Clear SetIcon operator =

Member Initializations

ZafIconData
Array() null

ZafElement
ClassID() ID_ZAF_ICON_DATA

ClassName() "ZafIconData"

ZafIconData 263

ZafIconData(const ZafIconData ©);

The copy constructor creates a new ZafIconData object and initializes its data
from copy.

ZafIconData(const ZafIChar *name, ZafDataPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

The following code snippet shows how to create a ZafIconData object:

// Create an icon array.
#define blk ZAF_CLR_BLACK
#define wte ZAF_CLR_WHITE
static ZafLogicalColor ZAF_FARDATA plusIconArray[81] =
{
 blk,blk,blk,blk,blk,blk,blk,blk,blk,
 blk,wte,wte,wte,wte,wte,wte,wte,blk,
 blk,wte,wte,wte,blk,wte,wte,wte,blk,
 blk,wte,wte,wte,blk,wte,wte,wte,blk,
 blk,wte,blk,blk,blk,blk,blk,wte,blk,
 blk,wte,wte,wte,blk,wte,wte,wte,blk,
 blk,wte,wte,wte,blk,wte,wte,wte,blk,
 blk,wte,wte,wte,wte,wte,wte,wte,blk,
 blk,blk,blk,blk,blk,blk,blk,blk,blk
};
static ZafIconStruct plusIcon(9, 9, plusIconArray, true);

// Create ZafIconData objects based on the icon array.
ZafIconData icon1(plusIcon);
ZafIconData icon2(icon1);

Destructor virtual ~ZafIconData(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafIconData object.

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

264 Zinc Application Framework 5

Array ZafLogicalColor *Array(void) const;

Array() returns the portable logical color array that the icon data is based on.
This array is converted to a native environment icon handle. Each element of
the array is a ZAF logical color. See ZafDisplay for more information.

Clear virtual void Clear(void);

Clear() destroys the portable Array() if StaticArray() is false, and it destroys
the environment handle if StaticHandle() is false. Regardless of StaticArray()
and StaticHandle(), the portable Array() and the environment handle are both
set to null, effectively clearing the icon data.

Height int Height(void) const;

Height() returns the height of the icon data.

SetIcon virtual ZafError SetIcon(int width, int height,
ZafLogicalColor *array);

virtual ZafError SetIcon(const ZafIconStruct &icon);

These functions copy the data passed in to the ZafIconData object. width and
height are the width and height of array, respectively. If StaticArray() is true,
array becomes Array(); otherwise, a new array is created for Array(). In the
second function, the data is copied from icon. These functions always return
ZAF_ERROR_NONE.

Width int Width(void) const;

Width() returns the width of the icon data.

operator = ZafIconData &operator=(const ZafIconData &icon);

This operator copies the data from icon into this ZafIconData object.

ZafIconStruct 265

ZafIconStruct

Inheritance ZafIconStruct : ZafImageStruct

Declaration #include <z_dsp.hpp>

Description ZafIconStruct is used to store icon information. The base ZafImageStruct
stores the portable image array using elements of ZafLogicalColors, and ZafI-
conStruct defines additional members that store environment-specific struc-
tures for the icon filled by the ZafDisplay conversion function
ZafDisplay::ConvertToOSIcon().

Constructors All ZafIconStruct constructors initialize the member variables associated with
an instantiated ZafIconStruct object. The default values set by the ZafIcon-
Struct constructors follow.

ZafIconStruct(void);

This constructor allocates a ZafIconStruct instance and initializes its data to
indicate that no icon information has been set.

ZafIconStruct(const ZafImageStruct &data);

This constructor allocates a ZafIconStruct instance and initializes its data to the
values in data. The environment-specific icon information is initialized to
indicate that the icon has not yet been converted.

StaticHandle

Member Initializations

ZafIconStruct
StaticHandle() false

ZafImageStruct
array null

height 0

StaticArray() false

width 0

266 Zinc Application Framework 5

ZafIconStruct(int width, int height, ZafLogicalColor
*array, bool staticArray);

This constructor allocates a ZafIconStruct instance and initializes its data to the
values passed in. width and height indicate the size of the image, array speci-
fies a pointer to the portable array of ZafLogicalColors, and staticArray indi-
cates if array is declared static.

The following code snippet shows how to create a ZafIconStruct object:

// Create an icon structure.
#define blk ZAF_CLR_BLACK
#define wte ZAF_CLR_WHITE
static ZafLogicalColor ZAF_FARDATA plusIconArray[81] =
{
 blk,blk,blk,blk,blk,blk,blk,blk,blk,
 blk,wte,wte,wte,wte,wte,wte,wte,blk,
 blk,wte,wte,wte,blk,wte,wte,wte,blk,
 blk,wte,wte,wte,blk,wte,wte,wte,blk,
 blk,wte,blk,blk,blk,blk,blk,wte,blk,
 blk,wte,wte,wte,blk,wte,wte,wte,blk,
 blk,wte,wte,wte,blk,wte,wte,wte,blk,
 blk,wte,wte,wte,wte,wte,wte,wte,blk,
 blk,blk,blk,blk,blk,blk,blk,blk,blk
};
static ZafIconStruct plusIcon(9, 9, plusIconArray, true);

Members bool StaticHandle(void) const;
StaticHandle bool SetStaticHandle(bool staticHandle);

If StaticHandle() is true, the environment-specific information (generally
known as a handle) of the ZafIconStruct is recognized as static, so that it will
not be deleted by ZAF, and may be used by several ZafIconStruct objects. This
attribute is initialized to false, but it may be changed with SetStaticHandle().
Both functions return the current value of the StaticHandle() attribute.

ZafImage 267

ZafImage

Inheritance ZafImage : ZafWindowObject : ZafElement

Declaration #include <z_image.hpp>

Description The ZafImage object supports the display of native image types such as bit-
maps and pictures. In Microsoft Windows and OS/2, bitmaps are supported.
In Motif, both xbm and xpm bitmaps are supported. In DOS, PCX images are
supported. On the Macintosh, PICT resources are supported.

In Motif, a third-party image library is utilized that must be built to support
xbm and xpm bitmaps in ZafImage. Information about this process is found in
the file readme.mtf in the readme subdirectory.

Constructors All ZafImage constructors initialize the member variables associated with an
instantiated ZafImage object. The default values set by the ZafImage and its
base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafImage. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

AutoSize PathName Wallpaper
defaultFilterName Scaled
PathID Tiled

Member Initializations

ZafImage
AutoSize() false

defaultFilterName[] (platform-dependent)

PathID() user-supplied parameter

PathName() user-supplied parameter

Scaled() false

Tiled() false

Wallpaper() false

ZafWindowObject
AcceptDrop() false†

CopyDraggable() false†

Focus() false†

Font() ZAF_FNT_NULL†

HelpContext() null†

HelpObjectTip() null†

268 Zinc Application Framework 5

ZafImage(int left, int top, int width, int height, const
ZafIChar *pathName, int pathID = -1);

This constructor is useful in straight-code situations. The left and top parame-
ters specify the position where the left and top of the object will be placed on
its parent. The width and height parameters specify the width and height of the
object. All values are specified in cell coordinates by default, but may be spec-
ified using another coordinate system if desired. The pathName parameter
may be either (1) the path and filename specifying the file on disk that contains
the image, or (2) the resource name of the image in the application file or an
open system file. The pathID parameter is the resource ID number of the
image in the application file or an open system file. Usually, either pathName
or pathID will be used, but not both. If pathName is null, it is ignored. If
pathID is -1, it is ignored.

ZafImage(const ZafImage ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafImage object and copies the object’s informa-
tion.

ZafImage(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, as most persistence is done at the ZafWindow level.

Sample ZafImage creation techniques follow:

// Create a sample window with an image.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);

LinkDraggable() false†

MoveDraggable() false†

Noncurrent() true†

OSDraw() false

TextColor() ZAF_CLR_NULL†

ZafElement
ClassID() ID_ZAF_IMAGE

ClassName() “ZafImage”

Member Initializations

ZafImage 269

// Load the image found in the file MYIMAGE.
window1->Add(new ZafImage(0, 1, 10, 6, "MYIMAGE"));
...
// Create a sample window with an image.
ZafWindow *window2 = new ZafWindow(10, 10, 40, 10);
// Load the image found in the application file with resource ID

3000.
const int myImageID = 3000;
window1->Add(new ZafImage(0, 1, 10, 6, ZAF_NULLP(ZafIChar),

myImageID));

Destructor virtual ~ZafImage(void);

This destructor is used to free the memory associated with a ZafImage object.
It chains to the ZafWindowObject and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafImage object, since it
is automatically destroyed when its parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. If the Set*() function
does not successfully change the state as requested, however, it will instead
return the current state.

AutoSize bool AutoSize(void) const;

virtual bool SetAutoSize(bool autoSize);

If AutoSize() is true, the image will automatically adjust the size of its back-
ground area to match the size of its displayed image. This is particularly useful
if the image has a border, and the border is to exactly surround the image. Note
that the original region (passed into the constructor or read from the persistent
object file) is preserved internally by ZAF and used if region computations are
required by later programmer interaction with the image.

If AutoSize() is false, the image will display with its original region. The
default value of this attribute is false, but the user may call SetAutoSize() to
change it.

defaultFilterName static ZafIChar ZAF_FARDATA defaultFilterName[];

defaultFilterName[] is a portable string that specifies a filter that accepts the
default image type. For example, “*.bmp” is used in Microsoft Windows. See
ZafFileDialog::Filter() for more information.

270 Zinc Application Framework 5

PathID int PathID(void);

virtual ZafError SetPathID(int pathID);

The PathID() is the resource ID number of the native image in the application
file or an open system file. Finding a resource by ID number is generally faster
than finding a resource by name, if the resource is in the application file or an
open system file. If PathID() is -1, it is ignored. The default value of this
attribute is -1, but the user may call SetPathID() to change it.

PathName const ZafIChar *PathName(void);

virtual ZafError SetPathName(const ZafIChar *pathName);

The PathName() may be either the resource name of the native image in the
application file or an open system file, or a path and filename of the file con-
taining the resource. Finding a resource by ID number is generally faster than
finding a resource by name, if the resource is in the application file or an open
system file. If PathName() is null it is ignored. The user may pass this
attribute’s initial value into the constructor, and the user may call SetPathID()
to change it.

Scaled bool Scaled(void) const;

virtual bool SetScaled(bool scaled);

If Scaled() is true, the image will automatically adjust its size (either stretching
or shrinking) to exactly match the size of its containing region. Scaled() and
Tiled() should never be true at the same time, as the resulting behavior is unde-
fined.

If Scaled() is false, the image will display with its original size. The default
value of this attribute is false, but the user may call SetScaled() to change it.

Tiled bool Tiled(void) const;

virtual bool SetTiled(bool tiled);

If Tiled() is true, the image will display enough copies of itself within its con-
taining region so as to completely fill the region. Some copies of itself on the
right and bottom of the containing region may be clipped to the region.
Scaled() and Tiled() should never be true at the same time, as the resulting
behavior is undefined.

If Tiled() is false, the image will display just one copy of itself. The default
value of this attribute is false, but the user may call SetTiled() to change it.

Wallpaper bool Wallpaper(void) const;

ZafImage 271

virtual bool SetWallpaper(bool wallpaper);

If Wallpaper() is true, the image will automatically become a SupportObject(),
adjust its background to occupy its parent’s entire client region, and display
behind all other objects in its parent’s client region. If a Wallpaper() image is
neither Scaled() nor Tiled(), the image will be centered within its parent’s cli-
ent region.

If Wallpaper() is false, the image will display as a normal child object. The
default value of this attribute is false, but the user may call SetWallpaper() to
change it.

272 Zinc Application Framework 5

ZafImageData
Inheritance ZafImageData : ZafData : ZafNotification, ZafElement

Declaration #include <z_idata1.hpp>

Description ZafImageData serves as the base class to all image types including: ZafBit-
mapData, ZafIconData, and ZafMouseData. The common aspect of these
derived classes is their derivation and use of the structure ZafImageStruct,
defined in z_dsp.hpp. ZafImageData provides protected members that allow
derived objects to clear and manipulate the image information associated with
their class.

ZafImageData is actually an abstract class! It’s abstract nature is not readily
apparent, but rather is implied by inheritance, since it does not provide an over-
load for the pure virtual base ZafData::Clear() function. Thus, derived image
classes must resolve the Clear() abstraction inherited from the base ZafData
class.

Constructor All ZafImageData constructors initialize the member variables associated with
an instantiated ZafImageData object. Default values initialized by ZafImage-
Data or overridden from base class constructors follow:

ZafImageData(void);

The ZafImageData class constructor, like the ZafData constructor, is protected.
The primary purpose of this constructor is to chain the ZafImageData portion
of the class with its base class constructors. Please refer to the specific data
object you are using, for complete information about the object’s construction.

ZafImageData(const ZafIChar *name, ZafDataPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Member Initializations

ZafElement
ClassID() ID_ZAF_IMAGE_DATA

ClassName() "ZafImageData"

ZafImageData 273

Destructor virtual ~ZafImageData(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafImageData object. Since ZafImageData does not define any new
members, its destructor simply chains to the ZafData class destructor.

You can destroy a ZafImageData pointer even though the class definition is
abstract. This is done by allocating a derived image object and then by setting
the returned object to an image data pointer. The following code shows the
correct use of the ZafImageData destructor under these conditions:

// Get a persistent bitmap button.
ZafImageData *image = new ZafBitmapData("help_button",

zafDefaultStorage);
...
// Free the image.
delete image;

The pointer assignment, shown above, is permitted because ZafImageData is a
base class to ZafBitmapData. When the bitmap object’s destructor is called,
the actual contents of the ZafBitmapData instance are freed because the base
class destructor is declared virtual.

274 Zinc Application Framework 5

ZafImageStruct

Inheritance Root struct

Declaration #include <z_dsp.hpp>

Description ZafImageStruct is used to store portable images as an array of ZafLogicalCol-
ors. ZafImageStruct is used a base struct for other image structs in ZAF that
have equivalent environment structures, such as ZafIconStruct and ZafMouse-
Struct.

Members ZafLogicalColor *array;
array array is a pointer to the array of ZafLogicalColors associated with the ZafIm-

ageStruct object. Since there is no constructor for this struct, this attribute is
not initialized at this level, so the programmer must initialize it if explicitly
creating a ZafImageStruct object.

StaticArray bool StaticArray(void) const;

bool SetStaticArray(bool staticArray);

If StaticArray() is true, array is recognized as static, so that it will not be
deleted by ZAF, and may be used by several ZafImageStruct objects. Since
there is no constructor for this struct, this attribute is not initialized at this level,
so the programmer must initialize it if explicitly creating a ZafImageStruct
object. The attribute may be initialized or changed with SetStaticArray().
Both functions return the current value of the StaticArray() attribute.

width int width, height;
height width and height specify the size of array.

array width
StaticArray height

ZafInteger 275

ZafInteger

Inheritance ZafInteger : ZafString : ZafWindowObject : ZafElement

Declaration #include <z_int1.hpp>

Description The ZafInteger object is a single-line integer object that allows user input
through the keyboard. ZafInteger inherits base class functionality from Zaf-
String, allowing support for operations such as copy/cut/paste. See Zaf-
String::AllowInvalid() and ZafString::ReportInvalid() for information on these
attributes and how they affect validation for this class.

All ZafInteger objects refer to data contained in a ZafIntegerData object (refer
to this class for additional essential information).

Formats ZafString and derived classes parse input and display output based on default
or programmer-defined input and output formats. Programmers may use the
SetInputFormat() and SetOutputFormat() families of functions to change the
default format. These functions are documented in the ZafString reference.

Each class derived from ZafFormatData handles a different set of formatting
arguments, in addition to those supported by its base classes. ZafIntegerData
(and therefore ZafInteger) handles the following arguments:

Constructors All ZafInteger constructors initialize the member variables associated with an
instantiated ZafInteger object. The default values set by the ZafInteger and its
base class constructors follow, if they differ from those set by the base class

Event SetInteger
IntegerData Value

Format Argument Substitution

%d, %D Decimal integer

%o, %O Octal integer

%x Hexadecimal integer using lower-case

%X Hexadecimal integer using upper-case

%i Decimal, hexadecimal, or octal integer

%u Unsigned decimal integer

276 Zinc Application Framework 5

constructor, or if a blocking function is implemented in ZafInteger. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

ZafInteger(int left, int top, int width, long value);

This constructor is useful in straight-code situations, particularly if the ZafInte-
ger object is to create, maintain and destroy its own ZafIntegerData object
automatically. left and top specify the position where the left and top of the
object will be placed on its parent, while width specifies the width of the
object. All values are specified in cell coordinates by default, but may be spec-
ified using another coordinate system if desired. value is the value that initially
appears in the new ZafInteger object.

ZafInteger(int left, int top, int width, ZafIntegerData
*integerData = ZAF_NULLP(ZafIntegerData));

This constructor is useful in straight-code situations where a ZafIntegerData
object has already been created. This constructor could be used to maintain
data pieces manually, rather than having the ZafInteger class create and main-
tain the data pieces automatically. For example, to maintain a database of
ZafIntegerData objects and tie them into ZafInteger objects, maintain some
ZafIntegerData objects and create ZafInteger objects using the ZafIntegerData
objects by passing them into integerData. For more information on using
ZafIntegerData objects, see the chapter on ZafIntegerData. left, top, and width
are the same as the previous constructor.

ZafInteger(const ZafInteger ©);

Member Initializations

ZafInteger
IntegerData() null

ZafString

LowerCase() false†

Password() false†

StringData() null†

UpperCase() false†

VariableName() false†

ZafElement
ClassID() ID_ZAF_INTEGER

ClassName() “ZafInteger”

ZafInteger 277

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafInteger object and copies the object’s informa-
tion. If the data objects are StaticData(), then the new ZafInteger object simply
points to the original data objects. If the data objects are not StaticData(), then
a copy is made for the new ZafInteger object. This behavior allows a program-
mer to use static data for more than one ZafInteger object.

ZafInteger(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Sample ZafInteger creation techniques follow:

// Create a sample window with integer objects.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);
// Create integers and pass in the values directly.
window1->Add(new ZafInteger(0, 1, 25, 100));
window1->Add(new ZafInteger(0, 2, 25, 200));
...
// Create a sample window with integer objects.
ZafWindow *window2 = new ZafWindow(10, 10, 40, 10);
// Create integer data objects.
ZafIntegerData *integerData1 = new ZafIntegerData(100);
ZafIntegerData *integerData2 = new ZafIntegerData(200);
// Create integers that use the data previously created.
window2->Add(new ZafInteger(0, 1, 25, integerData1));
window2->Add(new ZafInteger(0, 2, 25, integerData2));

Destructor virtual ~ZafInteger(void);

The destructor is used to free the memory associated with a ZafInteger object,
including all the data object pieces that are Destroyable(). It chains to the Zaf-
String, ZafWindowObject, and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafInteger object, since
it is automatically destroyed when its parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

278 Zinc Application Framework 5

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events that get sent to the ZafInteger
object, whether by processing the events itself, or by passing them to Zaf-
String::Event() for base class processing. See ZafWindowObject for more
information.

ZafInteger handles the following events differently than its base classes:

IntegerData ZafIntegerData *IntegerData(void) const;

virtual ZafError SetIntegerData(ZafIntegerData
*integerData);

The IntegerData() object is where the actual data is stored. The IntegerData()
piece may be shared among several ZafInteger objects, or it may belong to a
single ZafInteger object. If shared among several ZafInteger objects, all the
associated ZafInteger objects will be updated when the IntegerData() piece
changes. SetIntegerData() may be used to associate an IntegerData() object
with a ZafInteger object. For more information on data sharing in ZAF, see
ZafDataManager. SetIntegerData() will delete the previous IntegerData()
object if it is Destroyable() and no other object uses it.

The return value for IntegerData() is a pointer to the IntegerData() object asso-
ciated with the ZafInteger object. The return value for SetIntegerData() is nor-
mally ZAF_ERROR_NONE. The following code shows the proper use of
these functions:

// Get the data.
const ZafIntegerData *data = integer1->IntegerData();
...
// Add the integer data.
ZafIntegerData *newData = new ZafIntegerData(100);

integer1->SetIntegerData(newData);

Event() Description

N_RESET_I18N causes the object to redisplay its data according to
the new internationalization values

S_COPY_DATA causes the object to copy event.windowObject’s Inte-
gerData() if event.windowObject is a ZafInteger
object

S_SET_DATA causes the object to create a new IntegerData()
object, then copy into it event.windowObject’s Integ-
erData() if event.windowObject is non-null and is a
ZafInteger object

ZafInteger 279

SetInteger virtual ZafError SetInteger(long value);

SetInteger() sets the value of the ZafIntegerData associated with this ZafInte-
ger from value.

Value long Value(void);

Value() returns the value of the ZafIntegerData associated with this ZafInteger
as a long.

280 Zinc Application Framework 5

ZafIntegerData

Inheritance ZafIntegerData : ZafFormatData : ZafData :
ZafNotification, ZafElement

Declaration #include <z_int.hpp>

Description ZafIntegerData objects can be used to store and manipulate 32-bit integers.

ZafIntegerData combines number encapsulation with data and object notifica-
tion from ZafData. It is most often used in conjunction with the ZafInteger
user interface object but may be used as a stand-alone object if desired.

ZafIntegerData supports the use of printf-style formatting and parsing argu-
ments during string operations. Refer to standard library documentation for
detailed information on printf functions and conversion characters.

Constructors ZafIntegerData constructors allocate space for the integer data and initialize
the member variables associated with a ZafIntegerData object.

The default values set by ZafIntegerData follow, if they are overridden from
those set by base class constructors:

ZafIntegerData(void);

The basic constructor allocates a ZafIntegerData instance and initializes its
value to 0.

Clear operator -- operator *=
FormattedText operator ++ operator /=
long operator = operator %=
SetInteger operator +=
Value operator -=

Member Initializations

ZafIntegerData
Value() (varies by constructor)

ZafElement
ClassID() ID_ZAF_INTEGER_DATA

ClassName() “ZafIntegerData”

ZafIntegerData 281

ZafIntegerData(long value);

This constructor allocates a ZafIntegerData instance and initializes its contents
to value.

ZafIntegerData(const ZafIChar *string, const ZafIChar
*format = ZAF_NULLP(ZafIChar));

This constructor allocates a ZafIntegerData instance and initializes its value to
the numeric equivalent of string. The conversion uses the printf-style specifier
format to interpret the string. If format is null ZafIntegerData uses its locale-
specific default format.

ZafIntegerData(const ZafIntegerData ©);

This constructor is the copy constructor. It allocates a new ZafIntegerData
instance and copies all member data from copy.

ZafIntegerData(const ZafIChar *name, ZafDataPersistence
&persist);

This constructor is the persistent constructor. It allocates a new ZafIntegerData
instance and reads most member data from directory name in the persistent
data file referred to by persist. The StringID() of the new data is name.

// Sample ZafIntegerData creation techniques
long value = 100;
ZafIntegerData integer1(value);
ZafIntegerData copyInteger = integer1;
ZafIntegerData zeroInteger;

Destructor virtual ~ZafIntegerData(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafIntegerData object. Unless StaticData() is true, a ZafIntegerData
object will be destroyed automatically when all ZafInteger objects that refer to
it are destroyed.

Members virtual void Clear(void);
Clear Clear() is a virtual function that sets the value of a ZafIntegerData object to

zero.

282 Zinc Application Framework 5

FormattedText virtual int FormattedText(ZafIChar *buffer, int
maxLength, const ZafIChar *format = 0) const;

FormattedText() fills buffer with a string representation of the Zaf-IntegerData
using the printf-style specifier format to build the string. A locale-specific
default format is used if format is not included. Buffer contents will be trun-
cated if they exceed maxLength characters. FormattedText() returns the inte-
ger value it receives from its call to sprintf().

// Show results of FormattedText().
ZafIChar buffer[256];

ZafIntegerData myint(123);
myint.FormattedText(buffer, 256);
printf("decimal int - %s\n", buffer);
myint.FormattedText(buffer, 256, "%X");
printf("hexadecimal - %s\n", buffer);

==========
decimal int - 123
hexadecimal - 7B

SetInteger virtual ZafError SetInteger(long value);

virtual ZafError SetInteger(const ZafIChar *buffer, const
ZafIChar *format);

virtual ZafError SetInteger(const ZafIntegerData
&integer);

SetInteger() functions set the value of the ZafIntegerData object from various
numeric input types, another ZafIntegerData, or an interpreted string. Refer to
FormattedText for more information on ZafIntegerData/string conversions.
Overloaded operator = offers similar functionality to SetInteger() and is more
commonly used.

Value long Value(void) const;
long operator long();

Value() returns the value of a ZafIntegerData as a long. The convenience oper-
ator long(), which returns Value(), is more commonly used.

// Perform numerical operations on a ZafIntegerData
ZafIntegerData myint(123);
myint = myint.Value() + 15;
printf("integer - %u\n", myint);

ZafIntegerData 283

myint = myint - 21;
printf("integer - %u\n", myint);

==========
integer - 138
integer - 117

operator -- ZafIntegerData operator--(void);

ZafIntegerData operator--(int);

These pre- and post-operators decrement the ZafIntegerData object’s value by
1.

operator ++ ZafIntegerData operator++(void);

ZafIntegerData operator++(int);

These pre- and post-operators increment the ZafIntegerData object’s value by
1.

operator = ZafIntegerData &operator=(long value);

This operator assigns the ZafIntegerData object’s value to the input value.

operator += ZafIntegerData &operator+=(long value);

This operator increments the ZafIntegerData object’s value by the input value.

operator -= ZafIntegerData &operator-=(long value);

This operator decrements the ZafIntegerData object’s value by the input value.

operator *= ZafIntegerData &operator*=(long value);

This operator multiplies the ZafIntegerData object’s value by the input value
and uses the resulting product to set the ZafIntegerData object’s value.

operator /= ZafIntegerData &operator/=(long value);

This operator divides the ZafIntegerData object’s value by the input value and
uses the resulting quotient to set the ZafIntegerData object’s value.

284 Zinc Application Framework 5

operator %= ZafIntegerData &operator%=(long value);

This operator divides the ZafIntegerData object’s value by the input value and
uses the resulting remainder to set the ZafIntegerData object’s value.

ZafKeyboard 285

ZafKeyboard

Inheritance ZafKeyboard : ZafDevice : ZafElement

Declaration #include <z_keybrd.hpp>

Description ZafKeyboard is the class that defines keyboard device support. A keyboard
device accepts events from a keyboard, so keys typed by the end user enter the
ZAF system through ZafKeyboard.

Constructors All ZafKeyboard constructors initialize the member variables associated with
an instantiated ZafKeyboard object. Default values set by the ZafKeyboard
follow, as well as base class values when overridden by ZafKeyboard.

ZafKeyboard(ZafDeviceState state = D_ON);

This constructor is used to instantiate a ZafKeyboard object to be added to a
ZafEventManager object. state specifies the initial state of the device.

ZafKeyboard(const ZafKeyboard ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafKeyboard object and copies the object’s infor-
mation. An example of how to create a ZafKeyboard object follows:

// Instantiate the input devices.
ZafEventManager *eventManager = new ZafEventManager;

AltPressed Event ShiftPressed
CtrlPressed Poll

Member Initializations

ZafDevice
DeviceType() E_KEYBOARD

ZafElement
ClassID() ID_ZAF_KEYBOARD

ClassName() "ZafKeyboard"

NumberID() ID_ZAF_KEYBOARD

StringID() "ZafKeyboard"

286 Zinc Application Framework 5

eventManager->Add(new ZafKeyboard);
eventManager->Add(new ZafMouse);
eventManager->Add(new ZafCursor);

Destructor virtual ~ZafKeyboard(void);

The destructor is used to free the memory associated with a ZafKeyboard
object. It chains to the ZafDevice and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafKeyboard object,
since it is automatically destroyed when the event manager is destroyed. For
more information on device object deletion, see ZafEventManager::~ZafE-
ventManager().

Members bool AltPressed(unsigned int shiftState) const;
AltPressed AltPressed() returns true if shiftState indicates that the <Alt> (or <Command>)

key was pressed; otherwise it returns false. When a keyboard event comes
through the system, event.key.shiftState may be directly passed into Alt-
Pressed().

CtrlPressed bool CtrlPressed(unsigned int shiftState) const;

CtrlPressed() returns true if shiftState indicates that the <Control> key was
pressed; otherwise it returns false. When a keyboard event comes through the
system, event.key.shiftState may be directly passed into CtrlPressed().

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events sent to the ZafKeyboard object.
ZafKeyboard handles the D_STATE message, which causes a device to return
its state.

Poll virtual void Poll(void);

In some environments, the Poll() function checks the keyboard device for any
input events and posts them on the event manager’s queue, if the ZafKey-
board’s state is not D_OFF. In other environments where keyboard events are
handled automatically by the native environment’s event queue, Poll() simply
blocks keyboard events from coming through ZAF’s event manager queue if
the ZafKeyboard’s state is D_OFF.

ZafKeyboard 287

ShiftPressed bool ShiftPressed(unsigned int shiftState) const;

ShiftPressed() returns true if shiftState indicates that the <Shift> key was
pressed; otherwise it returns false. When a keyboard event comes through the
system, event.key.shiftState may be directly passed into ShiftPressed().

288 Zinc Application Framework 5

ZafKeyStruct

Inheritance Root struct

Declaration #include <z_key.hpp>

Description ZafKeyStruct is used to store information about a keystroke. The most com-
mon use of ZafKeyStruct is by ZafEventStruct’s key member. When a key-
board event comes through the system, event.key contains the information
about the keystroke.

Members ZafRawCode shiftState;
shiftState shiftState specifies the state of the modifier keys when the keystroke occurred.

This member may contain any combination of the following bitwise values:

value ZafIChar value;

value specifies the character value of the key that was pressed, if it is mappa-
ble. In ISO 8859-1 mode the value is an ISO 8859-1 code, in Unicode mode
the value is a Unicode code, and in native mode the value is an ASCII code.

shiftState value

S_ALT Indicates that the <alt> key was depressed

S_CAPS_LOCK Indicates that the <caps lock> key was depressed

S_CMD Indicates that the <command> key was depressed

S_CTRL Indicates that the <control> key was depressed

S_INSERT Indicates that the <insert> key was depressed

S_KEYDOWN Indicates that the key was pressed

S_KEYUP Indicates that the key was released

S_LEFT_SHIFT Indicates that the left <shift> key was depressed

S_NUM_LOCK Indicates that the <num lock> key was depressed

S_OPT Indicates that the <option> key was depressed

S_RIGHT_SHIFT Indicates that the right <shift> key was depressed

S_SCROLL_LOCK Indicates that the <scroll lock> key was depressed

S_SHIFT Indicates that either <shift> key was depressed

ZafLanguageData 289

ZafLanguageData

Inheritance ZafLanguageData : ZafDataRecord : ZafData :
(ZafNotification, ZafElement), ZafList

Declaration #include <z_lang.hpp>

Description ZafLanguageData maintains message tables so that different languages may
easily be supported by a single executable and a data file containing the appli-
cation messages (see ZafMessageStruct for more information on the format of
the message table entries). Message tables that utilize this functionality for
stock library objects (error messages, etc.) are included in the file i18n.znc,
which must be available for the ZAF application that requires these tables.
(Place i18n.znc in the directory with the application or the directory specified
by ZAF_BIN. The i18n.znc file is shipped in the zaf/bin directory.) Develop-
ers may also create their own message tables for customized applications.

Individual ZafLanguageData instances are normally managed by the ZafLan-
guageManager for easy access within an application. See
ZafI18nData::ResetI18n() for more information about internationalization of
an application.

Many ZAF classes automatically load ZafLanguageData objects of their own
via requests to ZafLanguageManager::Allocate(), but the programmer may
create ZafLanguageData objects to keep track of tables of strings as needed.

Constructors All ZafLanguageData constructors initialize the member variables associated
with an instantiated ZafLanguageData object. The default values set by the
ZafLanguageData and its base class constructors follow, if they differ from
those set by the base class constructor.

Clear Lock SetMessages
GetMessage Locked StaticData
GetMessageData Messages UnLock
LanguageName SetMessage ZafMessageStruct

Member Initializations

ZafLanguageData
StaticData() false

ZafElement
ClassID() ID_ZAF_LANGUAGE_DATA

ClassName() "ZafLanguageData"

290 Zinc Application Framework 5

ZafLanguageData(bool staticData = false);

This constructor creates a new empty language table that may be loaded using
SetLanguage(). staticData indicates the initial value of StaticData().

ZafLanguageData(ZafLanguageStruct *data, bool staticData
= false);

This constructor creates a new language table based on the table specified by
data. staticData specifies the value of StaticData(). All the information in
data is copied to the new language table.

ZafLanguageData(const ZafLanguageData ©);

The copy constructor creates a new ZafLanguageData object and initializes its
data from copy.

ZafLanguageData(const ZafIChar *name, ZafDataPersistence
&persist, const ZafIChar *languageName =
ZAF_NULLP(ZafIChar));

The final constructor is used for persistence. Different objects may be stored
according to language. languageName specifies which language to use when
loading the object. If languageName is null, the current language is used (see
LanguageName() for more information). Refer to ZafWindow for more infor-
mation, since most persistence is done at the ZafWindow level.

Destructor virtual ~ZafLanguageData(void);

The destructor is used to free the memory associated with a ZafLanguageData
object. It chains to the ZafI18nData, ZafData, ZafNotification, ZafElement
destructors.

Members
Clear virtual void Clear(void);

Clear() clears the language table associated with this ZafLanguageData object
and deletes its language table if StaticData() is false.

GetMessage ZafIChar *GetMessage(ZafNumberID numberID, bool
useDefault = false, ZafIChar *hotKeyChar =
ZAF_NULLP(ZafIChar), int *hotKeyIndex =
ZAF_NULLP(int)) const;

ZafLanguageData 291

ZafIChar *GetMessage(const ZafIChar *stringID, bool
useDefault = false, ZafIChar *hotKeyChar =
ZAF_NULLP(ZafIChar), int *hotKeyIndex =
ZAF_NULLP(int)) const;

GetMessage() finds the message in the language table according to numberID
or stringID. If the message was not found and useDefault is true, the first mes-
sage in the table will be returned; if the message was not found and useDefault
is false, null is returned. The hot key character associated with the message is
returned in hotKeyChar if it is not null, and the hot key index is returned in hot-
KeyIndex if it is not null. A pointer to the message is returned if it was found.

GetMessageData ZafMessageData *GetMessageData(const ZafIChar *stringID,
bool useDefault = false);

ZafMessageData *GetMessageData(ZafNumberID numberID, bool
useDefault = false);

GetMessageData() finds the message in the language table according to num-
berID or stringID. If the message was not found and useDefault is true, the
first message in the table will be returned; if the message was not found and
useDefault is false, null is returned. A pointer to a ZafMessageData object cor-
responding to the message is returned if it was found.

LanguageName static const ZafIChar *LanguageName(void);

static ZafError SetLanguageName(const ZafIChar
*languageName);

LanguageName() is the two-character ISO code for a language, such as "en"
for English. SetLanguageName() uses the two-character ISO code language-
Name to reset the language information for an application, and is called from
ZafI18nData::SetI18nName(). The programmer should normally not call Set-
LanguageName(). Instead, ZafI18nData::ResetI18n() should be used to
change the active language. Refer to the file Readme.i18 for the most current
list of languages defined in ZAF.

Lock void Lock(void);
Locked bool Locked(void);
UnLock void UnLock(void);

If Locked() is true, the message table associated with the ZafLanguageData is
being used, and it will not be deleted by the ZafLanguageManager. Lock()
may be called to lock the message table, and UnLock() may be called to unlock
the message table. These are advanced methods used internally by ZAF and
should normally not be used by the programmer.

292 Zinc Application Framework 5

Messages int Messages(void);

Messages() returns the number of entries in the message table associated with
the ZafLanguageData.

SetMessage virtual ZafError SetMessage(ZafNumberID numberID,
ZafIChar *text, ZafIChar hotKeyChar = 0, int
hotKeyIndex = -1);

SetMessage() finds the message in the table with numberID, and sets its infor-
mation according to the information passed into the other parameters. text
specifies the message text, hotKeyChar specifies the hot key character, and
hotKeyIndex specifies the hot key index. If the message was set successfully,
ZAF_ERROR_NONE is returned; otherwise, ZAF_ERROR_INVALID_ID is
returned if the message was not found or ZAF_ERROR_INVALID_SOURCE
is returned if the table was empty.

SetMessages virtual ZafError SetMessages(ZafMessageStruct *value);

virtual ZafError SetMessages(const ZafLanguageData
&data);

SetMessages() resets the language table associated with the ZafLanguageData
object by copying the information from value or data and causing the language
manager to update all its data objects that rely on the language table entries.

StaticData bool StaticData(void) const;

virtual bool SetStaticData(bool staticData);

If StaticData() is true, the message table associated with the ZafLanguageData
object is recognized as static, so that it will not be deleted by ZAF, and may be
used by several ZafLanguageData objects. The attribute may be changed with
SetStaticArray(). Both functions return the current value of the StaticData()
attribute.

ZafMessageStruct operator ZafMessageStruct *();

This operator returns a pointer to the language table associated with this
ZafLanguageData object.

ZafLanguageManager 293

ZafLanguageManager

Inheritance ZafLanguageManager : ZafDataRecord : ZafData :
(ZafNotification, ZafElement), ZafList

Declaration #include <z_lang.hpp>

Description ZafLanguageManager manages ZafLanguageData objects and allows different
languages to be easily supported by a single executable and a separate data file
containing the application messages. See ZafLanguageData for information
about individual message sets used by an application.

When a ZafWindowObject is created it requests access to various strings by
using ZafLanguageManager::Allocate(). If the strings are not yet available,
the language manager attempts to load them from an external data file that con-
tains them (i18n.znc by default). These strings may be available in many lan-
guages. The language currently specified by ZafLanguageManager::
Language() will be loaded if available. If not available, a default language will
be loaded from the data file. If neither is available, compiled-in static default
strings will be used.

See ZafI18nData::ResetI18n() for more general information about internation-
alization of an application.

Constructors The ZafLanguageManager constructor initializes the member variables associ-
ated with an instantiated ZafLanguageManager object. The default values set
by the ZafLanguageManager and its base class constructors follow, if they dif-
fer from those set by the base class constructor.

ZafLanguageManager(void);

Allocate Free LanguageFree
blankString Language LanguageName
errorString LanguageAllocate

Member Initializations

ZafLanguageManager
Language() defaultLanguageName

ZafElement
ClassID() ID_ZAF_LANGUAGE_MANAGER

ClassName() "ZafLanguageManager"

294 Zinc Application Framework 5

This constructor creates a new empty language manager. Normally, this con-
structor will not be called by the programmer, since ZafApplication creates the
global zafLanguageManager member.

Destructor virtual ~ZafLanguageManager(void);

The destructor is used to free the memory associated with a ZafLanguageMan-
ager object.Members

Allocate static ZafLanguageData *Allocate(const ZafIChar
*stringID, ZafMessageStruct *defaultData =
ZAF_NULLP(ZafMessageStruct));

Allocate() returns a pointer to the ZafLanguageData object identified by a
stringID of stringID. If it hasn’t been loaded yet, Allocate() asks ZafDataMan-
ager to load the object using ZafDataManager::AllocateData(). If the object
cannot be found, the message table defaultData is used to create a new ZafLan-
guageData object to be returned. The ZafLanguageData returned is added to
the language manager object.

blankString static ZafIChar ZAF_FARDATA blankString[];

blankString specifies a default string with simply a null terminator in it for use
in clearing out any string in an application, since it is public and static.

errorString static ZafIChar ZAF_FARDATA errorString[];

errorString specifies a default string with the word "Error" in it for the current
language being used in the application for use anywhere in an application,
since it is public and static.

Free static void Free(ZafLanguageData *messageGroup);

Free() subtracts messageGroup from the language manager object and deletes
it when it is no longer in use.

Language const ZafIChar *Language(void);

ZafError SetLanguage(const ZafIChar *languageName);

Language() is the two-character ANSI code for a language, such as "en" for
English. SetLanguage() uses the two-character ANSI code languageName to
reset the language information for an application, and is called from
ZafI18nData::SetI18nName(). The programmer should normally not call Set-

ZafLanguageManager 295

Language(). Instead, ZafI18nData::ResetI18n() should be used to change the
active language. Refer to the file readme.i18 for the most current list of lan-
guages defined in ZAF.

LanguageAllocate static void LanguageAllocate(const ZafIChar *name =
ZAF_NULLP(ZafIChar));

LanguageAllocate() is called by ZafI18nData to allocate the language manager
object for an application initially using the language specified by name. name
must be non-null, and is the two-character ANSI code for a language, such as
"en" for English. The programmer should normally not call LanguageAllo-
cate(). Instead, ZafI18nData::ResetI18n() should be used to change the active
language. Refer to the file readme.i18 for the most current list of languages
defined in ZAF. Other languages may be created by the programmer using
Zinc Designer.

LanguageFree static void LanguageFree(bool globalRequest = false);

LanguageFree() is called by ZafI18nData to delete the language manager
object for an application with globalRequest being true. The programmer
should normally not call LanguageFree().

LanguageName static const ZafIChar *LanguageName(void);

static ZafError SetLanguageName(const ZafIChar
*languageName);

LanguageName() is a static member that may be used instead of calling
zafLanguageManager->Language(). SetLanguageName() is a static member
that may be used instead of calling zafLanguageManager->SetLanguage().
See Language() for more information.

296 Zinc Application Framework 5

ZafList

Inheritance Root class

Declaration #include <z_list.hpp>

Description ZafList provides support for linked lists of ZafElement objects. Through mul-
tiple inheritance, ZafWindow and other classes derive from ZafList to maintain
lists of children.

ZafList is also useful as a container class. Any object derived from ZafEle-
ment may be kept in a ZafList.

Constructor ZafList initializes its members to the following default values:

ZafList(ZafCompareFunction compareFunction =
ZAF_NULLF(ZafCompareFunction));

The ZafList class constructor creates an empty ZafList object. compareFunc-
tion specifies the function used when elements are compared against each
other to determine their order in the list. Below is the definition of ZafCom-
pareFunction. The compare function returns zero if the two parameters are
considered equal. If the first should be sorted before the second, then some
integer less than zero is returned; otherwise some integer greater than zero is
returned.

typedef int (*ZafCompareFunction)(ZafElement *, ZafElement *);

Add Find Sort
CompareFunction First Subtract
Count Get operator ()
Current Index operator +
Destroy Last operator -

Member Initializations

ZafList
CompareFunction() user-supplied parameter

Count() 0

Current() null

First() null

Last() null

ZafList 297

The following code snippet shows how to create a ZafList object and use it to
store a list of objects:

// Create an empty list object.
ZafList *list = new ZafList;

// Create several string data objects and store them
// in the list.
for (int i = 0; i < 10; i++)
{
ZafIChar tempString[16];
sprintf(tempString, "String %d", i);
list->Add(new ZafStringData(tempString));

}

Destructor virtual ~ZafList(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafList object. All the elements attached to the list are deleted.

Members ZafElement *Add(ZafElement *element);
Add ZafElement *Add(ZafElement *element, ZafElement

*position);
operator + ZafList &operator+(ZafElement *element);

These functions and operator add element to the ZafList object. The Add()
functions return a pointer to the object that was added, and the operator returns
the ZafList object (useful in multiple uses of the operator in a single state-
ment). position, if specified, refers to the element already in the list that ele-
ment is inserted before.

If position is not specified, as with the first Add() function and with the opera-
tor, the function returned by CompareFunction() is called to determine the
position of the new element in the list.

CompareFunction virtual ZafCompareFunction CompareFunction(void) const;

virtual ZafCompareFunction
SetCompareFunction(ZafCompareFunction
compareFunction);

The function specified by CompareFunction() is used to determine element
ordering in the ZafList. If CompareFunction() is null and no position is speci-
fied in the Add() function, each new element is added to the end of the list.
SetCompareFunction() may be called to set the function used to compare ele-

298 Zinc Application Framework 5

ments. A pointer to the compare function is returned by both of these func-
tions. See the typedef of ZafCompareFunction under the Constructor section.

If SetCompareFunction() is called after the list has been created and populated
with elements, Sort() must be called to reorder the list using the new Com-
pareFunction().

Count int Count(void) const;

Count() returns the number of elements in the ZafList.

Current ZafElement *Current(void) const;

void SetCurrent(ZafElement *element);

Current() specifies the element in the list considered to be current. Current() is
not modified by the ZafList class, but must be maintained by the class utilizing
the ZafList. Current() will remain null, as it is initialized, unless SetCurrent()
is called with element specifying the element in the list to be considered cur-
rent.

If the Current() element in the list is subtracted from the list, Current() will be
set to null. The ZAF classes that inherit from ZafList call SetCurrent() inter-
nally (usually within NotifyFocus()), and the programmer should normally not
call SetCurrent().

Destroy virtual void Destroy(void);

Destroy() subtracts all the elements from the list and deletes them, in effec-
tively making the list empty.

Find ZafElement *Find(ZafNumberID numberID);

ZafElement *Find(const ZafIChar *stringID);

These functions return a pointer to the element in the list with either the identi-
fier numberID or the identifier stringID. If an element cannot be found with
the identifier provided, null is returned. See ZafElement for more information
on these identifiers.

First ZafElement *First(void) const;

First() returns a pointer to the first element in the list. If the list is empty, null
is returned.

ZafList 299

Get ZafElement *Get(int (*findFunction)(void *element1, void
*matchData), void *matchData);

ZafElement *Get(int index);
operator () ZafElement *operator()(int index);

The first Get() function returns a pointer to the element in the list if findFunc-
tion returns zero based on matchData. In other words, Get() calls findFunction
on each element in the list until one is found that is considered to match match-
Data. If the element is found, a pointer to it is returned; otherwise null is
returned.

The second function and the operator return a pointer to the element in the list
with the zero- based index. If the element does not exist, null is returned.

Index int Index(ZafElement const *element) const;

Index() returns the zero-based index of the element in the list. If the element is
not in the list, -1 is returned.

Last ZafElement *Last(void) const;

Last() returns a pointer to the last element in the list. If the list is empty, null is
returned.

Sort virtual void Sort(void);

Sort() causes the elements in the list to be reordered according to Com-
pareFunction(). Add() places each element in the list appropriately, but Sort()
must be called when the elements are out of place as a result of either a call to
SetCompareFunction() or a call to Add() with the position specified.

Subtract ZafElement *Subtract(ZafElement *element);
operator - ZafList &operator-(ZafElement *element);

This function and operator subtract element from the ZafList object. Subtract()
returns a pointer to the next object in the list (or null if element is the last ele-
ment), and the operator returns the ZafList object (useful in multiple uses of
the operator in a single statement). If element is Current(), then Current() is set
to null.

300 Zinc Application Framework 5

ZafListBlock

Inheritance ZafListBlock : ZafList

Declaration #include <z_list.hpp>

Description ZafListBlock is a container object used as a base class by ZafQueueBlock to
maintain a list block of ZafElement objects. Only ZafElement objects may be
added to a ZafListBlock.

Constructors All ZafListBlock constructors initialize the member variables associated with
an instantiated ZafListBlock object.

ZafListBlock(int noOfElements, ZafCompareFunction
compareFunction = ZAF_NULLF(ZafCompareFunction));

This constructor creates a ZafListBlock of noOfElements ZafElements. com-
pareFunction specifies the function used to compare elements when sorting
them in the list, and is passed into the ZafList constructor. See ZafList for
more information about compare functions.

Destructor virtual ~ZafListBlock(void);

The destructor is used to free the memory associated with a ZafListBlock
object, including all the ZafElement objects associated with it. It chains to the
ZafList destructor.

Members bool Full(void) const;
Full Full() returns true if the list block is full, meaning no other elements may be

added to it. Otherwise, it returns false.

Full

ZafLocaleData 301

ZafLocaleData

Inheritance ZafLocaleData : ZafI18nData : (ZafData :
ZafNotification, ZafElement), ZafLocaleStruct)

Declaration #include <z_loc.hpp>

Description ZafLocaleData maintains the locale information necessary to internationalize
an application, such as month/day/year order, currency symbols, and decimal
separators (see ZafLocaleStruct for more information). Locale information is
loaded from the operating system at application start-up (ZafApplication calls
LocaleAllocate()), and the programmer may change locale information at run-
time. The locale tables that enable this functionality are included in the file
i18n.znc, which must be available in the same directory as the ZAF application
that requires these tables. The i18n.znc file is shipped in the zaf/bin directory.
See ZafI18nData::ResetI18n() for more information about internationalization
of an application.

The programmer will generally not create a ZafLocaleData object, as the glo-
bal zafLocale is instantiated by the static method LocaleAllocate() at start-up.

Constructors All ZafLocaleData constructors initialize the member variables associated with
an instantiated ZafLocaleData object. The default values set by the ZafLocale-
Data and its base class constructors follow, if they differ from those set by the
base class constructor.

ZafLocaleData(void);

This constructor creates a new locale copied from the canonical locale (see
canonicalLocale below).

canonicalLocale LocaleFree TimeStamp
Clear LocaleName
LocaleAllocate SetLocale

Member Initializations

ZafElement
ClassID() ID_ZAF_LOCALE_DATA

ClassName() "ZafLocaleData"

302 Zinc Application Framework 5

ZafLocaleData(const ZafLocaleStruct &data);

This constructor creates a new locale based on the locale specified in the
ZafLocaleStruct data. All the information in data is copied to the new locale.

ZafLocaleData(const ZafLocaleData ©);

The copy constructor creates a new ZafLocaleData object and initializes its
data from copy.

ZafLocaleData(const ZafIChar *name, ZafDataPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Destructor virtual ~ZafLocaleData(void);

The destructor is used to free the memory associated with a ZafLocaleData
object. It chains to the ZafI18nData, ZafData, ZafNotification, ZafElement
destructors. The programmer should normally not call this destructor, since
the locale is destroyed by ZafApplication at program termination. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members static ZafLocaleData *canonicalLocale;
canonicalLocale The currently active locale in a program may be changed at any time, which

presents the need for a canonical , or common form for storing locale informa-
tion. canonicalLocale stores the canonical locale information used for storing
data that contains locale information. For example, when a data object con-
taining locale-dependent information is stored, it is converted to the canonical,
or common locale, so that when the information gets used again, it can be con-
verted from a known form.

Clear virtual void Clear(void);

Clear() copies the locale data from canonicalLocale, in effect clearing the
locale information.

SetLocale ZafError SetLocale(const ZafLocaleStruct &value);

SetLocale() changes the currently active locale by copying the locale informa-
tion from value and causing the data manager to update all its data objects that
rely on local information.

ZafLocaleData 303

LocaleAllocate static void LocaleAllocate(const ZafIChar *name =
ZAF_NULLP(ZafIChar));

LocaleAllocate() is called by ZafI18nData to allocate the locale data object for
an application using the locale specified by name. name is the two-character
ISO code for a locale, such as "US" for the United States. If name is null, the
default locale compiled into the application is used. The programmer should
normally not call LocaleAllocate(). Instead, ZafI18nData::ResetI18n() should
be used to change the active locale. Refer to the file Readme.i18 for the most
current list of locales defined in ZAF. Other locales may be created by the pro-
grammer using Zinc Designer.

LocaleFree static void LocaleFree(bool globalRequest = false);

LocaleFree() is called by ZafI18nData to delete the locale data object for an
application with globalRequest being true. The programmer should normally
not call LocaleFree().

LocaleName static const ZafIChar *LocaleName(void);

static ZafError SetLocaleName(const ZafIChar
*localeName);

LocaleName() is the two-character ANSI code for a locale, such as "US" for
the United States. SetLocaleName() uses the two-character ANSI code locale-
Name to reset the locale information for an application, and is called from
ZafI18nData::SetI18nName(). The programmer should normally not call Set-
LocaleName(). Instead, ZafI18nData::ResetI18n() should be used to change
the active locale. Refer to the file Readme.i18 for the most current list of
locales defined in ZAF.

TimeStamp static ZafUInt32 TimeStamp(void);

TimeStamp() returns the current date and time in a platform-independent form.
The number of seconds since January 1, 1970 is returned.

304 Zinc Application Framework 5

ZafLocaleStruct

Inheritance Root struct

Declaration #include <z_loc.hpp>

Description ZafLocaleStruct is used as a base class by ZafLocaleData, and stores informa-
tion that may be different for different locales. This information defines a
unique locale, and is used by many parts of the ZAF libraries to provide inter-
nationalization to an application. See ZafLocaleData for more information.

Members ZafIChar *altDigits;
altDigits altDigits is the array of alternate digit characters to be used with "%ad" in for-

mat strings such as a ZafInteger object’s OutputFormatData().

beginGregorian ZafUInt32 beginGregorian;

beginGregorian is the Julian day that the Gregorian calendar was adopted. For
example, the United Kingdom (and thus the United States) adopted the Grego-
rian calendar on October 4, 1582 (2299160 Julian).

creditLeftParen ZafIChar *creditLeftParen;

creditLeftParen is the character used on the left of a negative number when the
"@" format character is encountered in format strings such as a ZafBignum
object’s OutputFormatData().

altDigits eraTableLength posCurrencyPrecedes
beginGregorian fractionDigits positiveSign
creditLeftParen grouping posSignPrecedes
creditRightParen intCurrencySymbol postSpaceSeparation
currencySymbol integerStringInputFormat realStringInputFormat
dateSeparator integerStringOutputFormat realStringOutputFormat
dateStringInputFormat intFractionDigits skipGregorian
dateStringOutputFormat monDecimalSeparator thousandsSeparator
dateTimeStringInputFormat monGrouping time12StringOutputFormat
dateTimeStringOutputFormat monThousandsSeparator timeSeparator
decimalSeparator negativeSign timeStringInputFormat
defDigits negCurrencyPrecedes timeStringOutputFormat
eraTable negSpaceSeparation

ZafLocaleStruct 305

creditRightParen ZafIChar *creditRightParen;

creditRightParen is the character used on the right of a negative number when
the "@" format character is encountered in format strings such as a ZafBignum
object’s OutputFormatData().

currencySymbol ZafIChar currencySymbol[8];

currencySymbol is the symbol used locally to denote currency.

dateSeparator ZafIChar dateSeparator[4];

dateSeparator is used to separate the day, month, and year pieces of a date
string.

dateStringInput-
Format

ZafIChar *dateStringInputFormat;

dateStringInputFormat is the format string used when inputting dates. See Zaf-
String::InputFormatData() for more information.

dateStringOutput-
Format

ZafIChar *dateStringOutputFormat;

dateStringOutputFormat is the format string used when outputting dates. See
ZafString::OutputFormatData() for more information.

dateTimeStringIn-
putFormat

ZafIChar *dateTimeStringInputFormat;

dateTimeStringInputFormat is the format string used when inputting date/time
combination strings, such as with ZafUTime objects. See ZafString::InputFor-
matData() for more information.

dateTimeString-
OutputFormat

ZafIChar *dateTimeStringOutputFormat;

dateTimeStringOutputFormat is the format string used when outputting date/
time combination strings, such as with ZafUTime objects. See ZafString::Out-
putFormatData() for more information.

decimalSeparator ZafIChar decimalSeparator[4];

decimalSeparator is the symbol used to separate the whole number portion
from the fraction in a non-monetary decimal number, as in ZafReal objects.

306 Zinc Application Framework 5

defDigits ZafIChar *defDigits;

defDigits is the array of default digit characters to be used with "%d" in format
strings such as a ZafInteger object’s OutputFormatData().

eraTable ZafEraStruct *eraTable;

eraTable is a table of all the different eras for the locale, and is a table of
ZafEraStruct objects. See ZafEraStruct for more information.

eraTableLength int eraTableLength;

eraTableLength is the number of elements in eraTable.

fractionDigits int fractionDigits;

fractionDigits is the number of digits to display after the decimal separator on
currency values, as in ZafBignum objects.

grouping char grouping[10];

grouping indicates the numbers of digits to be grouped together from right to
left in each section of the whole number portion of a non-monetary number.
For example, the first element in the array specifies the number of digits in the
first group to the left of the decimal separator. An element value of 0 indicates
the end of the array, and the previous element’s value is used for the remaining
digits in the number.

intCurrencySymbol ZafIChar intCurrencySymbol[5];

intCurrencySymbol is the international currency symbol followed by a space
separator.

integerStringInput-
Format

ZafIChar *integerStringInputFormat;

integerStringInputFormat is the format string used when inputting integers.
See ZafString::InputFormatData() for more information.

integerStringOutput-
Format

ZafIChar *integerStringOutputFormat;

integerStringOutputFormat is the format string used when outputting integers.
See ZafString::OutputFormatData() for more information.

ZafLocaleStruct 307

intFractionDigits int intFractionDigits;

intFractionDigits is the number of digits to display after the decimal separator
on international currency values, as in ZafBignum objects. This member is
used together with intCurrencySymbol.

monDecimal-
Separator

ZafIChar monDecimalSeparator[4];

monDecimalSeparator is the symbol used to separate the whole number por-
tion from the fraction in a monitary decimal number, as in ZafReal objects.

monGrouping char monGrouping[10];

monGrouping indicates the numbers of digits to be grouped together from right
to left in each section of the whole number portion of a monetary number. For
example, the first element in the array specifies the number of digits in the first
group to the left of the decimal separator. An element value of 0 indicates the
end of the array, and the previous element’s value is used for the remaining dig-
its in the number.

monThousands-
Separator

ZafIChar monThousandsSeparator[4];

monThousandsSeparator is the symbol used to separate thousands (every 3
digits on the left of the decimal separator) in a monetary decimal number, as in
ZafInteger objects.

negativeSign ZafIChar negativeSign[4];

negativeSign is the symbol used to indicate a negative number.

negCurrency-
Precedes

int negCurrencyPrecedes;

negCurrencyPrecedes is non-zero if the currency symbol precedes negative
currency values; otherwise the currency symbol follows negative currency val-
ues.

negSignPrecedes int negSignPrecedes;

negSignPrecedes is non-zero if the negative symbol precedes negative values;
otherwise the negative symbol follows negative values.

308 Zinc Application Framework 5

negSpace-
Separation

int negSpaceSeparation;

negSpaceSeparation is non-zero if a space separator is placed between the neg-
ative symbol and the value; otherwise no space separator is used.

posCurrency-
Precedes

int posCurrencyPrecedes;

posCurrencyPrecedes is non-zero if the currency symbol precedes positive cur-
rency values; otherwise the currency symbol follows positive currency values.

positiveSign ZafIChar positiveSign[4];

positiveSign is the symbol used to explicitly indicate a positive number.

posSignPrecedes int posSignPrecedes;

posSignPrecedes is non-zero if the explicit positive symbol precedes positive
values; otherwise the explicit positive symbol follows positive values.

postSpace-
Separation

int posSpaceSeparation;

posSpaceSeparation is non-zero if a space separator is placed between the
explicit positive symbol and the value; otherwise no space separator is used.

realStringInput-
Format

ZafIChar *realStringInputFormat;

realStringInputFormat is the format string used when inputting real numbers.
See ZafString::InputFormatData() for more information.

realStringOutput-
Format

ZafIChar *realStringOutputFormat;

realStringOutputFormat is the format string used when outputting real num-
bers. See ZafString::OutputFormatData() for more information.

skipGregorian ZafUInt16 skipGregorian;

skipGregorian is the number of days skipped when the Gregorian calendar was
adopted. For example, the United Kingdom (and thus the United States)
skipped 11 days to October 15, 1582.

ZafLocaleStruct 309

thousandsSeparator ZafIChar thousandsSeparator[4];

thousandsSeparator is the symbol used to separate thousands (every 3 digits on
the left of the decimal separator) in a non-monetary decimal number, as in
ZafInteger objects.

time12StringOutput
Format

ZafIChar *time12StringOutputFormat;

time12StringOutputFormat is the format string used when outputting explicitly
12-hour clock times. See ZafString::OutputFormatData() for more informa-
tion.

timeSeparator ZafIChar timeSeparator[4];

timeSeparator is used to separate the hour, minute, and second pieces of a time
string.

timeStringInput-
Format

ZafIChar *timeStringInputFormat;

timeStringInputFormat is the format string used when inputting times. See
ZafString::InputFormatData() for more information.

timeStringOutput-
Format

ZafIChar *timeStringOutputFormat;

timeStringOutputFormat is the format string used when outputting times. See
ZafString::OutputFormatData() for more information.

310 Zinc Application Framework 5

ZafMaximizeButton
Inheritance ZafMaximizeButton : ZafButton : ZafWindowObject :

ZafElement

Declaration #include <z_max.hpp>

Description The ZafMaximizeButton object may only be added to a ZafWindow. The Zaf-
MaximizeButton is the maximize/restore button decoration on a ZafWindow,
and is generally drawn by the environment. The ZafMaximizeButton object is
used to maximize and restore the parent window with a ZafMouse device.

Constructors All ZafMaximizeButton constructors initialize the member variables associ-
ated with an instantiated ZafMaximizeButton object. The default values set by
the ZafMaximizeButton and its base class constructors follow, if they differ
from those set by the base class constructor, or if a blocking function is imple-
mented in ZafMaximizeButton. “†” Indicates a blocking function that pre-
vents changes to the attribute in this class.

Member Initializations

ZafButton
AllowDefault() false†

AllowToggling() false†

AutoRepeatSelection() false†

AutoSize() true†

ButtonType() ZAF_3D_BUTTON†

Depth() 1†

HotKeyChar() 0†

HotKeyIndex() -1†

HzJustify() ZAF_HZ_CENTER†

SelectOnDoubleClick() false†

SelectOnDownClick() false†

SendMessageText() null†

SendMessageWhenSelected() true†

Value() Used internally by ZAF†

VtJustify() ZAF_VT_CENTER†

ZafWindowObject
AcceptDrop() false†

Bordered() false†

CopyDraggable() false†

ZafMaximizeButton 311

ZafMaximizeButton(void);

This constructor is useful in straight-code situations to create a ZafMaximize-
Button object.

ZafMaximizeButton(const ZafMaximizeButton ©);

The copy constructor creates a new ZafMaximizeButton object and initializes
its data from copy.

ZafMaximizeButton(const ZafIChar *name,
ZafObjectPersistence &persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a maximize button follows:

Disabled() false†

Focus() false†

HelpContext() null†

HelpObjectTip() null†

LinkDraggable() false†

MoveDraggable() false†

Noncurrent() true†

ParentDrawBorder() false†

ParentDrawFocus() false†

ParentPalette() false†

QuickTip() null†

RegionType() ZAF_AVAILABLE_REGION†

Selected() false†

SupportObject() true†

SystemObject() false

UserFunction() null†

ZafElement
ClassID() ID_ZAF_MAXIMIZE_BUTTON

ClassName() "ZafMaximizeButton"

NumberID() ZAF_NUMID_MAXIMIZE

StringID() "ZAF_NUMID_MAXIMIZE"

Member Initializations

312 Zinc Application Framework 5

// Create a sample window.
ZafWindow *window = new ZafWindow(0, 0, 40, 10);
ZafMaximizeButton *max = new ZafMaximizeButton;
window->Add(max);

Destructor virtual ~ZafMaximizeButton(void);

The destructor is used to free the memory associated with a ZafMaximizeBut-
ton object. It chains to the ZafButton, ZafWindowObject, and ZafElement
destructors. Generally, the programmer will not directly destroy a ZafMaximi-
zeButton object, since it is automatically destroyed when its parent window is
destroyed. For more information on child object deletion, see ZafWin-
dow::~ZafWindow().

ZafMDIWindow 313

ZafMDIWindow

Inheritance ZafMDIWindow : ZafWindow : (ZafWindowObject :
ZafElement), ZafList

Declaration #include <z_mdiwin.hpp>

Description A Multiple Document Interface (MDI) is designed for working with multiple
“documents” inside of a single application. The MDI specification supported
by ZAF is based on the MDI specification developed by Microsoft for
Microsoft Windows.

As MDI is a Microsoft Windows concept, it has very different implementations
on other environments. Thus, ZafMDIWindow should be used with careful
forethought since user interface nuances will be different from platform to plat-
form. For example, due to the global nature of the menu bar on the Macintosh,
the entire screen is appropriately used as the MDI parent window for that envi-
ronment, so MDI children appear out on the screen.

ZafMDIWindow is a mechanism for allowing a decorated window (having a
border, title, etc.) to exist as child window while retaining most of its defined
behavior. The behavior of decorated windows is defined for root windows
(windows attached directly to the window manager) and for MDI windows
only.

There are two types of ZafMDIWindow objects: ZAF_MDI_PARENT and
ZAF_MDI_CHILD. An MDI parent window must also be a root window, and
its behavior is identical to that of ZafWindow. With the exception of support
objects, however, the only children allowed inside of an MDI parent window
are MDI child windows. An MDI child window must be a child of an MDI
parent window. Its behavior is much the same as a root window's behavior
except that it is confined to the "client" region of its MDI parent.

Constructors All ZafMDIWindow constructors initialize the member variables associated
with an instantiated ZafMDIWindow object. The default values set by the
ZafMDIWindow and its base class constructors follow, if they differ from
those set by the base class constructor, or if a blocking function is implemented
in ZafMDIWindow. “†” Indicates a blocking function that prevents changes
to the attribute in this class. “††” Indicates a blocking function that prevents
changes to the attribute in this class for parent MDI windows, but child MDI
windows behave as ZafWindow objects do.

MDIType

314 Zinc Application Framework 5

ZafMDIWindow(int left, int top, int width, int height,
ZafMDIType type = ZAF_MDI_PARENT);

This constructor is useful in straight-code situations. left and top specify the
position where the left and top of the object will be placed on its parent or on
the window manager. width and height specify the width and height of the cli-
ent region of the object. All values are specified in cell coordinates by default,
but may be specified using another coordinate system if desired. type specifies
the type of MDI window and may be either ZAF_MDI_PARENT or
ZAF_MDI_CHILD. See MDIType for important information about MDI win-
dow types.

ZafMDIWindow(const ZafMDIWindow ©);

The copy constructor creates a new ZafMDIWindow object and initializes its
data from copy.

Member Initializations

ZafMDIWindow
MDIType() ZAF_MDI_PARENT

ZafWindow
SelectionType() ZAF_SINGLE_SELECTION††

Temporary() false†

ZafWindowObject
AcceptDrop() false††

Bordered() false†

Disabled() false†

Noncurrent() false†

ParentPalette() false†

RegionType() ZAF_INSIDE_REGION†

ZafElement
ClassID() ID_ZAF_MDI_WINDOW

ClassName() "ZafMDIWindow"

ZafMDIWindow 315

ZafMDIWindow(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create an MDI window follows:

// Create a parent MDI window with a menu bar.
ZafMDIWindow *parentWindow = new ZafMDIWindow(1, 1, 60, 16,

ZAF_MDI_PARENT);
parentWindow->AddGenericObjects(new ZafStringData("MDI

Parent"));
ZafPullDownMenu *menuBar = new ZafPullDownMenu;
ZafPullDownItem *fileMenu = new ZafPullDownItem("File");
fileMenu->Add(new ZafPopUpItem("", ZAF_EXIT_OPTION));
menuBar->Add(fileMenu);
parentWindow->Add(menuBar);

// Create 2 child MDI windows.
ZafMDIWindow *child1 = new ZafMDIWindow(1, 1, 40, 10,

ZAF_MDI_CHILD);
child1->AddGenericObjects(new ZafStringData("MDI Child 1"));
ZafMDIWindow *child2 = new ZafMDIWindow(2, 2, 40, 10,

ZAF_MDI_CHILD);
child2->AddGenericObjects(new ZafStringData("MDI Child 2"));

// Add the children to the parent.
parentWindow->Add(child1);
parentWindow->Add(child2);

// Add the parent to the window manager.
zafWindowManager->Add(parentWindow);

Destructor virtual ~ZafMDIWindow(void);

The destructor is used to free the memory associated with a ZafMDIWindow
object. It chains to the ZafWindow, ZafWindowObject, ZafList, and ZafEle-
ment destructors. For more information on child object deletion, see ZafWin-
dow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

316 Zinc Application Framework 5

MDIType ZafMDIType MDIType(void) const;
SetMDIType ZafMDIType SetMDIType(ZafMDIType mdiType);

MDIType() specifies whether an MDI window is an MDI parent window or an
MDI child window. It returns ZAF_MDI_PARENT for MDI parent windows
and ZAF_MDI_CHILD for MDI child windows. This attribute may not be
modified after the object is on the screen, after the object has been added to
another MDI window, or after another MDI window has been added to the
object. Otherwise, it may be changed by calling SetMDIType().

When the object gets the S_INITIALIZE message, this attribute is changed to
appropriately indicate whether it is a parent or child. For example, if several
MDI windows are stored in a data file as ZAF_MDI_PARENT, they may
dynamically be added to another MDI parent window and during the
S_INITIALIZE message handling, their MDIType() will automatically be
changed to ZAF_MDI_CHILD. For this reason, care must be taken to not add
a parent MDI window with child MDI windows to another parent MDI win-
dow (in which case there would be three levels of windows).

ZafLanguageData 317

ZafMessageData

Inheritance ZafMessageData : ZafStringData : ZafFormatData : ZafData
: ZafNotification, ZafElement

Declaration #include <z_lang.hpp>

Description ZafMessageData maintains an entry of a ZafLanguageData message table so
that different languages may easily be supported by a single executable and a
data file containing the application messages. ZafMessageData objects enable
user interface level objects to be notified when a message table is reset (such as
when the application’s default language changes). See
ZafI18nData::ResetI18n() for more information about internationalization of
an application.

Constructors The ZafMessageData constructor initializes the member variables associated
with an instantiated ZafMessageData object. The default values set by the
ZafMessageData constructor follows.

ZafMessageData(const ZafIChar *value, ZafIChar hotKeyChar
= 0, int index = -1);

This constructor creates a new message table entry with the string value, the
hot key character hotKeyChar (converted to upper-case), and the hot key index
index.

Members
HotKeyChar ZafIChar HotKeyChar(void) const;
HotKeyIndex int HotKeyIndex(void) const;

virtual ZafIChar SetHotKey(ZafIChar hotKeyChar, int index
= -1);

HotKeyChar HotKeyIndex

Member Initializations

ZafMessageData
HotKeyChar() 0

HotKeyIndex() -1

318 Zinc Application Framework 5

HotKeyChar() specifies the character associated with the message to be used
as a hot key, and HotKeyIndex() specifies the zero-based index into the mes-
sage of the character to be used as a hot key. See ZafButton::HotKeyChar() for
more information on hot key characters, and see ZafButton::HotKeyIndex() for
more information on hot key indices. SetHotKey() may be called to change the
hot key information for a message table entry.

ZafLanguageStruct 319

ZafMessageStruct

Inheritance Root struct

Declaration #include <z_lang.hpp>

Description ZafMessageStruct objects are used by ZafLanguageData in message tables to
allow different languages to be supported by a single application and a data file
containing the message tables. The last entry in a table of ZafMessageStruct
entries should specify null in the text member to terminate a table search. See
ZafLanguageData::GetMessage() for more information.

Members
text ZafIChar *text;

text specifies the message itself associated with the table entry. This member
should be null for the last entry in a table.

numberID ZafNumberID numberID;

numberID is a unique numeric identification constant that identifies each mes-
sage in the message table, and may be used to search for a message.

stringID ZafIChar *stringID;

stringID is a unique string identification constant that identifies each message
in the message table, and is used when searching for a message.

hotKeyChar ZafIChar hotKeyChar;

hotKeyChar specifies the character associated with the message to be used as a
hot key. See ZafButton::HotKeyChar() for more information on hot key char-
acters.

hotKeyIndex int hotKeyIndex;

hotKeyIndex specifies the zero-based index into the message of the character
to be used as a hot key. See ZafButton::HotKeyIndex() for more information
on hot key indices.

hotKeyChar numberID text
hotKeyIndex stringID

320 Zinc Application Framework 5

ZafMessageWindow

Inheritance ZafMessageWindow : ZafDialogWindow : ZafWindow :
(ZafWindowObject : ZafElement), ZafList

Declaration #include <z_msgwin.hpp>

Description ZafMessageWindow provides support for easily presenting a message dialog
and returning a standard reply from the end user. ZafMessageWindows can
automatically include icons and buttons based on “option flags” specified by
the programmer. For example, a message window could be used to present an
error message and allow the user to select “OK” or “Cancel”. ZafMes-
sageWindow is derived from ZafDialogWindow, and is therefore a true dialog
window class.

A message window is not moveable or sizeable by nature, since its border indi-
cates a dialog window rather than movability and sizability and since a mes-
sage window’s contents should promote understandability. A message window
is also by its nature not a temporary window, since the end user is expected to
dismiss it after acknowledging the message.

Constructors All ZafMessageWindow constructors initialize the member variables associ-
ated with an instantiated ZafMessageWindow object. The default values set by
the ZafMessageWindow and its base class constructors follow, if they differ
from those set by the base class constructor, or if a blocking function is imple-
mented in ZafMessageWindow. “†” Indicates a blocking function that pre-
vents changes to the attribute in this class.

ClearMessageFlags IconImage MessageFlags
DefaultMessageFlag Message

Member Initializations

ZafMessageWindow
DefaultMessageFlag() user-supplied parameter

IconImage() user-supplied parameter

Message() user-supplied parameter

MessageFlags() user-supplied parameter

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

Minimized() false†

ZafMessageWindow 321

ZafMessageWindow(const ZafIChar *title, ZafIconImage
iconImage, ZafDialogFlags msgFlags, ZafDialogFlags
defaultFlag, const ZafIChar *format, ...);

This constructor is useful in straight-code situations, particularly if the ZafTitle
object is to create, maintain and destroy its own ZafStringData object automat-
ically. The message window is sized appropriately, so that all the information
fits in the window, and the message window is centered on the main screen
when added to the window manager via the Control() method provided by the
base ZafDialogWindow class.

title specifies the text to appear in the title bar.

iconImage specifies the icon that is placed in the message window (see Icon-
Image() for more information).

msgFlags specifies the buttons that are placed in the message window (see
MessageFlags() for more information).

defaultFlag specifies the default button (see DefaultMessageFlag() for more
information).

format, along with the variable arguments that follow, specify the formatted
textual message to be added to the message window using format options sim-
ilar to those used by the printf functions. Refer to standard library documenta-
tion for detailed information on printf functions and conversion characters.

Moveable() true†

SelectionType() ZAF_SINGLE_SELECTION†

Sizeable() false†

Temporary() false†

ZafWindowObject
AcceptDrop() false†

AutomaticUpdate() true†

Bordered() false†

Disabled() false†

HelpObjectTip() null†

RegionType() ZAF_INSIDE_REGION†

ZafElement
ClassID() ID_ZAF_MESSAGE_WINDOW

ClassName() "ZafMessageWindow"

Member Initializations

322 Zinc Application Framework 5

Note: The maximum length of the message text is 1024 characters when using
this constructor.

ZafMessageWindow(ZafStringData *title, ZafIconImage
iconImage, ZafDialogFlags msgFlags, ZafDialogFlags
defaultFlag, const ZafIChar *format, ...);

ZafMessageWindow(ZafStringData *title, ZafIconImage
iconImage, ZafDialogFlags msgFlags, ZafDialogFlags
defaultFlag, ZafUInt16 bufferSize, const ZafIChar
*format, ...);

These constructors are useful in straight-code situations, particularly if a Zaf-
StringData object has already been created for use by the ZafTitle object. title
specifies the ZafStringData containing the text to appear in the title bar. The
first allocates a temporary 1024 character buffer for the entire message, and the
second allocates a temporary buffer of bufferSize characters for the entire mes-
sage. See the previous constructor for a description of the other parameters.

ZafMessageWindow(const ZafMessageWindow ©);

The copy constructor creates a new ZafMessageWindow object and initializes
its data from copy.

ZafMessageWindow(const ZafIChar *name,
ZafObjectPersistence &persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a message window follows:

// Create a message window.
ZafMessageWindow *window = new ZafMessageWindow("Error",

ZAF_EXCLAMATION_ICON, ZAF_DIALOG_OK, ZAF_DIALOG_OK, "You are
about to commit a grievous error!");

// Add the message window to the window manager.
// Use Control() only if Modal() is true.
// ZafMessageWindows should always be Modal().
// Control() returns only when the user has made a selection.
window->Control();

Destructor virtual ~ZafMessageWindow(void);

ZafMessageWindow 323

The destructor is used to free the memory associated with a ZafMessageWin-
dow object. It chains to the ZafDialogWindow, ZafWindow, ZafWindowOb-
ject, ZafList, and ZafElement destructors. For more information on child
object deletion, see ZafWindow::~ZafWindow().

Members ZafDialogFlags ClearMessageFlags(ZafDialogFlags
msgFlags);

ClearMessageFlags ClearMessageFlags() clears only the flags specified by msgFlags out of the
MessageFlags() attribute. Flags other than those specified in msgFlags are left
untouched. See MessageFlags() for more information about these flags.
ClearMessageFlags() may be called to clear flags any time before the message
window appears on the window manager, but has no effect on a visible Mes-
sageWindow.

DefaultMessage-
Flag

ZafDialogFlags DefaultMessageFlag(void) const;

ZafDialogFlags SetDefaultMessageFlag(ZafDialogFlags
msgFlags);

DefaultMessageFlag() specifies the default button on the message window.
msgFlags specifies the button the same way the MessageFlags() specifies a
button. SetDefaultMessageFlag() may be called to change the DefaultMes-
sageFlag() any time before the message window appears on the window man-
ager.

IconImage ZafIconImage IconImage(void) const;

ZafIconImage SetIconImage(ZafIconImage iconImage);

IconImage() specifies the icon that appears on the message window. SetIcon-
Image() may be called to change IconImage() any time before the message
window appears on the window manager. The following images are defined
by ZAF:

IconImage() Description

ZAF_APPLICATION_ICON Provides a default application icon

ZAF_ASTERISK_ICON Provides an asterisk icon

ZAF_EXCLAMATION_ICON Provides an exclamation icon

ZAF_HAND_ICON Provides a hand icon

ZAF_QUESTION_ICON Provides a question icon

324 Zinc Application Framework 5

Message const ZafIChar *Message(void) const;

void SetMessage(const ZafIChar *format, ...);

void SetMessage(ZafUInt16 bufferSize, const ZafIChar
*format, ...);

Message() is the textual message that appears on the message window. Set-
Message() may be called to change the message any time before the message
window appears on the window manager.

format, along with the variable arguments that follow, specify the formatted
textual message to be added to the message window using format options sim-
ilar to those used by the printf functions. Refer to standard library documenta-
tion for detailed information on printf functions and conversion characters.
The first SetMessage() allocates a temporary 1024 character buffer for the
entire message, and the second allocates a temporary buffer of bufferSize char-
acters for the entire message.

MessageFlags ZafDialogFlags MessageFlags(void) const;

ZafDialogFlags SetMessageFlags(ZafDialogFlags msgFlags);

MessageFlags() specifies the buttons that are placed on the message window,
according to the bit flags described below OR’d together. SetMessageFlags()
sets the flags specified in msgFlags, and does not modify other flags previ-
ously set (see ClearMessageFlags() for information on how to clear flags).
SetMessageFlags() may be called to add flags any time before the message
window appears on the window manager. The following MessageFlags() are
defined by ZAF:

Following is a code snippet showing how to make an OK/Cancel message win-
dow:

MessageFlags() Description

ZAF_DIALOG_OK Provides an "OK" button

ZAF_DIALOG_CANCEL Provides a "Cancel" button

ZAF_DIALOG_YES Provides a "Yes" button

ZAF_DIALOG_NO Provides a "No" button

ZAF_DIALOG_ABORT Provides an "Abort" button

ZAF_DIALOG_RETRY Provides a "Retry" button

ZAF_DIALOG_IGNORE Provides an "Ignore" button

ZAF_DIALOG_HELP Provides a "Help" button

ZafMessageWindow 325

// Create a message window with OK and Cancel buttons.
// The OK button is the default button.
ZafMessageWindow *window = new ZafMessageWindow("Error",

ZAF_EXCLAMATION_ICON, ZAF_DIALOG_OK | ZAF_DIALOG_CANCEL,
ZAF_DIALOG_OK, "You have committed a grievous error! By
selecting the OK button, you admit your guilt...");

// Add the message window to the window manager.
// Use Control() only if Modal() is true.
// ZafMessageWindows should always be Modal().
// Control() returns only when the user has made a selection.
if (window->Control() == S_DLG_CANCEL)
break;

326 Zinc Application Framework 5

ZafMinimizeButton
Inheritance ZafMinimizeButton : ZafButton : ZafWindowObject :

ZafElement

Declaration #include <z_min.hpp>

Description The ZafMinimizeButton object may only be added to a ZafWindow. The
ZafMinimizeButton is the minimize button decoration on a ZafWindow, and is
generally drawn by the environment. The ZafMinimizeButton object is used to
minimize the parent window with a ZafMouse device.

Constructors All ZafMinimizeButton constructors initialize the member variables associated
with an instantiated ZafMinimizeButton object. The default values set by the
ZafMinimizeButton and its base class constructors follow, if they differ from
those set by the base class constructor, or if a blocking function is implemented
in ZafMinimizeButton. “†” Indicates a blocking function that prevents
changes to the attribute in this class.

Member Initializations

ZafButton
AllowDefault() false†

AllowToggling() false†

AutoRepeatSelection() false†

AutoSize() true†

ButtonType() ZAF_3D_BUTTON†

Depth() 1†

HotKeyChar() 0†

HotKeyIndex() -1†

HzJustify() ZAF_HZ_CENTER†

SelectOnDoubleClick() false†

SelectOnDownClick() false†

SendMessageText() null†

SendMessageWhenSelected() true†

Value() Used internally by ZAF†

VtJustify() ZAF_VT_CENTER†

ZafWindowObject
AcceptDrop() false†

Bordered() false†

CopyDraggable() false†

ZafMinimizeButton 327

ZafMinimizeButton(void);

This constructor is useful in straight-code situations to create a ZafMinimize-
Button object.

ZafMinimizeButton(const ZafMinimizeButton ©);

The copy constructor creates a new ZafMinimizeButton object and initializes
its data from copy.

ZafMinimizeButton(const ZafIChar *name,
ZafObjectPersistence &persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a minimize button follows:

Disabled() false†

Focus() false†

HelpContext() null†

HelpObjectTip() null†

LinkDraggable() false†

MoveDraggable() false†

Noncurrent() true†

ParentDrawBorder() false†

ParentDrawFocus() false†

ParentPalette() false†

QuickTip() null†

RegionType() ZAF_AVAILABLE_REGION†

Selected() false†

SupportObject() true†

SystemObject() false

UserFunction() null†

ZafElement
ClassID() ID_ZAF_MINIMIZE_BUTTON

ClassName() "ZafMinimizeButton"

NumberID() ZAF_NUMID_MINIMIZE

StringID() "ZAF_NUMID_MINIMIZE"

Member Initializations

328 Zinc Application Framework 5

// Create a sample window.
ZafWindow *window = new ZafWindow(0, 0, 40, 10);
ZafMinimizeButton *min = new ZafMinimizeButton;
window->Add(min);

Destructor virtual ~ZafMinimizeButton(void);

The destructor is used to free the memory associated with a ZafMinimizeBut-
ton object. It chains to the ZafButton, ZafWindowObject, and ZafElement
destructors. Generally, the programmer will not directly destroy a ZafMinimi-
zeButton object, since it is automatically destroyed when its parent window is
destroyed. For more information on child object deletion, see ZafWin-
dow::~ZafWindow().

ZafMouse 329

ZafMouse

Inheritance ZafMouse : ZafDevice : ZafElement

Declaration #include <z_mouse2.hpp>

Description ZafMouse is the class that defines mouse input device support. Some similar
input devices that behave like mice are automatically supported by ZafMouse
(such as trackballs and trackpads). Other similar input devices (such as touch
screens) may derive from ZafMouse to get the same basic functionality, and
add specific functionality in the superclass.

Constructors All ZafMouse constructors initialize the member variables associated with an
instantiated ZafMouse object. Default values set by the ZafMouse follow, as
well as base class values when overridden by ZafMouse.

ZafMouse(ZafDeviceState state = D_ON, ZafDeviceImage
imageType = DM_WAIT);

This constructor is used to instantiate a ZafMouse object to be added to a ZafE-
ventManager object. state specifies the initial state of the device, and image-
Type specifies the initial image type displayed by the device (see ImageType()
for more information).

Event ImageType Poll

Member Initializations

ZafMouse
ImageType() user-supplied parameter

ZafDevice
DeviceType() E_MOUSE

ZafElement
ClassID() ID_ZAF_MOUSE

ClassName() "ZafMouse"

NumberID() ID_ZAF_MOUSE

StringID() "ZafMouse"

330 Zinc Application Framework 5

ZafMouse(const ZafMouse ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafMouse object and copies the object’s informa-
tion. An example of how to create a ZafMouse object follows:

// Instantiate the input devices.
ZafEventManager *eventManager = new ZafEventManager;
eventManager->Add(new ZafKeyboard);
eventManager->Add(new ZafMouse);
eventManager->Add(new ZafCursor);

Destructor virtual ~ZafMouse(void);

The destructor is used to free the memory associated with a ZafMouse object.
It chains to the ZafDevice and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafMouse object, since it
is automatically destroyed when the event manager is destroyed. For more
information on device object deletion, see ZafEventManager::~ZafEventMan-
ager().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events sent to the ZafMouse object. Zaf-
Mouse handles all the DM_* messages discussed in ImageType(), as well as
D_STATE, which causes a device to return its state.

ImageType ZafDeviceImage ImageType(void) const;

virtual ZafDeviceImage SetImageType(ZafDeviceImage
imageType);

ImageType() returns a constant that indicates the mouse’s current image type.
For example, ImageType() returns DM_VIEW for a mouse device that cur-
rently displays the default pointer image. SetImageType() may be called to
change a mouse’s image type. The different image types supported by Zaf-
Mouse are as follows:

ZafMouse 331

ImageType() Description

DM_BOTTOM_LEFT_CORNER causes the mouse to show the bottom-left
corner image

DM_BOTTOM_RIGHT_CORNER causes the mouse to show the bottom-right
corner image

DM_BOTTOM_SIDE causes the mouse to show the bottom side
image

DM_CANCEL causes the mouse to show the cancel image

DM_CROSS_HAIRS causes the mouse to show the cross-hairs
image

DM_DRAG causes the mouse to show the generic drag
image

DM_DRAG_COPY causes the mouse to show the copy-drag
image

DM_DRAG_COPY_MULTIPLE causes the mouse to show the copy-drag
multiple image

DM_DRAG_LINK causes the mouse to show the link-drag
image

DM_DRAG_LINK_MULTIPLE causes the mouse to show the link-drag
multiple image

DM_DRAG_MOVE causes the mouse to show the move-drag
image

DM_DRAG_MOVE_MULTIPLE causes the mouse to show the move-drag
multiple image

DM_EDIT causes the mouse to show the I-bar image

DM_LEFT_SIDE causes the mouse to show the left side
image

DM_MOVE causes the mouse to show the move image

DM_RIGHT_SIDE causes the mouse to show the right side
image

DM_SELECT causes the mouse to show the selection
image

DM_TOP_LEFT_CORNER causes the mouse to show the top-left cor-
ner image

DM_TOP_RIGHT_CORNER causes the mouse to show the top-right cor-
ner image

332 Zinc Application Framework 5

Poll virtual void Poll(void);

In some environments, the Poll() function checks the mouse device for any
input events and posts them on the event manager’s queue, if the ZafMouse’s
state is not D_OFF. In other environments where mouse events are handled
automatically by the native environment’s event queue, Poll() simply blocks
mouse events from coming through ZAF’s event manager queue if the Zaf-
Mouse’s state is D_OFF.

DM_TOP_SIDE causes the mouse to show the top side
image

DM_VIEW causes the mouse to show the default
pointer image

DM_WAIT causes the mouse to show the wait image

ImageType() Description

ZafMouseData 333

ZafMouseData

Inheritance ZafMouseData : (ZafImageData : ZafData :
(ZafNotification, ZafElement)), ZafMouseStruct

Declaration #include <z_mouse1.hpp>

Description ZafMouseData objects can be used to store and manipulate mouse information.
ZafMouseData is most often used in conjunction with the ZafMouse device
object.

Constructors All ZafMouseData constructors initialize the member variables associated with
an instantiated ZafMouseData object. The default values set by the ZafMouse-
Data and its base class constructors follow, if they differ from those set by the
base class constructor.

ZafMouseData(const ZafImageStruct &data);

ZafMouseData(const ZafMouseStruct &data);

These constructors allocate a ZafMouseData instance and initialize its data to
the values in data.

ZafMouseData(const ZafMouseData ©);

The copy constructor creates a new ZafMouseData object and initializes its
data from copy.

Array HotSpotX Width
Clear HotSpotY operator =
Height SetMouse

Member Initializations

ZafMouseData
Array() null

HotSpotX() 0

HotSpotY() 0

ZafElement
ClassID() ID_ZAF_MOUSE_DATA

ClassName() "ZafMouseData"

334 Zinc Application Framework 5

ZafMouseData(const ZafIChar *name, ZafDataPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

The following code snippet shows how to create a ZafMouseData object:

// Create a mouse image array.
#define gnd ZAF_CLR_BACKGROUND
#define blk ZAF_CLR_BLACK
#define wte ZAF_CLR_WHITE
static ZafLogicalColor ZAF_FARDATA mouseArray[160] =
{
 blk,blk,gnd,gnd,gnd,gnd,gnd,gnd,gnd,gnd,
 blk,wte,blk,gnd,gnd,gnd,gnd,gnd,gnd,gnd,
 blk,wte,wte,blk,gnd,gnd,gnd,gnd,gnd,gnd,
 blk,wte,wte,wte,blk,gnd,gnd,gnd,gnd,gnd,
 blk,wte,wte,wte,wte,blk,gnd,gnd,gnd,gnd,
 blk,wte,wte,wte,wte,wte,blk,gnd,gnd,gnd,
 blk,wte,wte,wte,wte,wte,wte,blk,gnd,gnd,
 blk,wte,wte,wte,wte,wte,wte,wte,blk,gnd,
 blk,wte,wte,wte,wte,wte,wte,wte,blk,blk,
 blk,wte,wte,wte,wte,wte,blk,blk,blk,gnd,
 blk,wte,wte,blk,wte,wte,blk,gnd,gnd,gnd,
 blk,blk,blk,blk,blk,wte,wte,blk,gnd,gnd,
 gnd,gnd,gnd,gnd,blk,wte,wte,blk,gnd,gnd,
 gnd,gnd,gnd,gnd,gnd,blk,wte,wte,blk,gnd,
 gnd,gnd,gnd,gnd,gnd,blk,wte,wte,blk,gnd,
 gnd,gnd,gnd,gnd,gnd,gnd,blk,blk,gnd,gnd
};
static ZafMouseStruct mouseStruct(10, 16, mouseArray, 0, 0,

true);

// Create ZafMouseData objects based on the mouse image array.
ZafMouseData mouse1(mouseStruct);
ZafMouseData mouse2(mouse1);

Destructor virtual ~ZafMouseData(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafMouseData object.

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()

ZafMouseData 335

function does not successfully change the state as requested, it will instead
return the current state.

Array ZafLogicalColor *Array(void) const;

Array() returns the portable logical color array that the mouse data is based on.
This array is converted to a native environment mouse image. Each element of
the array is a ZAF logical color. See ZafDisplay for more information.

Clear virtual void Clear(void);

Clear() destroys the portable Array() if StaticArray() is false, and it destroys
the environment handle if StaticHandle() is false. Regardless of StaticArray()
and StaticHandle(), the portable Array() and the environment handle are both
set to null, effectively clearing the mouse data.

Height int Height(void) const;

Height() returns the height of the mouse data.

HotSpotX int HotSpotX(void) const;
HotSpotY int HotSpotY(void) const;

virtual ZafError SetHotSpot(int hotSpotX, int hotSpotY);

The hot spot is the pixel in the mouse data where a mouse click occurs, and is
relative to the top left corner of the mouse data. HotSpotX() returns the zero-
based position of the hot spot along the x-axis, and HotSpotY() returns the
zero-based position of the hot spot along the y-axis. The hot spot may be
changed by calling SetHotSpot(). SetHotSpot() always returns
ZAF_ERROR_NONE.

SetMouse virtual ZafError SetMouse(int width, int height,
ZafLogicalColor *array);

virtual ZafError SetMouse(const ZafMouseStruct &mouse);

These functions copy the data passed in to the ZafMouseData object. width
and height are the width and height of array, respectively. If StaticArray() is
true, array becomes Array(); otherwise, a new array is created for Array(). In
the second function, the data is copied from mouse. These functions always
return ZAF_ERROR_NONE.

336 Zinc Application Framework 5

Width int Width(void) const;

Width() returns the width of the mouse data.

operator = ZafMouseData &operator=(const ZafMouseData &mouse);

This operator copies the data from mouse into this ZafMouseData object.

ZafMouseStruct 337

ZafMouseStruct

Inheritance ZafMouseStruct : ZafImageStruct

Declaration #include <z_dsp.hpp>

Description ZafMouseStruct is used to store mouse image information. The base ZafImag-
eStruct stores the portable image array using elements of ZafLogicalColors,
and ZafMouseStruct defines additional members that store environment-spe-
cific structures for the mouse image filled by the ZafDisplay conversion func-
tion ZafDisplay::ConvertToOSMouse().

Constructors All ZafMouseStruct constructors initialize the member variables associated
with an instantiated ZafMouseStruct object. The default values set by the Zaf-
MouseStruct constructors follow.

ZafMouseStruct(void);

This constructor allocates a ZafMouseStruct instance and initializes its data to
indicate that no mouse image information has been set.

ZafMouseStruct(const ZafImageStruct &data);

This constructor allocates a ZafMouseStruct instance and initializes its data to
the values in data. The environment-specific mouse image information is ini-
tialized to indicate that the mouse image has not yet been converted.

hotSpotX hotSpotY StaticHandle

Member Initializations

ZafMouseStruct
hotSpotX 0

hotSpotY 0

StaticHandle() false

ZafImageStruct
array null

height 0

StaticArray() false

width 0

338 Zinc Application Framework 5

ZafMouseStruct(int width, int height, ZafLogicalColor
*array, int hotSpotX, int hotSpotY, bool staticArray);

This constructor allocates a ZafMouseStruct instance and initializes its data to
the values passed in. width and height indicate the size of the image, array
specifies a pointer to the portable array of ZafLogicalColors, hotSpotX and
hotSpotY indicate the position of the hot spot within the image (see the expla-
nation of the members hotSpotX and hotSpotY below), and staticArray indi-
cates if array is declared static.

The following code snippet shows how to create a ZafMouseStruct object:

// Create a mouse image structure.
#define gnd ZAF_CLR_BACKGROUND
#define blk ZAF_CLR_BLACK
#define wte ZAF_CLR_WHITE
static ZafLogicalColor ZAF_FARDATA mouseArray[160] =
{
 blk,blk,gnd,gnd,gnd,gnd,gnd,gnd,gnd,gnd,
 blk,wte,blk,gnd,gnd,gnd,gnd,gnd,gnd,gnd,
 blk,wte,wte,blk,gnd,gnd,gnd,gnd,gnd,gnd,
 blk,wte,wte,wte,blk,gnd,gnd,gnd,gnd,gnd,
 blk,wte,wte,wte,wte,blk,gnd,gnd,gnd,gnd,
 blk,wte,wte,wte,wte,wte,blk,gnd,gnd,gnd,
 blk,wte,wte,wte,wte,wte,wte,blk,gnd,gnd,
 blk,wte,wte,wte,wte,wte,wte,wte,blk,gnd,
 blk,wte,wte,wte,wte,wte,wte,wte,blk,blk,
 blk,wte,wte,wte,wte,wte,blk,blk,blk,gnd,
 blk,wte,wte,blk,wte,wte,blk,gnd,gnd,gnd,
 blk,blk,blk,blk,blk,wte,wte,blk,gnd,gnd,
 gnd,gnd,gnd,gnd,blk,wte,wte,blk,gnd,gnd,
 gnd,gnd,gnd,gnd,gnd,blk,wte,wte,blk,gnd,
 gnd,gnd,gnd,gnd,gnd,blk,wte,wte,blk,gnd,
 gnd,gnd,gnd,gnd,gnd,gnd,blk,blk,gnd,gnd
};
static ZafMouseStruct mouseStruct(10, 16, mouseArray, 0, 0,

true);

Members
hotSpotX int hotSpotX, hotSpotY;
hotSpotY The hot spot is the pixel in the mouse image where a mouse click occurs, and is

relative to the top left corner of the mouse image. hotSpotX specifies the zero-
based position of the hot spot along the x-axis, and hotSpotY specifies the
zero-based position of the hot spot along the y-axis.

ZafMouseStruct 339

StaticHandle bool StaticHandle(void) const;

bool SetStaticHandle(bool staticHandle);

If StaticHandle() is true, the environment-specific information (generally
known as a handle) of the ZafMouseStruct is recognized as static, so that it will
not be deleted by ZAF, and may be used by several ZafMouseStruct objects.
This attribute is initialized to false, but it may be changed with SetStaticHan-
dle(). Both functions return the current value of the StaticHandle() attribute.

340 Zinc Application Framework 5

ZafMSWindowsApp

Inheritance Root class

Declaration #include <w_app.hpp>

Description ZafMSWindowsApp is an advanced, internal class used by the Microsoft Win-
dows versions of ZAF 5 and encapsulates various Microsoft Windows applica-
tion-specific information. Most of the members of ZafMSWindowsApp are
public statics and may be accessed from anywhere in the application, but most
of the members are "advanced" and should normally not be accessed by the
programmer. ZafMSWindows is provided for advanced Microsoft Windows
programmers who may need access to this information for custom, non-porta-
ble development. A ZafMSWindowsApp instance is created by ZafApplica-
tion and destroyed on exit.

Constructor ZafMSWindowsApp(HINSTANCE hInstance);

The ZafMSWindowsApp constructor initializes the information associated
with an instantiated ZafMSWindowsApp object. hInstance should be the HIN-
STANCE passed into WinMain().

Destructor virtual ~ZafMSWindowsApp(void);

The destructor is used to free the memory associated with a ZafMSWin-
dowsApp object. Generally, the programmer will not directly destroy a ZafM-
SWindowsApp object, since it is automatically destroyed when the application
closes down.

available3D dragStartPosition MDIFrameJumpProc
commonControlsAvailable dragTest mouseTimerID
convertText dropDownCombo native3D
CreateSubclassedWindow hInstance ObjectFromHandle
ctl3dModule HotKeyText objectLowWord
Ctl3dRegister InitializeWrappers objectHighWord
Ctl3dEnabled JumpProc windowsPlatform
Ctl3dAutoSubclass FrameJumpProc windowsVersion
Ctl3dUnregister FrameProc
Ctl3dSubclassCtl MDIChildJumpProc

ZafMSWindowsApp 341

Members
available3D static bool available3D;

This member is only available when the macro ZAF_MSWINDOWS_3D is
defined, and indicates if 3D control support is available (either built-into the
system, or through a DLL).

commonControls-
Available

static bool commonControlsAvailable;

If commonControlsAvailable is true, the system contains support for common
controls (such as in Microsoft Windows 95); otherwise common controls are
not supported. This member is only available in the 32-bit version of the ZAF
libraries for Microsoft Windows.

convertText static bool convertText;

If convertText is false, the native system string encoding matches the ZAF
library string encoding (either ISO or Unicode), so no conversion is necessary
between ZafIChar strings and native strings; otherwise the conversion routines
found in ZafCodeSetData are used to convert strings.

CreateSubclassed-
Window

static HWND CreateSubclassedWindow(ZafWindowObject
*object, const ZafIChar *lpClassName, DWORD dwStyle,
const ZafIChar *text = NULL, HWND hWndParent = 0,
DWORD dwExStyle = WS_EX_NOPARENTNOTIFY, HINSTANCE
hInstance = 0, LPVOID lpParam = 0);

CreateSubclassedWindow() is the ZAF substitute for the Microsoft Windows
API functions CreateWindow() and CreateWindowEx(). CreateSubclassed-
Window() creates a Microsoft Windows "window" and then subclasses from it
so that Microsoft Windows messages are routed through the object’s Event()
function. object is a pointer to the ZAF window object to be associated with
the new "window". text is the ZafIChar version of the text to be associated
with the new "window", and is converted to the native Microsoft Windows
string format before being passed to CreateWindowEx(). lpClassName,
dwStyle, hWndParent, dwExStyle, hInstance, and lpParam are the equivalent
parameters passed to CreateWindowEx(). The HWND to be associated with
the new "window" is returned, and is normally assigned to the ZAF object’s
screenID.

ctl3dModule static HMODULE ctl3dModule;
Ctl3dRegister static BOOL (WINAPI *Ctl3dRegister)(HINSTANCE);
Ctl3dEnabled static BOOL (WINAPI *Ctl3dEnabled)(void);

342 Zinc Application Framework 5

Ctl3dAutoSubclass static BOOL (WINAPI *Ctl3dAutoSubclass)(HINSTANCE);
Ctl3dUnregister static BOOL (WINAPI *Ctl3dUnregister)(HINSTANCE);
Ctl3dSubclassCtl static BOOL (WINAPI *Ctl3dSubclassCtl)(HWND);

These members are pointers to the CTL3D modules and functions for non-
native 3D support, and are resolved by loading ctl3d32.dll (for 32-bit) or
ctl3dv2 (for 16-bit). They are for internal use only, and are not intended to be
used by the programmer.

dragStartPosition static POINT ZAF_FARDATA dragStartPosition;

static POINTS dragStartPosition;

These members are used internally by the ZAF libraries to support drag and
drop under Microsoft Windows, and should not be accessed by the program-
mer.

dragTest static bool dragTest;

This member is used internally by the ZAF libraries to support drag-and-drop
under Microsoft Windows, and should not be accessed by the programmer.

dropDownCombo static HWND dropDownCombo;

This member is used internally by the ZAF libraries to support combo-boxes
under Microsoft Windows, and should not be accessed by the programmer. It
is used to keep a handle to the combo-box that is currently open.

hInstance static HINSTANCE hInstance;

This member stores a handle to the application instance, which is passed-into
WinMain() at application start-up.

HotKeyText static ZafIChar *HotKeyText(const ZafIChar *text, int
hotKeyIndex);

HotKeyText() returns a newly-created string that contains special embedded
characters required by the Microsoft Windows API to denote a hot key. text is
the original ZAF string to be converted. hotKeyIndex is the zero-based index
of the character in text to be displayed as a hot key. The programmer must
delete the return value when it is no longer needed.

ZafMSWindowsApp 343

InitializeWrappers void InitializeWrappers(void);

When running in Unicode character mode, InitializeWrappers() initializes
function callback pointers used by the ZAF library for Microsoft Windows.
This is an advanced routine usually called in the constructor, and should nor-
mally not be called by the programmer.

JumpProc static LRESULT CALLBACK JumpProc(HWND hwnd, UINT wMsg,
WPARAM wParam, LPARAM lParam);

JumpProc() is the callback function (the Microsoft Windows “window proce-
dure”) called by Windows and used to send native messages to the appropriate
ZAF Event() function for message handling. The parameters are normal Win-
dowProc parameters as documented in the Microsoft Windows API documen-
tation. JumpProc() is an advanced routine, and should normally not be used by
the programmer.

FrameJumpProc static LRESULT CALLBACK FrameJumpProc(HWND hwnd, UINT
wMsg, WPARAM wParam, LPARAM lParam);

FrameJumpProc() is the callback function (window procedure for frame win-
dows) called by Microsoft Windows and used to pass the appropriate default
function to FrameProc() for normal frame message handling. The parameters
are normal WindowProc parameters as documented in the Microsoft Windows
API documentation. FrameJumpProc() is an advanced routine, and should
normally not be used by the programmer.

FrameProc static LRESULT FrameProc(LRESULT (DefaultProc)(HWND,
UINT, WPARAM, LPARAM), HWND hwnd, UINT wMsg, WPARAM
wParam, LPARAM lParam);

FrameProc() is the common code for all frame procedures and either routes
them to the appropriate ZAF objects for processing, or calls the default call-
back routine for base class processing by the Microsoft Windows API. The
first parameter is a pointer to the default callback routine (DefWindowProc,
DefFrameProc or DefMDIChildProc). hwnd, wMsg, wParam, and lParam are
normal WindowProc parameters as documented in the Microsoft Windows
API documentation.

MDIChildJumpProc static LRESULT CALLBACK MDIChildJumpProc(HWND hwnd, UINT
wMsg, WPARAM wParam, LPARAM lParam);

MDIChildJumpProc() is the callback function (window procedure for MDI
child frames) called by Microsoft Windows and used to pass the appropriate

344 Zinc Application Framework 5

default function to FrameProc() for MDI child frame message handling. The
parameters are normal WindowProc parameters as documented in the
Microsoft Windows API documentation. MDIChildJumpProc() is an
advanced routine, and should normally not be used by the programmer.

MDIFrameJump-
Proc

static LRESULT CALLBACK MDIFrameJumpProc(HWND hwnd, UINT
wMsg, WPARAM wParam, LPARAM lParam);

MDIFrameJumpProc() is the callback function (window procedure for MDI
frame windows) called by Microsoft Windows and used to pass the appropriate
default function to FrameProc() for MDI parent frame message handling. The
parameters are normal WindowProc parameters as documented in the
Microsoft Windows API documentation. MDIFrameJumpProc() is an
advanced routine, and should normally not be used by the programmer.

mouseTimerID static UINT mouseTimerID;

This member is used internally by the ZAF libraries to support the
N_MOUSE_ENTER and N_MOUSE_LEAVE events under Microsoft Win-
dows, and should not be accessed by the programmer.

native3D static bool native3D;

This member is only available when the macro ZAF_MSWINDOWS_3D is
defined, and indicates whether 3-D is supported natively.

ObjectFromHandle static ZafWindowObject *ObjectFromHandle(HWND hwnd);

ObjectFromHandle() returns a pointer to the ZAF window object that corre-
sponds to the Microsoft Windows handle hwnd (hwnd is normally equivalent
to the object’s screenID).

objectLowWord static ATOM objectLowWord;
objectHighWord static ATOM objectHighWord;

These members are used internally by the ZAF libraries for all compilers
except Watcom to get pointers to ZAF objects from a window’s properties
under 16-bit versions of Microsoft Windows, and should not be accessed by
the programmer.

static char *objectLowWord;

static char *objectHighWord;

ZafMSWindowsApp 345

These members are used internally by the ZAF libraries for the Watcom com-
piler to get pointers to ZAF objects from a window’s properties under 16-bit
versions of Microsoft Windows, and should not be accessed by the program-
mer. (The Watcom-specific differences should disappear in future versions of
the Watcom compiler.)

windowsPlatform static ZafWindowsPlatform windowsPlatform;

windowsPlatform specifies which flavor of Microsoft Windows the application
is running under. The possible values for this member are as follows:

windowsVersion static int windowsVersion;

windowsVersion specifies which version of Microsoft Windows the applica-
tion is running under. For example, windowsVersion would be 400 under
Microsoft Windows NT version 4.0, or it would be 310 for Microsoft Windows
version 3.1.

ZafWindowsPlatform Description

ZAF_WIN16 Microsoft Windows (16-bit under
Windows 3.x)

ZAF_WIN32S Microsoft Windows (32-bit under
Windows 3.x)

ZAF_WIN32_WINDOWS Microsoft Windows (32-bit, such as
Windows 95)

ZAF_WIN32_NT Microsoft Windows NT (32-bit)

346 Zinc Application Framework 5

ZafNotebook

Inheritance ZafNotebook : ZafWindow : (ZafWindowObject : ZafElement),
ZafList

Declaration #include <z_notebk.hpp>

Description ZafNotebook is a container object used to logically group other objects into
tabbed pages. A ZafWindow object with a ZafTitle is added to a ZafNotebook
to create a page. The text on the ZafTitle is copied to the corresponding tab.
ZafNotebook tabs are scrollable, so more tabs may be on a ZafNotebook than
are visible in the available space.

This class is not available in the Personal version of ZAF, but is included with
the Registered and Professional versions.

Constructors All ZafNotebook constructors initialize the member variables associated with
an instantiated ZafNotebook object. The default values set by the ZafNote-
book and its base class constructors follow, if they differ from those set by the
base class constructor, or if a blocking function is implemented in ZafNote-
book. “†” Indicates a blocking function that prevents changes to the attribute
in this class.

CurrentPage SetTabHotKey TabHotKeyIndex
FirstPage TabHeight TabText
LastPage TabHotKeyChar TabWidth

Member Initializations

ZafNotebook
CurrentPage() -1

TabHeight() 0

TabHotKeyChar() ’\0’

TabHotKeyIndex() -1

TabWidth() 0

ZafWindow
Destroyable() false †

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

ZafNotebook 347

ZafNotebook(int left, int top, int width, int height);

This constructor is useful in straight-code situations. left, top, width, and
height specify the position and size on a parent window. All values are speci-
fied in cell coordinates by default, but may be specified using another coordi-
nate system if desired. See ZafWindowObject::CoordinateType() for more
information.

ZafNotebook(const ZafNotebook ©);

The copy constructor creates a new ZafNotebook object and initializes its data
from copy.

ZafNotebook(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

The following code shows how to create a ZafNotebook object.

// Create a sample window with a notebook.
ZafWindow *window = new ZafWindow(10, 10, 40, 10);
window->AddGenericObjects(new ZafStringData("Notebook

Window"));
ZafNotebook *notebook = new ZafNotebook(0, 0, 40, 10);

// Create Page 1 with a string and add the page to the notebook.
ZafWindow *page = new ZafWindow(0, 0, 40, 4);
page->Add(new ZafTitle("Page 1"));

RegionType() ZAF_AVAILABLE_REGION

SelectionType() ZAF_SINGLE_SELECTION†

Sizeable() false†

Temporary() false†

ZafWindowObject
AcceptDrop() false†

ZafElement
ClassID() ID_ZAF_NOTEBOOK

ClassName() "ZafNotebook"

Member Initializations

348 Zinc Application Framework 5

page->Add(new ZafString(2, 0, 20, "string1", 100));
notebook->Add(page);

// Create Page 2 with a string and add the page to the notebook.
page = new ZafWindow(0, 0, 40, 4);
page->Add(new ZafTitle("Page 2"));
page->Add(new ZafString(4, 1, 20, "string2", 100));
notebook->Add(page);

// Finally, add the notebook to the window.
window->Add(notebook);

Destructor virtual ~ZafNotebook(void);

The destructor is used to free the memory associated with a ZafNotebook
object. It chains to the ZafWindow, ZafWindowObject, ZafList, and ZafEle-
ment destructors. For more information on child object deletion, see ZafWin-
dow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

CurrentPage int CurrentPage(void) const;

virtual int SetCurrentPage(int currentPage);

virtual int SetCurrentPage(ZafWindowObject *currentPage);

CurrentPage() returns the zero-based index of the current page for the
ZafNotebook selected either by the end user, or programmatically. SetCur-
rentPage() may be called to change the current page programmatically by pass-
ing as currentPage either the zero-based index or a pointer to the ZafWindow
page object for the page to be made current.

The ZafNotebook object receives an N_CHANGE_PAGE event whenever the
page is changed either programmatically, or the end user intervention.

FirstPage int FirstPage(void) const;

FirstPage() returns the zero-based index of the first page on the ZafNotebook.
If there are no pages, it returns -1; otherwise, it returns 0.

LastPage int LastPage(void) const;

ZafNotebook 349

LastPage() returns the zero-based index of the last page on the ZafNotebook.
If there are no pages, it returns -1.

TabHeight int TabHeight(void);

virtual int SetTabHeight(int tabHeight);

TabHeight() specifies in pixel coordinates the height of the notebook tabs. By
default this attribute is 0, which means that the default height for each environ-
ment is used, but SetTabHeight() may be used to change it.

TabHotKeyChar ZafIChar TabHotKeyChar(int page) const;
TabHotKeyIndex int TabHotKeyIndex(int page) const;
SetTabHotKey virtual ZafIChar SetTabHotKey(int page, ZafIChar

hotKeyChar, int index = -1);

ZafNotebook’s tab objects are implemented with the ZafButton class, and thus
may utilize hot keys. These functions provide access to the tab objects’ hot
key information. page is the zero-based index of the tab whose hot key infor-
mation is being accessed. The other parameters to these functions are similar
to those passed into ZafButton::HotKeyChar(), ZafButton::HotKeyIndex(),
and ZafButton::SetHotKey(). See ZafButton for more information.

TabText virtual const ZafIChar *TabText(int page);

virtual ZafError SetTabText(const ZafIChar *text, int
page);

TabText() returns the text of the tab corresponding to the notebook page with
zero-based offset page by getting the text on the corresponding ZafTitle object.
SetTabText() may be called to change the text of the tab on the zero-based page
to what is passed into text. The corresponding ZafTitle object's text is modi-
fied to text.

TabWidth int TabWidth(void);

virtual int SetTabWidth(int tabWidth);

TabWidth() specifies in pixel coordinates the width of the notebook tabs. By
default this attribute is 0, which means that the tabs are variable-width, each
tab calculating its width based on its text, but SetTabWidth() may be used to
specify a fixed width for all the tabs.

350 Zinc Application Framework 5

ZafNotification

Inheritance Root class

Declaration #include <z_notify.hpp>

Description ZafNotification serves as the base class for all objects that add notification to
their modes of operation. ZAF defines a whole series of data objects that may
automatically notify their window object counter-part when their data has
changed. These objects include dates, times, bitmaps, languages, as well as
many other data types. For example:

• ZafDateData may notify ZafDate

• ZafTimeData may notify ZafTime

• ZafBitmapData may notify ZafButton

• ZafIconData may notify ZafIcon

• ZafStringData may notify ZafString or ZafText

• ZafScrollData may notify ZafScrollBar

ZafNotification is considered an advanced ZAF class. Therefore, much of the
remaining information presented in this chapter is considered advanced mate-
rial. Readers who don’t need a detailed understanding of the underpinnings of
the ZafNotification class may elect to skip through those sections that seem too
advanced.

In particular, there are only four functions that most users will need to use.
These are Update(), SetUpdate(), UpdateData() and UpdateObjects(). These
functions are used to directly manipulate the data associated with a set of win-
dow objects. Each of these sections is self-contained, and may be referred to
without fully understanding the class’s advanced features.

Constructor The ZafNotification class constructor is protected. Thus, it can only be called
from a derived class’s constructor such as ZafData. ZafNotification sets the
following default values:

AddNotification SubtractNotifications UpdateObjects
ClearNotifications Update
NotifyCount UpdateData

ZafNotification 351

ZafNotification(void);

The constructor initializes a dynamic array of notification objects that will be
called whenever the UpdateData() or UpdateObjects() functions is called. By
default, no objects are inserted into the notification array, signified by a notifi-
cation count of 0. The notification array is modified by calls to AddNotifica-
tion(), ClearNotification(), or SubtractNotification().

The default type of notification performed by the notify class,
ZAF_UPDATE_ALL, causes both changes to the data and to the associated
notification object to be simultaneously updated. See Update() for more infor-
mation.

Destructor virtual ~ZafNotification(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafNotification object. The ZafNotification portion of the destructor
deletes the internal notification array allocated by calls to AddNotification().

A ZafNotification pointer should never be directly deleted! As stated earlier in
this section, the ZafNotification class is generally associated with a derived
object through multiple inheritance. Consider the class declaration of ZafData:

class ZafExportClass ZafData : public ZafElement, public
ZafNotification

An explicit call to the ZafNotification destructor would not have the desired
result of destroying the ZafData object, but would result in only the partial
deletion of the object. To determine the type of destructor that you should call,
refer to the reference chapter on the particular object you created.

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Member Initializations

ZafNotification
Update() ZAF_UPDATE_ALL

NotifyCount() 0

352 Zinc Application Framework 5

AddNotification ZafNotifyObject *AddNotification(ZafNotifyObject *object,
ZafUpdateFunction function =
ZAF_NULLF(ZafUpdateFunction), ZafUpdateType type =
ZAF_UPDATE_ALL);

ClearNotifications void ClearNotifications(void);
SubtractNotifica-
tions

ZafNotifyObject *SubtractNotification(ZafNotifyObject
*object, ZafUpdateFunction function =
ZAF_NULLF(ZafUpdateFunction));

These functions clear or modify the notification objects associated with the
derived ZafNotification class. ClearNotifications() deletes the entire internal
notification array. AddNotifiction() takes the following arguments:

• the object to be associated with the data instance

• the function to be called whenever the data component changes

• the type of notifications the object should receive

ZafUpdateType’s include:

Note that ZAF_UPDATE_DATA and ZAF_UPDATE_OBJECT can be used
simultaneously by using the “or” operator: (ZAF_UPDATE_DATA |
ZAF_UPDATE_OBJECT). The ZafUpdateFunction argument must be in the
following form:

ZafError (*ZafUpdateFunction)(ZafNotifyObject *, ZafUpdateType);

ZafUpdateType() Definition

ZAF_UPDATE_NONE Do not update either the data or window object
portions of the notification. Using this value
causes all notification to be disabled.

ZAF_UPDATE_DATA Only update the data component of the notification.
If this value is used exclusive of
ZAF_UPDATE_OBJECT, then changes to the data
component will not be reflected by the associated
window objects.

ZAF_UPDATE_OBJECT Only update the window object portion of the noti-
fication. If this value is used exclusive of
ZAF_UPDATE_DATA, then changes to window
objects will not automatically cause the data com-
ponent to be updated.

ZAF_UPDATE_ALL Update both the data and window object portions
of the notification. Using this value causes all noti-
fication to be enabled. This is the default value.

ZafNotification 353

• ZafNotifyObject *: The window object that will be called whenever the data com-
ponent changes.

• ZafUpdateType: The type of operation being performed on the object, as defined
above.

The SubtractNotification() arguments object and function have the same mean-
ing as with AddNotification().

These functions return a ZafError value. Normally, this value will be
ZAF_ERROR_NONE (0), but may be any of the error values defined in the
header file z_env.hpp. For a description of these values see ZafData::Error()
and ZafWindowObject::Error().

The following examples include data notification.

static ZafError Update(ZafString *string, ZafUpdateType type)
{ if (type == ZAF_UPDATE_OBJECT) return string->OSSetText();
else if (type == ZAF_UPDATE_DATA)
return string->OSGetText();

else return (ZAF_ERROR_INVALID); }

static ZafError Update(ZafInteger *integer, ZafUpdateType type)
{ if (type == ZAF_UPDATE_OBJECT)

return integer->OSSetInteger();
else if (type == ZAF_UPDATE_DATA)
return integer->OSGetInteger();

else return (ZAF_ERROR_INVALID); }

Data or object notification is very useful in run-time applications. Typically,
application frameworks offer window object technology and the ability to
manipulate the screen presentation of an object, but few packages have auto-
matic notification of visual presentations connected with the data objects.
Whenever a ZAF window object is created with a ZafData derived object, the
object registers itself with the data component. The following example, from
ZafInteger, shows how this connection is established.

ZafError ZafInteger::SetIntegerData(ZafIntegerData
*newIntegerData)

{
// Remove old data notification.
if (integerData)
integerData->SubtractNotification(this);

// Reset the integer data.
...

354 Zinc Application Framework 5

// Re-add new data notification.
if (integerData)
integerData->AddNotification(this);

return (OSSetInteger());
}

Once the data/object connection is made, the window object receives notifica-
tion anytime the data object’s value changes. In the code sample above, ZafIn-
teger::integerData is the data component. Whenever the integer data changes,
update calls are automatically sent to the ZafInteger object, allowing the object
to refresh the information it presents to the screen.

If the data object is attached as a static data element to several window objects,
each object registers itself for data notification using the AddNotification()
function. This allows each window object to receive notification whenever the
data component of the object changes.

When the window object is destroyed, it calls SubtractNotification() to remove
itself from the data object’s notification list. An example is the ZafInteger
destructor:

ZafInteger::~ZafInteger(void)
{
// Remove the data notification.
if (integerData)
integerData->SubtractNotification(this);

...
}

The return value for AddNotification() is the notification argument if the oper-
ation is successful. Otherwise null is returned. The return value for Subtract-
Notification() is the next notification object in the data object’s notification list.
If no notification objects exist after the specified object, null is returned.

NotifyCount int NotifyCount(void) const;

NotifyCount() returns the number of elements that have been added to the
internal notification array.

Update ZafUpdateType Update(void) const;

ZafUpdateType Update(ZafNotifyObject *object) const;

ZafUpdateType SetUpdate(ZafUpdateType updateType);

ZafNotification 355

ZafUpdateType SetUpdate(ZafNotifyObject *object,
ZafUpdateType updateType);

These functions are used to set the notification state of an object, or to reset the
particular notification constraints associated with a notification object. The
possible update types are:

• ZAF_UPDATE_NONE

• ZAF_UPDATE_DATA

• ZAF_UPDATE_OBJECT

• ZAF_UPDATE_ALL

As an example, if the notification is ZAF_UPDATE_ALL, then all modifica-
tions to the data object are reflected in the associated notification objects, and
all modifications to the window objects are reflected in the associated data
object. The following code associates a ZafIntegerData object with two Zaf-
String classes.

// Associate one data class with two window objects.
ZafIntegerData *intData = new ZafIntegerData(200);
*window1 + new ZafInteger(0, 0, 20, intData, true);
*window2 + new ZafInteger(0, 0, 20, intData, true);

When each ZafInteger object is created, it registers itself with the ZafInteger-
Data instance as a notification object. Later, if the contents of the intData
object are changed, the visual representation of the two window objects will
automatically be updated.

// Change the contents of the intData object.
*intData += 100;

If the notification is set to ZAF_UPDATE_NONE, then the visual representa-
tion of the object will not automatically be updated on the screen.

Finally, if you set the notification to ZAF_UPDATE_NONE and then back to
ZAF_UPDATE_ALL, you must call UpdateObjects() to refresh the data notifi-
cation objects.

// Remove the notification while we do some calculations.
intData->SetUpdate(ZAF_UPDATE_NONE);

// Do some calculations on intData.
*intData += 10;
if (*intData < 100)
*intData *= 4;

356 Zinc Application Framework 5

else if (moonOverParador)
*data++;

// Reset the notification and update all associated objects.
intData->SetUpdate(ZAF_UPDATE_ALL);
intData->UpdateObjects();

If you do not call UpdateObjects(), the contents of the window object will not
be updated until the object needs to be re-displayed by the application.

UpdateData ZafError UpdateData(ZafNotifyObject *objectSource =
ZAF_NULLP(ZafNotifyObject));

UpdateData() forces any specified notification objects to immediately update
their data information. A null argument means update all the data components.

When non-null, the objectSource parameter causes a ZAF_UPDATE_DATA
request to be sent to all objects in the notification array that match object-
Source and that have set their notification either to ZAF_UPDATE_DATA or
ZAF_UPDATE_ALL. Be careful using the UpdateData() function, since it is
used to reset the data, not the window object. If a matching object is not spec-
ified, the data will update according to all the objects in the notification
array—an operation that may have undesirable results.

Usually, ZAF_ERROR_NONE is returned.

UpdateObjects ZafError UpdateObjects(ZafNotifyObject *objectMatch =
ZAF_NULLP(ZafNotifyObject));

UpdateObjects() forces any specified notification objects to immediately
update visually. A null argument means update all the window object compo-
nents.

When non-null, the objectMatch parameter causes a ZAF_UPDATE_OBJECT
request to be sent to all objects in the notification array that match objectMatch
and that have their notification set to either ZAF_UPDATE_OBJECT or
ZAF_UPDATE_ALL. Remember, the notification array contains a set of
objects that are to be notified whenever data has changed. Specifying an argu-
ment will only cause the specified object to be notified of the data change.

Generally, you will only want to use this function when notification has been
disabled, then later re-enabled, or when you want the contents of any associ-
ated window objects to immediately update visually. The following example
shows how two string objects can be updated when a ZafStringData object is
modified.

ZafNotification 357

// Associate one data object with two string objects.
ZafStringData *strData = new ZafStringData("Zinc Software",

200);
window1->Add(new ZafString(0, 0, 20, strData, true));
window2->Add(new ZafString(0, 0, 20, strData, true));
...
// Remove the notification while we do some data work.
strData->SetUpdate(ZAF_UPDATE_NONE);
// Do some work with strData.
if (userWantsFax)
*strData += ", Fax: 785-8996";

else if (userWantsPhone)
*strData += ", Phone: 785-8900";

*strData += ", Pleasant Grove, UT";
// Reset the notification and update all associated objects.
strData->SetUpdate(ZAF_UPDATE_OBJECT);
strData->UpdateObjects();

Usually, ZAF_ERROR_NONE is returned.

358 Zinc Application Framework 5

ZafObjectPersistence

Inheritance ZafObjectPersistence : ZafDataPersistence

Declaration #include <z_win.hpp>

Description ZafObjectPersistence allows objects derived from ZafWindowObject to be
written to, and/or read from a storage object—usually a persistent data file.

Using ZafObjectPersistence, a ZafWindowObject can be constructed directly
from information stored in the data file, or stored there for later use. A table of
persistent objects is maintained by this class and is used to reference each
object’s Read() function during construction. A table of ZafWindowObject
classes used in application is generated by Zinc Designer, or may be supplied
by the programmer. Derived objects may also be supported using a generated
table or a programmer-supplied table. See AddObjectConstructor().

ZafObjectPersistence uses ZafFileSystem and ZafFile to maintain and manipu-
late one or more persistent object data files. See ZafStorage for more informa-
tion.

Constructors ZafObjectPersistence(ZafFileSystem *fileSystem,
DataConstructor *dataConstructor, ObjectConstructor
*objectConstructor, UserFunction *userFunction =
ZAF_NULLP(UserFunction), CompareFunction
*compareFunction = ZAF_NULLP(CompareFunction),
UserObject *userObject = ZAF_NULLP(UserObject));

The ZafObjectPersistence class constructor creates a ZafObjectPersistence
object based on the open file fileSystem, the persistent data constructor table
dataConstructor, and the persistent window object constructor table object-
Constructor.

Optionally, the programmer may create tables of other application information
to be passed into the constructor as follows: userFunction is a table of user
functions, compareFunction is a table of compare functions (used when sort-

AddCompareFunction GetClassName Merge
AddObjectConstructor GetCompareFunction SetObjectConstructors
AddUserCallback GetCompareFunctionName SetUserCallbacks
AddUserObject GetObjectConstructor SetUserObjects
ClearCompareFunctions GetUserCallback SubtractCompareFunction
ClearObjectConstructors GetUserCallbackName SubtractObjectConstructor
ClearUserCallbacks GetUserObject SubtractUserCallback
ClearUserObjects GetUserObjectName SubtractUserObject

ZafObjectPersistence 359

ing), and userObject is a table of user-defined objects. These tables must have
a terminating entry in which the name field is null.

Following are the definitions of ZafObjectPersistence::ObjectConstructor,
ZafObjectPersistence::UserFunction, ZafObjectPersistence::CompareFunc-
tion, and ZafObjectPersistence::UserObject. See ZafDataPersistence for defi-
nition of ZafDataPersistence::AddDataConstructor.

struct ObjectConstructor
{
ZafClassID classID;
ZafClassName className;
ZafObjectConstructor constructor;

};

classID is the numeric class identification constant for the window object
class, className is the string class identification constant for the window
object class, and constructor is a pointer to the function used to construct an
instance of the window object class. Internally, ZAF uses the className for its
lookups. These identifiers are used by ZafObjectPersistence to locate the cor-
rect persistent constructor for a window object class.

The definition of ZafObjectConstructor is as follows:

typedef ZafElement *(*ZafObjectConstructor)(const ZafIChar *,
ZafObjectPersistence &);

struct UserFunction
{
ZafDataName name;
ZafUserFunction function;

};

name is the unique string name of the user function and function is a pointer to
the user function. These identifiers are used by ZafObjectPersistence to locate
a user function in the user function table. The definitions of ZafDataName and
ZafUserFunction are as follows:

typedef const ZafIChar *ZafDataName;
typedef ZafEventType (*ZafUserFunction)(ZafWindowObject *,

ZafEventStruct &, ZafEventType);

The definition of ZafObjectConstructor is as follows:

struct CompareFunction
{
ZafDataName name;
ZafCompareFunction function;

360 Zinc Application Framework 5

};

name is the unique string name of the compare function and function is a
pointer to the compare function. These identifiers are used by ZafObjectPer-
sistence to locate a compare function in the compare function table. See
ZafList for an explanation of CompareFunction.

The definition of ZafObjectConstructor is as follows:

struct UserObject
{
ZafDataName name;
void *object;

};

name is the unique string name of the user object and object is a pointer to the
user object. Since object is a void pointer, it may refer to any type. These
identifiers are used by ZafObjectPersistence to locate a user object in the user
object table.

ZafObjectPersistence(const ZafObjectPersistence ©);

The copy constructor creates a new ZafObjectPersistence object and initializes
its data from copy.

The following code snippet shows how to create a ZafObjectPersistence object
and use it to load a window object from storage:

// Create a storage object, which opens the data file.
ZafStorage *storage = new ZafStorage("test.znc", ZAF_FILE_READ);

// Create a persistence object for loading the window object.
// Use the global data and object constructor tables defined
// either in the ZAF persistence library or in the file
// generated by Zinc Designer.
zafObjectPersistence = new ZafObjectPersistence(storage,

zafDefaultDataConstructor, zafDefaultObjectConstructor);

// Load the window object from the data file.
ZafWindow *window = new ZafWindow("MyWindow",

*zafObjectPersistence);

The following code snippet shows how to derive a class that stores more infor-
mation than just what the base class stores:

ZafObjectPersistence 361

// Define the static members of MyStringObject.
ZafClassID MyStringObject::classID = 3600;
ZafClassNameChar MyStringObject::className[] ="MyStringObject";

// Persistent constructor of MyStringObject.
// Call PushLevel() before reading the base class information.
MyStringObject::MyStringObject(const ZafIChar *name,

ZafObjectPersistence &persist) : ZafString(name,
persist.PushLevel(className, classID,
ZAF_PERSIST_DIRECTORY))

{
if (persist.Error() == ZAF_ERROR_NONE)
{
// Read the MyStringObject class information.
ZafFile *file = persist.CurrentFile();
*file >> MyStringObject::member;

}

// Call PopLevel() after the class information has been read.
persist.PopLevel();

// Save the error into the object if the data couldn’t be read.
if (persist.Error() != ZAF_ERROR_NONE)
SetError(persist.Error());

}

// Define Read(), since ZafWindowObject must add it to the
// ZafObjectPersistence object constructor table.
ZafElement *MyStringObject::Read(const ZafIChar *name,

ZafObjectPersistence &persist)
{
return (new MyStringObject(name, persist));

}

// Write() stores the class information in the data file.
void MyStringObject::Write(ZafObjectPersistence &persist)
{
// Write the base class information.
// Call PushLevel() before writing the base class information.
// AllocateFile() is called internally to prepare the file.
ZafString::Write(persist.PushLevel(className, classID,
ZAF_PERSIST_DIRECTORY));

if (persist.Error() == ZAF_ERROR_NONE)
{
// Write the MyStringObject class information.
ZafFile *file = persist.CurrentFile();
*file << MyStringObject::member;

}

362 Zinc Application Framework 5

// Call PopLevel() after writing the class information.
persist.PopLevel();

// Save the error into the object if the data couldn’t be
written.

if (persist.Error() != ZAF_ERROR_NONE)
SetError(persist.Error());

}

Destructor virtual ~ZafObjectPersistence(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafObjectPersistence object. Generally, the programmer will not directly
destroy a ZafObjectPersistence object, since it is destroyed when the applica-
tion is closed.

Members virtual CompareFunction *AddCompareFunction(ZafDataName
name, ZafCompareFunction function);

AddCompare-
Function

AddCompareFunction() adds a compare function to ZafObjectPersistence’s
table of compare functions. name is the unique string name of the compare
function and function is a pointer to the compare function (available only at
run-time). If an entry identified by name is already present in the table, its
compare function is updated to function. A pointer to the CompareFunction
element in the table is returned.

AddObject-
Constructor

virtual ObjectConstructor
*AddObjectConstructor(ZafClassName className,
ZafClassID classID, ZafObjectConstructor constructor);

AddObjectConstructor() adds a window object class constructor to ZafObject-
Persistence’s table of constructors. className is the string class identification
constant for the window object class, classID is the numeric class identifica-
tion constant for the window object class, and constructor is a pointer to the
function used to construct an instance of the window object class. If an entry
with the same class identification constants is already present in the table, its
constructor is updated to constructor. A pointer to the ObjectConstructor ele-
ment in the table is returned.

AddUserCallback virtual UserFunction *AddUserCallback(ZafDataName name,
ZafUserFunction function);

AddUserCallback() adds a user function to ZafObjectPersistence’s table of user
functions. name is the unique string name of the user function and function is a

ZafObjectPersistence 363

pointer to the user function (available only at run-time). If an entry identified
by name is already present in the table, its user function is updated to function.
A pointer to the UserFunction element in the table is returned.

AddUserObject virtual UserObject *AddUserObject(ZafDataName name, void
*object);

AddUserObject() adds a user object to ZafObjectPersistence’s table of user
objects. name is the unique string name of the user object and object is a
pointer to the user object. If an entry identified by name is already present in
the table, its user object is updated to object. Since object is a void pointer, it
may refer to any type. A pointer to the UserObject element in the table is
returned.

ClearCompare-
Functions

virtual void ClearCompareFunctions(void);

ClearCompareFunctions() clears the table of compare functions and destroys
the memory associated with the table, so that no compare function is associated
with the ZafObjectPersistence object.

ClearObject-
Constructors

virtual void ClearObjectConstructors(void);

ClearObjectConstructors() clears the table of window object constructors and
destroys the memory associated with the table, so that no window object con-
structor is associated with the ZafObjectPersistence object.

ClearUserCallbacks virtual void ClearUserCallbacks(void);

ClearUserCallbacks() clears the table of user functions and destroys the mem-
ory associated with the table, so that no user function is associated with the
ZafObjectPersistence object.

ClearUserObjects virtual void ClearUserObjects(void);

ClearUserObjects() clears the table of user objects and destroys the memory
associated with the table, so that no user object is associated with the ZafOb-
jectPersistence object.

GetClassName virtual ZafDataName GetClassName(ZafClassID classID);

GetClassName() searches the tables of constructors in ZafObjectPersistence,
then in ZafDataPersistence for a class with a numeric class identification con-

364 Zinc Application Framework 5

stant of classID. If a matching entry is found, its class name is returned; other-
wise, null is returned.

GetCompare-
Function

virtual ZafCompareFunction GetCompareFunction(ZafDataName
name);

GetCompareFunction() finds and returns a compare function in ZafObjectPer-
sistence’s table of compare functions according to the unique string name of
the compare function name. If no matching compare function is found, null is
returned.

GetCompare-
FunctionName

virtual ZafDataName
GetCompareFunctionName(ZafCompareFunction function);

GetCompareFunctionName() finds and returns the unique string name corre-
sponding to the compare function function. If no matching compare function is
found, null is returned.

GetObject-
Constructor

virtual ZafObjectConstructor
GetObjectConstructor(ZafClassID classID, ZafClassName
className = 0);

GetObjectConstructor() finds and returns a window object class constructor in
ZafObjectPersistence’s table of constructors according to the class identifica-
tion constants. classID is the numeric class identification constant for the win-
dow object class and className is the string class identification constant for
the window object class. If no matching class is found, null is returned.

GetUserCallback virtual ZafUserFunction GetUserCallback(ZafDataName
name);

GetUserCallback() finds and returns a user function in ZafObjectPersistence’s
table of user functions according to the unique string name of the user function
name. If no matching user function is found, null is returned.

GetUserCallback-
Name

virtual ZafDataName GetUserCallbackName(ZafUserFunction
function);

GetUserCallbackName() finds and returns the unique string name correspond-
ing to the user function function. If no matching user function is found, null is
returned.

ZafObjectPersistence 365

GetUserObject virtual void *GetUserObject(ZafDataName name);

GetUserObject() finds and returns a user object in ZafObjectPersistence’s table
of user objects according to the unique string name of the user object name. If
no matching user object is found, null is returned.

GetUserObject-
Name

virtual ZafDataName GetUserObjectName(void *userObject);

GetUserObjectName() finds and returns the unique string name corresponding
to the user object userObject. If no matching user object is found, null is
returned.

Merge bool Merge(ZafObjectPersistence ©);

Merge() merges copy and all its data (including tables and file systems) into
this ZafObjectPersistence object and returns true. The merged object’s tables
and file systems are removed from copy and added to this ZafObjectPersis-
tence object, so copy is in effect empty after calling this function.

SetCompare-
Functions

virtual bool SetCompareFunctions(CompareFunction
*compareFunction);

SetCompareFunctions() clears ZafObjectPersistence's table of compare func-
tions, then creates a new table of compare functions based on the pre-built
compareFunction table. SetCompareFunctions() is an advanced routine, and
should normally not be called by the programmer.

SetObject-
Constructors

virtual bool SetObjectConstructors(ObjectConstructor
*objectConstructor);

SetObjectConstructors() clears ZafObjectPersistence's table of constructors,
then creates a new table of constructors based on the pre-built objectConstruc-
tor table. SetObjectConstructors() is an advanced routine, and should nor-
mally not be called by the programmer.

SetUserCallbacks virtual bool SetUserCallbacks(UserFunction
*userFunction);

SetUserCallbacks() clears ZafObjectPersistence's table of user functions, then
creates a new table of user functions based on the pre-built userFunction table.
SetUserCallbacks() is an advanced routine, and should normally not be called
by the programmer.

366 Zinc Application Framework 5

SetUserObjects virtual bool SetUserObjects(UserObject *userObject);

SetUserObjects() clears ZafObjectPersistence’s table of user objects, then cre-
ates a new table of user objects based on the pre-built userObject table. SetU-
serObjects() is an advanced routine, and should normally not be called by the
programmer.

Subtract-
CompareFunction

virtual bool SubtractCompareFunction(ZafDataName name);

SubtractCompareFunction() removes a compare function from ZafObjectPer-
sistence’s table of compare functions. name is the unique string name of the
compare function. If the entry was successfully removed, true is returned; oth-
erwise, false is returned.

SubtractObject-
Constructor

virtual bool SubtractObjectConstructor(ZafClassID
classID, ZafClassName className = 0);

SubtractObjectConstructor() removes a window object class constructor from
ZafObjectPersistence’s table of constructors. classID is the numeric class iden-
tification constant for the window object class and className is the string
class identification constant for the window object class. If the entry was suc-
cessfully removed, true is returned; otherwise, false is returned.

SubtractUser-
Callback

virtual bool SubtractUserCallback(ZafDataName name);

SubtractUserCallback() removes a user function from ZafObjectPersistence’s
table of user functions. name is the unique string name of the user function. If
the entry was successfully removed, true is returned; otherwise, false is
returned.

SubtractUserObject virtual bool SubtractUserObject(ZafDataName name);

SubtractUserObject() removes a user object from ZafObjectPersistence’s table
of user objects. name is the unique string name of the user object. If the entry
was successfully removed, true is returned; otherwise, false is returned.

ZafPaletteData 367

ZafPaletteData

Inheritance ZafPaletteData : ZafData : ZafNotification, ZafElement

Declaration #include <z_pal1.hpp>

Description ZafPaletteData is used to maintain and persist ZafPaletteMap tables, com-
monly used by ZAF objects derived from ZafWindowObject. See ZafWin-
dowObject::UserPaletteData() for more information.

Constructors All ZafPaletteData constructors initialize the member variables associated with
an instantiated ZafPaletteData object. The default values set by the ZafPalette-
Data and its base class constructors follow, if they differ from those set by the
base class constructor.

ZafPaletteData(bool staticData = false);

ZafPaletteData(ZafPaletteMap *mapTable, bool staticData =
false);

These constructors allocate a ZafPaletteData instance and initialize Static-
Data() to staticData. mapTable specifies the ZafPaletteMap table to use for
MapTable(). See ZafPaletteMap for more information.

ZafPaletteData(const ZafPaletteData ©);

The copy constructor creates a new ZafPaletteData object and initializes its
data from copy.

AddPalette GetPalette StaticData
Clear MapTable operator ()

Member Initializations

ZafPaletteData
MapTable() null

StaticData() false

ZafElement
ClassID() ID_ZAF_PALETTE_DATA

ClassName() "ZafPaletteData"

368 Zinc Application Framework 5

ZafPaletteData(const ZafIChar *name, ZafDataPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

The following code snippet shows how to create a ZafPaletteData object:

// Create a ZafPaletteData object.
ZafPaletteMap myPaletteMap[] =
{
{ ZAF_PM_BACKGROUND, ZAF_PM_ANY_STATE, { ZAF_LINE_NULL,
ZAF_PTN_SOLID_FILL, ZAF_CLR_NULL, ZAF_CLR_WHITE,
ZAF_MONO_NULL, ZAF_MONO_WHITE, ZAF_FNT_NULL, 0 } },

{ ZAF_PM_TEXT, ZAF_PM_ANY_STATE, { ZAF_LINE_NULL,
ZAF_PTN_SOLID_FILL, ZAF_CLR_DARKGRAY, ZAF_CLR_WHITE,
ZAF_MONO_BLACK, ZAF_MONO_WHITE, ZAF_FNT_DIALOG, 0 } },

{ ZAF_PM_ANY_TYPE, ZAF_PM_ANY_STATE, { ZAF_LINE_SOLID,
ZAF_PTN_SOLID_FILL, ZAF_CLR_BLACK, ZAF_CLR_WHITE,
ZAF_MONO_BLACK, ZAF_MONO_WHITE, ZAF_FNT_DIALOG, 0 } }

};
ZafPaletteData paletteData(myPaletteMap, false);

Destructor virtual ~ZafPaletteData(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafPaletteData object.

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

AddPalette ZafError AddPalette(ZafPaletteType type, ZafPaletteState
state, ZafPaletteStruct &palette);

AddPalette() inserts an entry into the MapTable() and initializes the new
entry’s fields to type, state, and palette. AddPalette() usually returns
ZAF_ERROR_NONE. See ZafPaletteMap for more information.

Clear virtual void Clear(void);

Clear() destroys the MapTable() if StaticData() is false. Regardless of Static-
Data(), MapTable() is set to null, effectively clearing the palette map data.

ZafPaletteData 369

GetPalette ZafPaletteStruct GetPalette(ZafPaletteType type,
ZafPaletteState state);

GetPalette() finds an entry in the MapTable() corresponding to type and state
and returns the ZafPaletteStruct portion of the entry. If no entry was found cor-
responding to type and state, an empty ZafPaletteStruct object is returned. See
ZafPaletteMap for more information.

MapTable const ZafPaletteMap *MapTable(void);

virtual ZafError SetMapTable(ZafPaletteMap *paletteMap);

MapTable() returns the palette map table associated with the ZafPaletteData
object. This attribute defaults to null, but may be changed with SetMapT-
able(). SetMapTable() usually returns ZAF_ERROR_NONE.

StaticData bool StaticData(void) const;

virtual bool SetStaticData(bool staticData);

If StaticData() is true, then MapTable() is considered static, and will not be
destroyed by the ZafPaletteData class neither in the destructor, nor in Set-
MapTable(). This attribute defaults to false, but may be changed with SetStat-
icData().

operator () operator const ZafPaletteMap *();

This operator returns the MapTable() attribute.

370 Zinc Application Framework 5

ZafPaletteMap

Inheritance Root struct

Declaration #include <z_pal1.hpp>

Description The ZafPaletteMap struct is normally used in tables, and is used to map Zaf-
PaletteStruct values to ZAF objects according to their current drawing type and
state. See ZafWindowObject::UserPaletteData() for more information.

Members ZafPaletteType type;
type type specifies the type of drawing being done for the object. Some examples

are ZAF_PM_BACKGROUND (when drawing the background portion of the
object) and ZAF_PM_TEXT (when drawing the textual information of the
object). See ZafWindowObject::UserPaletteData() for more information.

state ZafPaletteState state;

state specifies the object’s current state during the draw operation. Some
examples are ZAF_PM_CURRENT (when the object is current) and
ZAF_PM_DISABLED (when the object is disabled). See ZafWindowOb-
ject::UserPaletteData() for more information.

palette ZafPaletteStruct palette;

palette specifies the palette to be used for the draw operation, if type and state
are appropriate for the draw operation. See ZafPaletteStruct for more informa-
tion.

type state palette

ZafPaletteStruct 371

ZafPaletteStruct

Inheritance Root struct

Declaration #include <z_pal.hpp>

Description ZafPaletteStruct is used to store palette information to be used during draw
operations. A common use of ZafPaletteStruct is by ZafPaletteMap’s palette
member. A draw operation looks into a ZafPaletteStruct object to find the
color or style to use. See ZafPaletteMap and ZafWindowObject::UserPalette-
Data() for more information.

Members
colorBackground ZafLogicalColor colorBackground;
colorForeground ZafLogicalColor colorForeground;

colorBackground specifies the color to use when drawing a background on a
color or grayscale screen, and colorForeground specifies the color to use when
drawing a foreground on a color or grayscale screen. The possible values of
these members are as follows:

colorBackground fillPattern monoForeground
colorForeground font osPalette
lineStyle monoBackground

ZafLogicalColor Description

ZAF_CLR_BACKGROUND Causes the color to be transparent, so that what-
ever is underneath the object shows through

ZAF_CLR_BLACK Causes black to be used

ZAF_CLR_BLUE Causes blue to be used

ZAF_CLR_BROWN Causes brown to be used

ZAF_CLR_CYAN Causes cyan to be used

ZAF_CLR_DARKGRAY Causes dark gray to be used

ZAF_CLR_DEFAULT Causes the object to use the environment’s
default color

ZAF_CLR_GREEN Causes green to be used

ZAF_CLR_LIGHTBLUE Causes light blue to be used

ZAF_CLR_LIGHTCYAN Causes light cyan to be used

ZAF_CLR_LIGHTGRAY Causes light gray to be used

ZAF_CLR_LIGHTGREEN Causes light green to be used

372 Zinc Application Framework 5

lineStyle ZafLogicalLineStyle lineStyle;

lineStyle specifies the style to use when drawing a line. The possible values of
this member are as follows:

fillPattern ZafLogicalFillPattern fillPattern;

fillPattern specifies the pattern to use when filling a shape. The possible values
of this member are as follows:

ZAF_CLR_LIGHTMAGENTA Causes light magenta to be used

ZAF_CLR_LIGHTRED Causes light red to be used

ZAF_CLR_MAGENTA Causes magenta to be used

ZAF_CLR_NULL Causes the object to use the class default color

ZAF_CLR_PARENT Causes the object to use its parent’s color

ZAF_CLR_RED Causes red to be used

ZAF_CLR_WHITE Causes white to be used

ZAF_CLR_YELLOW Causes yellow to be used

ZafLogicalColor Description

ZafLogicalLineStyle Description

ZAF_LINE_DEFAULT Causes the object to use the environment’s
default line style

ZAF_LINE_DOTTED Causes a dotted line to be drawn, if supported
on the environment

ZAF_LINE_NULL Causes the object to use the class default line
style

ZAF_LINE_PARENT Causes the object to use it’s parent’s line style

ZAF_LINE_SOLID Causes a solid line to be drawn

ZafLogicalFillPattern Description

ZAF_PTN_DEFAULT Causes the object to use the environ-
ment’s default fill pattern

ZAF_PTN_INTERLEAVE_FILL Causes a 50% interleave fill pattern to
be used

ZAF_PTN_NULL Causes the object to use the class
default fill pattern

ZafPaletteStruct 373

font ZafLogicalFont font;

font specifies the font to use when drawing text. The possible values of this
member are as follows:

monoBackground ZafLogicalColor monoBackground;
monoForeground ZafLogicalColor monoForeground;

monoBackground specifies the color to use when drawing a background on a
black and white screen, and monoForeground specifies the color to use when
drawing a foreground on a black and white screen. The possible values of
these members are as follows:

ZAF_PTN_PARENT Causes the object to use it’s parent’s
fill pattern

ZAF_PTN_SOLID_FILL Causes a solid fill pattern to be used

ZafLogicalFillPattern Description

ZafLogicalFont Description

ZAF_FNT_APPLICATION Causes the application font to be used (as with
multi-line text fields)

ZAF_FNT_DEFAULT Causes the object to use the environment’s
default font

ZAF_FNT_DIALOG Causes the dialog font to be used (as on dialog
windows)

ZAF_FNT_FIXED Causes the fixed-width font to be used (such as
Courier)

ZAF_FNT_NULL Causes the object to use the class default font

ZAF_FNT_PARENT Causes the object to use it’s parent’s font

ZAF_FNT_SMALL Causes the small font to be used (as with icons)

ZAF_FNT_SYSTEM Causes the system font to be used (as on win-
dow title bars)

ZafLogicalColor Description

ZAF_MONO_BACKGROUND Causes the color to be transparent, so that what-
ever is underneath the object shows through

ZAF_MONO_BLACK Causes black to be used

ZAF_MONO_DEFAULT Causes the object to use the environment’s
default color

374 Zinc Application Framework 5

osPalette OSPaletteID osPalette;

osPalette is used internally by ZAF, and specifies environment-specific palette
information, if necessary. This is an advanced member, and the programmer
should normally not access this member.

ZAF_MONO_DIM Causes dim intensity to be used (text mode
only)

ZAF_MONO_HIGH Causes high intensity to be used (text mode
only)

ZAF_MONO_NORMAL Causes normal intensity to be used (text mode
only)

ZAF_MONO_NULL Causes the object to use the class default color

ZAF_MONO_PARENT Causes the object to use it’s parent’s color

ZAF_MONO_WHITE Causes white to be used

ZafLogicalColor Description

ZafPath 375

ZafPath

Inheritance ZafPath : ZafList

Declaration #include <z_file.hpp>

Description A search path may be built by adding ZafPathElement objects to a ZafPath
object. The global zafSearchPath is used internally by ZAF when trying to
open a data file. The path elements are searched in the order that they were
added to the ZafPath object. See ZafPathElement for more information.

Constructor ZafPath(const ZafIChar *pwd, bool getCwd);

This constructor is useful in straight-code situations, and creates a ZafPath
object. If pwd is not null, it is a path specification to be added as a ZafPathEle-
ment to the new ZafPath object. If getCwd is true, the current directory is
added as a ZafPathElement to the new ZafPath object as the first child of the
ZafPath object (before pwd if it was added). Lastly, this constructor attempts
to load the "ZAF_PATH" environment variable’s contents (see Load() for more
information).

An example of how to create a search path follows:

// Create the global search path, including the current
directory.

zafSearchPath = new ZafPath(ZAF_NULLP(ZafIChar), true);

// Add a data file subdirectory to the search path.
extern ZafIChar dataFilePath[];
zafSearchPath->Add(new ZafPathElement(dataFilePath));

Members bool Load(const ZafIChar *envname);
Load Load() finds the envname environment variable if it exists in the environment,

and loads a new ZafPathElement object for each path specifier denoted by the
environment variable into the ZafPath object. The ZafPath constructor auto-
matically calls Load() to attempt to load the "ZAF_PATH" environment vari-
able’s contents.

Load

376 Zinc Application Framework 5

ZafPathElement

Inheritance ZafPathElement : ZafElement

Declaration #include <z_file.hpp>

Description A search path may be built by adding ZafPathElement objects to a ZafPath
object. Either a full path specification or a partial path specification may be
associated with a ZafPathElement object, but path specifications are non-porta-
ble. For example, MS-DOS uses a colon (":") for a drive separator and a back-
slash ("\") for a directory separator. Unix does not have the concept of a drive
and it uses a forward slash ("/") for a directory separator. The Macintosh uses a
colon (":") for both a drive and a directory separator. The diversity of path
specification notation requires that different path elements be used on different
environments.

See ZafPath for more information on search paths.

Constructor The ZafPathElement constructor initializes the member variables associated
with an instantiated ZafPathElement object. The default values set by the Zaf-
PathElement follows.

ZafPathElement(const ZafIChar *path, int length = -1);

This constructor is useful in straight-code situations to create a ZafPathEle-
ment object. path specifies the environment-specific search pathname to be
associated with this ZafPathElement object. length specifies the maximum
number of ZafIChars to be copied from path. If length is - 1, the entire path
buffer is copied into the ZafPathElement object.

See ZafPath for an example of how to create a search path.

Members const ZafIChar *Path(void) const;
Path ZafError SetPath(const ZafIChar *path, int length = -1);

Path() returns the environment-specific search pathname associated with this
ZafPathElement object. This attribute may be changed by calling SetPath().

Path

Member Initializations

ZafPathElement
Path() user-supplied parameter

ZafPathElement 377

path specifies the environment- specific search pathname to be associated with
this ZafPathElement object. length specifies the maximum number of ZafI-
Chars to be copied from path. If length is -1, the entire path buffer is copied
into the ZafPathElement object.

378 Zinc Application Framework 5

ZafPopUpItem

Inheritance ZafPopUpItem : ZafButton : ZafWindowObject : ZafElement

Declaration #include <z_popup.hpp>

Description ZafPopUpItem objects are the items in a menu. A hierarchical sub-menu may
be created by simply adding ZafPopUpItem objects to a ZafPopUpItem object.
A ZafPopUpItem object with its Selected() attribute set to true displays a
checkmark. It is important to note that ZafPopUpItem objects may only be
added to a ZafPullDownItem object, a ZafPopUpMenu object, or another Zaf-
PopUpItem object.

Constructors All ZafPopUpItem constructors initialize the member variables associated with
an instantiated ZafPopUpItem object. The default values set by the ZafPopU-
pItem and its base class constructors follow, if they differ from those set by the
base class constructor, or if a blocking function is implemented in ZafPopUpI-
tem. “†” Indicates a blocking function that prevents changes to the attribute in
this class.

Add FocusObject menu
Count Get Sort
Current GetObject Subtract
Destroy Index operator +
Event ItemType operator -
First Last

Member Initializations

ZafPopUpItem
ItemType() user-supplied parameter

menu ZafPopUpMenu(0, 0)

menu.parent this

menu.StringID() "menu"

ZafButton
AllowDefault() false†

AutoRepeatSelection() false†

AutoSize() false†

BitmapData() ZAF_NULLP(ZafBitmapData)†

ButtonType() ZAF_FLAT_BUTTON†

Depressed() false†

Depth() 0†

ZafPopUpItem 379

ZafPopUpItem(const ZafIChar *text, ZafPopUpItemType
itemType = ZAF_NORMAL_ITEM);

This constructor is useful in straight-code situations, particularly if you wish
the ZafPopUpItem object to create, maintain and destroy its own ZafString-
Data object automatically. text specifies the text to appear in the new ZafPop-
UpItem object, and itemType specifies the type of menu item to be created.
See ItemType() for more information on menu item types.

ZafPopUpItem(ZafStringData *stringData, ZafPopUpItemType
itemType = ZAF_NORMAL_ITEM);

This constructor is also useful in straight-code situations, particularly if you
have already created a ZafStringData object to be associated with the ZafPop-
UpItem object. This constructor could be used to maintain string data pieces
yourself, rather than having the ZafPopUpItem class create and maintain the
string data pieces automatically. For example, to maintain a database of Zaf-
StringData objects and tie them into ZafPopUpItem objects, maintain your
own ZafStringData objects and create ZafPopUpItem objects using your Zaf-
StringData objects. For more information on using ZafStringData objects, see

HzJustify() ZAF_HZ_LEFT†

SelectOnDoubleClick() false†

SelectOnDownClick() false†

VtJustify() ZAF_VT_CENTER†

ZafWindowObject
AcceptDrop() false†

Bordered() false†

CopyDraggable() false†

LinkDraggable() false†

MoveDraggable() false†

ParentDrawBorder() false†

ParentDrawFocus() false†

ParentPalette() false†

RegionType() ZAF_INSIDE_REGION†

SupportObject() false†

ZafElement
ClassID() ID_ZAF_POP_UP_ITEM

ClassName() "ZafPopUpItem"

Member Initializations

380 Zinc Application Framework 5

ZafStringData. The stringData parameter specifies the string data object to be
associated with the ZafPopUpItem object. Otherwise, this constructor (and
parameters) is the same as the first.

ZafPopUpItem(const ZafPopUpItem ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It copies the information from another ZafPopUpItem object, copy.
If the data objects are StaticData(), the new ZafPopUpItem object simply
points to the original data objects, otherwise a copy is made for the new Zaf-
PopUpItem object. This allows a programmer to use static data for more than
one ZafPopUpItem object.

ZafPopUpItem(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. The parameters and values of this
constructor are deferred to the ZafWindow section of this manual, since most
persistence is done at the ZafWindow level.

Refer to ZafPullDownMenu for an example of how to create ZafPopUpItem
objects.

Destructor virtual ~ZafPopUpItem(void);

The destructor is used to free the memory associated with a ZafPopUpItem
object, including all the data object pieces (such as StringData()) that are
Destroyable(). It chains to the ZafWindowObject and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafPopUpItem object,
since it is automatically destroyed when its parent pop-up menu is destroyed.
For more information on child object deletion, see ZafWindow::~ZafWin-
dow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Add virtual ZafWindowObject *Add(ZafWindowObject *object,
ZafWindowObject *position =
ZAF_NULLP(ZafWindowObject));

operator + ZafPopUpItem &operator+(ZafWindowObject *object);

ZafPopUpItem 381

This function and operator are used to create sub-menu items by adding Zaf-
PopUpItem objects to the ZafPopUpItem object. The functionality is provided
by the ZafPopUpMenu class through the menu member. object is a pointer to
the ZafPopUpItem object to be added to the ZafPopUpItem object’s sub-menu.
position specifies which ZafPopUpItem object already in the menu that object
should appear before. If position is null, object is added to the end of the
menu. See ZafWindow::Add() for more information.

Count int Count(void) const;

Count() returns the number of ZafPopUpItem objects in the sub-menu, or 0 if
there is no sub-menu. See ZafList::Count() for more information.

Current ZafWindowObject *Current(void) const;

Current() returns the current ZafPopUpItem object in the sub-menu, if there is
one. The Current() item does not necessarily have focus. Some native envi-
ronment implementations of menus do not allow the menu to ever have focus.
See ZafList::Current() for more information.

Destroy virtual void Destroy(void);

Destroy() causes all the ZafPopUpItem objects in the sub-menu to be
destroyed, if there is one. This is useful if a sub-menu is to be recreated from
scratch. See ZafList::Destroy() for more information.

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events that get sent to the ZafPopUpItem
object, either by processing the events itself, or by passing the event down for
base class processing. Refer to ZafWindowObject for complete details. Fol-
lowing are events that are handled by ZafPopUpItem in addition to those han-
dled by its base classes:

Event Action

S_ADD_OBJECT Causes event.windowObject to be added to the
sub-menu

S_SUBTRACT_OBJECT Causes event.windowObject to be subtracted
from the sub-menu

382 Zinc Application Framework 5

First ZafWindowObject *First(void) const;

The First() function returns the first ZafPopUpItem object in the sub-menu, if
any. See ZafList::First() for more information.

FocusObject virtual ZafWindowObject *FocusObject(void) const;

FocusObject() returns the ZafPopUpItem object in the sub-menu that has
focus, if there is one. Some native environment implementations of menus do
not allow the menu to ever have focus, so this function will always return null
in these cases. See ZafWindow::FocusObject() for more information.

Get ZafWindowObject *Get(int index);

Get() returns the ZafPopUpItem object at position index in the sub-menu, if
there is one. index is zero-based, meaning the first ZafPopUpItem object in the
sub-menu is at position 0. See ZafList::Get() for more information.

GetObject virtual ZafWindowObject *GetObject(ZafNumberID numberID);

virtual ZafWindowObject *GetObject(const ZafIChar
*stringID);

GetObject() return the ZafPopUpItem object in the sub-menu with either the
numberID of numberID (if there is one), or the stringID of stringID, if it is
found. See ZafWindowObject::GetObject() for more information.

Index int Index(ZafWindowObject const *element);

If there is a sub-menu, the Index() function returns the zero-based index of the
ZafPopUpItem object element in the sub-menu. If there is no sub-menu or ele-
ment is not found in the sub-menu, Index() returns -1. See ZafList::Index() for
more information.

ItemType ZafPopUpItemType ItemType(void) const;

virtual ZafPopUpItemType SetItemType(ZafPopUpItemType
itemType);

ItemType() specifies the menu item type of a ZafPopUpItem object. The
default value of this attribute is ZAF_NORMAL_ITEM, but the user may call
SetItemType() to make changes. Below is a list of possible menu item types:

ZafPopUpItemType Description

ZAF_NORMAL_ITEM Creates a normal menu item

ZafPopUpItem 383

Last ZafWindowObject *Last(void) const;

Last() returns the last ZafPopUpItem object in the sub-menu, if any. See
ZafList::Last() for more information.

ZAF_ABOUT_OPTION Creates an about menu item (on the Macintosh,
placed in the Apple menu)

ZAF_CLOSE_OPTION Creates an S_CLOSE menu item with the
appropriate text, hotkey and SendMessage()
information

ZAF_COPY_OPTION Creates an S_COPY menu item with the appro-
priate text, hotkey and SendMessage() informa-
tion

ZAF_CUT_OPTION Creates an S_CUT menu item with the appro-
priate text, hotkey and SendMessage() informa-
tion

ZAF_EXIT_OPTION Creates an S_EXIT menu item with the appro-
priate text, hotkey and SendMessage() informa-
tion

ZAF_MAXIMIZE_OPTION Creates an S_MAXIMIZE menu item in system
menus

ZAF_MINIMIZE_OPTION Creates an S_MINIMIZE menu item in system
menus

ZAF_MOVE_OPTION Creates an S_MOVE_MODE menu item in
system menus

ZAF_PASTE_OPTION Creates an S_PASTE menu item with the
appropriate text, hotkey and SendMessage()
information

ZAF_RESTORE_OPTION Creates an S_RESTORE menu item in system
menus

ZAF_SEPARATOR Creates a Disabled() and Noncurrent() separa-
tor line menu item

ZAF_SIZE_OPTION Creates an S_SIZE_MODE menu item in sys-
tem menus

ZAF_SWITCH_OPTION Creates a switch menu item in system menus

ZafPopUpItemType Description

384 Zinc Application Framework 5

menu ZafPopUpMenu menu;

The menu member, used internally by the ZAF libraries to maintain the Zaf-
PopUpItem objects added to the ZafPopUpItem object (forming the sub-
menu), should normally not be accessed by the programmer. See ZafPopUp-
Menu for more information.

Sort virtual void Sort(void);

Sort() causes the ZafPopUpItem objects in the sub-menu (if there is one) to be
sorted according to the function returned by CompareFunction(). See
ZafList::CompareFunction() for more information.

Subtract virtual ZafWindowObject *Subtract(ZafWindowObject
*object);

operator - ZafPopUpItem &operator-(ZafWindowObject *object);

This function and operator are used for subtracting (or removing) ZafPopUpI-
tem objects from the ZafPopUpItem object’s sub-menu. The functionality is
provided by the ZafPopUpMenu class through the menu member. object is a
pointer to the ZafPopUpItem object to be subtracted. See ZafWindow::Sub-
tract() for more information.

ZafPopUpMenu 385

ZafPopUpMenu
Inheritance ZafPopUpMenu : ZafWindow : ((ZafWindowObject :

ZafElement), ZafList)

Declaration #include <z_popup.hpp>

Description The ZafPopUpMenu object is a pop-up menu object that supports multiple-lev-
eled menu hierarchies. As with all other ZAF classes, the ZafPopUpMenu
class utilizes the native pop-up menu API if available, so the look-and-feel is
exactly what the end user expects. The pop-up menu object may be added to a
ZafWindowManager object to provide a detached pop-up menu on the screen
that disappears when the user selects an item.

If the pop-up menu is not added to a ZafWindowManager object, it is com-
pletely managed internally to the ZAF libraries, and should not be accessed by
the programmer. Each ZafPullDownItem and ZafPopUpItem object has a Zaf-
PopUpMenu member associated with it to handle support for adding ZafPopU-
pItem objects. Only ZafPopUpItem objects may be added to a ZafPopUpMenu
object.

Constructors All ZafPopUpMenu constructors initialize the member variables associated
with an instantiated ZafPopUpMenu object. The default values set by the Zaf-
PopUpMenu and its base class constructors follow, if they differ from those set
by the base class constructor, or if a blocking function is implemented in Zaf-
PopUpMenu. “†” Indicates a blocking function that prevents changes to the
attribute in this class.

Member Initializations

ZafWindow
Destroyable() false

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() true†

Sizeable() false†

Temporary() true†

ZafWindowObject
AcceptDrop() false†

Bordered() true†

386 Zinc Application Framework 5

ZafPopUpMenu(int left, int top);

This constructor is useful in straight-code situations. If the pop-up menu is to
be added to a ZafWindowManager object, the left and top parameters specify
the position where the left and top of the menu will be placed on the screen,
respectively. All values are specified in cell coordinates by default, but may be
specified using another coordinate system if desired. Otherwise, the parame-
ters are ignored.

ZafPopUpMenu(const ZafPopUpMenu ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafPopUpMenu object and copies the object’s
information.

ZafPopUpMenu(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

The following shows how to create a ZafPopUpMenu object:

// Create and populate the edit menu.
ZafPopUpMenu *editMenu = new ZafPopUpMenu(10, 10);
editMenu->Add(new ZafPopUpItem("Undo"));
editMenu->Add(new ZafPopUpItem("", ZAF_SEPARATOR));
editMenu->Add(new ZafPopUpItem("", ZAF_CUT_OPTION));
editMenu->Add(new ZafPopUpItem("", ZAF_COPY_OPTION));
editMenu->Add(new ZafPopUpItem("", ZAF_PASTE_OPTION));
// Add the edit menu to the screen.
windowManager->Add(editMenu);

Disabled() false†

Noncurrent() false†

ParentPalette() false†

RegionType() ZAF_INSIDE_REGION†

ZafElement
ClassID() ID_ZAF_POP_UP_MENU

ClassName() "ZafPopUpMenu"

Member Initializations

ZafPopUpMenu 387

Destructor virtual ~ZafPopUpMenu(void);

The destructor is used to free the memory associated with a ZafPopUpMenu
object. It chains to the ZafWindow, ZafList, ZafWindowObject and ZafEle-
ment destructors.

Generally, the programmer will not directly destroy a ZafPopUpMenu object,
since it is automatically destroyed when its parent menu bar is destroyed.
However, if the ZafPopUpMenu object is added to the window manager, it will
have to be destroyed when it is no longer needed, since it Destroyable() is false
in this case. For more information on child object deletion, see ZafWin-
dow::~ZafWindow().

388 Zinc Application Framework 5

ZafPositionStruct

Inheritance Root structure

Declaration #include <z_pos.hpp>

Description ZafPositionStruct provides support for storing a position in 2-dimensional
space. Various different coordinate systems may be specified for the position
(see ZafCoordinateType for more information).

Members void Assign(int column, int line, ZafCoordinateType type =
ZAF_COORD_DEFAULT);

Assign Assign() sets the position to column along the x-axis, and to line along the y-
axis. If type is ZAF_COORD_DEFAULT, coordinateType is unchanged; oth-
erwise, coordinateType is set to type.

column int column, line;
line column and line store the position’s values along the x-axis and y-axis, respec-

tively.

ConvertCoordinates void ConvertCoordinates(ZafCoordinateType newType,
ZafDisplay *display = ZAF_NULLP(ZafDisplay));

ConvertCoordinates() converts the position to the newType coordinate system
for use on the display device.

coordinateType ZafCoordinateType coordinateType;

coordinateType stores the coordinate system used by the position. See ZafCo-
ordinateType for more information on coordinate systems in ZAF.

Assign Export Position
column HzShift VtShift
ConvertCoordinates Import operator ==
coordinateType line operator !=

ZafPositionStruct 389

Export void Export(POINT &point) const;

void Export(Point &point) const;

Export() exports the position to point in the native environment’s position type.
For example, in Microsoft Windows, the built-in type POINT is used, and on
the Macintosh, the built-in type Point is used.

HzShift void HzShift(int shift);

HzShift() modifies the position along the x-axis by the amount specified in
shift. If shift is positive, the position moves in the positive direction. If shift is
negative, the position moves in the negative direction.

Import void Import(const POINT &point);

void Import(const Point &point);

Import() imports the position from point in the native environment’s position
type. For example, in Microsoft Windows, the built-in type POINT is used,
and on the Macintosh, the built-in type Point is used.

Position ZafPositionStruct Position(ZafCoordinateType type);

Position() returns the position converted to the type coordinate system. The
original position is not modified.

VtShift void VtShift(int shift);

VtShift() modifies the position along the y-axis by the amount specified in
shift. If shift is positive, the position moves in the positive direction. If shift is
negative, the position moves in the negative direction.

operator == bool operator==(const ZafPositionStruct &position) const;

This operator returns true if position is equal to this position object; otherwise
it returns false. If the coordinate systems are different, a converted version of
position is used in the comparison.

operator != bool operator!=(const ZafPositionStruct &position) const;

This operator returns true if position is not equal to this position object; other-
wise it returns false. If the coordinate systems are different, a converted ver-
sion of position is used in the comparison.

390 Zinc Application Framework 5

ZafPrintDialog

Inheritance ZafPrintDialog : ZafDialogWindow

Declaration #include <z_print.hpp>

Description ZafPrintDialog presents the end user with a dialog with which the ZafPrintJob-
Struct members (provided to the constructor) may be modified. The available
SetAllowModify*() accessor functions change the appearance of the ZafPrint-
Dialog window where appropriate. ZafPrintDialog invokes a native dialog on
environments that have native printing support and a Zinc supplied dialog on
others.

Constructor The ZafPrintDialog constructor initializes the member variables associated
with an instantiated ZafPrintDialog object. The default values set by the Zaf-
PrintDialog constructor follow.

ZafPrintDialog(int left, int top, ZafPrinter *printer,
ZafPrintJobStruct *printJob);

The constructor is useful in straight-code situations. left and top specify the
position of the dialog on the screen, but may be ignored by some environments
that position the dialog themselves. printer is a pointer to the ZafPrinter object
corresponding to the print dialog. printJob is a pointer to the print job structure
to be modified if the end user successfully modifies the information presented
in the print dialog. If the end user cancels the dialog, printJob is left
untouched. This constructor (followed by the Control() method) is usually not
called by the programmer, since it is called by ZafPrinter::JobSetup(). The fol-
lowing code snippet shows an example of using this class:

ZafPrinter printer;
ZafPrintJobStruct printJob;
printJob.collate = false;
printJob.copies = 1;

AllowModifyCollate AllowModifyCopies AllowModifyRange

Member Initializations

ZafPrintDialog
AllowModifyCollate() platform-specific

AllowModifyCopies() true

AllowModifyRange() true

ZafPrintDialog 391

printJob.startPage = printJob.endPage = 1;
printJob.minPage = printJob.maxPage = 1;

// Do the same thing printer.JobSetup(printJob) would do.
ZafPrintDialog printDialog(0, 0, printer, &printJob);
return ((printDialog.Control() == S_DLG_OK) ? true : false);

Members
AllowModifyCollate bool AllowModifyCollate(void) const;

bool SetAllowModifyCollate(bool allowModifyCollate);

If AllowModifyCollate() is true, the end user may modify the collate member
of the ZafPrintJobStruct passed into the constructor. SetAllowModifyCollate()
may be called to allow or disallow end user modification of collate in the print
dialog.

AllowModifyCopies bool AllowModifyCopies(void) const;

bool SetAllowModifyCopies(bool allowModifyCopies);

If AllowModifyCopies() is true, the end user may modify the copies member
of the ZafPrintJobStruct passed into the constructor. SetAllowModifyCopies()
may be called to allow or disallow end user modification of copies in the print
dialog.

AllowModifyRange bool AllowModifyRange(void) const;

bool SetAllowModifyRange(bool allowModifyRange);

If AllowModifyRange() is true, the end user may modify the startPage and
endPage members of the ZafPrintJobStruct passed into the constructor. SetAl-
lowModifyRange() may be called to allow or disallow end user modification
of startPage and endPage in the print dialog.

392 Zinc Application Framework 5

ZafPrinter

Inheritance ZafPrinter : ZafDisplay

Declaration #include <z_print.hpp>

Description ZafPrinter defines the basic functionality necessary to output to a printer. Zaf-
Printer provides the same set of graphic display primitives as those used for
displaying on the screen, plus additional printer-specific primitives and printer
interface methods such as BeginJob() and EndJob(). See the base class
ZafDisplay for complete descriptions of the inherited “display” functions pro-
vided by ZafPrinter.

Constructor The ZafPrinter constructor initializes the member variables associated with an
instantiated ZafPrinter object. The default values set by the ZafPrinter con-
structor and its base class constructor follow, if they differ from those set by
the base class constructor.

AbortJob Margins PrinterType
BeginJob PageHeight PrintSetup
BeginPage PageWidth TextBlock
EndJob PaperHeight TextLine
EndPage PaperOrientation
JobSetup PaperWidth

Member Initializations

ZafPrinter
colorTable[] display-dependent

fontTable[] display-dependent

lineTable[] display-dependent

Margins() (0.5", 0.5", 0.5", 0.5")

modeTable[] display-dependent

PageHeight() PaperHeight() - top margin - bottom
margin

PageWidth() PaperWidth() - left margin - right
margin

PaperHeight() 11" (North America) or A4

PaperOrientation() ZAF_PORTRAIT_ORIENTATION

PaperWidth() 8.5" (North America)_or A4

patternTable[] display-dependent

PrinterType() printer-dependent

ZafPrinter 393

ZafPrinter(void);

The constructor is useful in straight-code situations. This constructor calls the
base ZafDisplay constructor. The following code snippet shows an example of
using this class:

// Set up the printer (often in a "Page setup" menu item).
ZafPrinter printer;
printer.PrintSetup();

// Set up the print job.
ZafPrintJobStruct printJob;
printJob.collate = false;
printJob.copies = 1;
printJob.startPage = printJob.endPage = 1;
printJob.minPage = printJob.maxPage = 1;
if (JobSetup(printJob))
{
BeginJob();
BeginPage();
printer.Text(0, 0, printer.PageWidth(), printer.PageHeight(),
"Hello, Printer!", -1, ZAF_HZ_CENTER, ZAF_VT_CENTER);

EndPage();
EndJob();

}

Destructor virtual ~ZafPrinter(void);

The destructor is used to free the memory associated with a ZafPrinter object.
This destructor calls the base ZafDisplay destructor.

ZafDisplay
cellHeight font-dependent

cellWidth font-dependent

columns printer-dependent

coordinateType printer-dependent

DisplayType() "ZafPrinter"

lines printer-dependent

pixelsPerInchX printer-dependent

pixelsPerInchY printer-dependent

postSpace environment-specific

preSpace environment-specific

Member Initializations

394 Zinc Application Framework 5

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Many of the methods described here return an error code of one of the follow-
ing codes:

AbortJob ZafError AbortJob(void);

AbortJob() tells the printer to ignore any data currently in its buffer and end the
print job. It is not necessary to call EndJob() if AbortJob() is called. An error
code is returned if the job could not be aborted.

BeginJob ZafError BeginJob(ZafIChar *jobName =
ZAF_NULLP(ZafIChar));

BeginJob() must be called to begin a print job, and possibly communicates
with the native printer driver. If the native printer driver can use a job name for
the native queue, jobName is used. An error code is returned if the job could
not be started. If an error code is returned, the error condition must be cor-
rected and BeginJob() must be called again.

BeginPage ZafError BeginPage(void);

BeginPage() must be called to begin a print page, and performs any necessary
internal setup for beginning a print page. An error code is returned if the page

ZafError Description

ZAF_ERROR_NOT_RESPONDING The printer appears to not be respond-
ing, such as when its power is off,
when a cable is disconnected, or the
network connection is down.

ZAF_ERROR_OUT_OF_PAPER The printer is out of paper.

ZAF_ERROR_LOW_MEMORY Not enough memory is available to
complete the operation.

ZAF_ERROR_OUTPUT_FAILED The print output did not complete suc-
cessfully.

ZAF_ERROR_UNKNOWN Some other error exists which pre-
vents the completion of the printing
operation.

ZafPrinter 395

could not be printed due to printer error conditions. If an error code is
returned, the error condition must be corrected and BeginPage() must be called
again.

EndJob ZafError EndJob(void);

EndJob() must be called to end a print job, and does any necessary cleanup fol-
lowing printing. An error code is returned if the job could not be completed.

EndPage ZafError EndPage(void);

EndPage() must be called to end a print page, and performs any necessary
internal cleanup after printing a page, including sending a form feed command.
An error code is returned if the page could not be printed due to printer error
conditions. If an error code is returned the page must be printed again to
ensure intended output.

JobSetup virtual bool JobSetup(ZafPrintJobStruct &printJob);

JobSetup() presents the end user with a ZafPrintDialog window, allowing the
end user to modify the data in printJob using a native or Zinc-supplied dialog.
(When using a native dialog only those fields available on that platform may
be changed). A ZafPrintDialog should be created by the programmer when
fields other than the platform defaults must be allowed or disallowed (see Zaf-
PrintDialog).

JobSetup() returns true if the end user chose to continue printing based on the
values in printJob. Otherwise, printJob was not modified, and the end user
chose not to continue printing. See ZafPrintJobStruct for more information.

JobSetup() should generally be called before beginning a print job, but should
not be called between calls to BeginJob() and EndJob(). If the end user cancels
the dialog (indicated by a return code of false), the print job data was not
changed, and the job should not be printed. Otherwise, the print job may be
started by calling BeginJob().

396 Zinc Application Framework 5

Margins virtual void Margins(ZafCoordinate &leftMargin,
ZafCoordinate &topMargin, ZafCoordinate &rightMargin,
ZafCoordinate &bottomMargin) const;

virtual void SetMargins(ZafCoordinate leftMargin,
ZafCoordinate topMargin, ZafCoordinate rightMargin,
ZafCoordinate bottomMargin);

Margins() specifies the logical print page size (printable area) and the size of
the unprintable border that remains blank. When the margins are modified,
PageHeight() and PageWidth() are automatically modified to reflect the
change. The default values of this attribute are the equivalent of (0.5”, 0.5”,
0.5”, 0.5”) using the printer’s CoordinateType(), but the user may call SetMar-
gins() to make changes.

PageHeight virtual ZafCoordinate PageHeight(void) const;

virtual ZafCoordinate SetPageHeight(ZafCoordinate
paperHeight);

PageWidth virtual ZafCoordinate PageWidth(void) const;

virtual ZafCoordinate SetPageWidth(ZafCoordinate
paperWidth);

PageHeight() and PageWidth() specify the dimensions of the logical print page
using the printer’s CoordinateType(). The logical print page is the printable
area within the margins. If SetPageHeight() or SetPageWidth() are called, the
print margins will be adjusted to correlate to the logical print page. If the spec-
ified size is too large for the paper size, the logical size will be reduced and the
corresponding margin(s) set to zero. Left and top margins are not adjusted by
SetPage*().

PaperHeight virtual ZafCoordinate PaperHeight(void) const;

virtual ZafCoordinate SetPaperHeight(ZafCoordinate
paperHeight);

PaperWidth virtual ZafCoordinate PaperWidth(void) const;

virtual ZafCoordinate SetPaperWidth(ZafCoordinate
paperWidth);

Initialized to letter size (North America) or A4 in the constructor, Paper-
Height() and PaperWidth() specify the size of the physical paper being used.
The paper size may include unprintable areas such as printer “dead zones” or
margins. This information may be used to communicate the paper size to the
printer. This member is normally set by the native print job setup dialog
invoked using PrintSetup().

ZafPrinter 397

PaperOrientation virtual ZafPaperOrientation PaperOrientation(void) const;

virtual ZafPaperOrientation
SetPaperOrientation(ZafPaperOrientation
paperOrientation);

Initialized to ZAF_PORTRAIT_ORIENTATION in the constructor, PaperOri-
entation() specifies the orientation of the physical paper. PaperOrientation()
may either be ZAF_PORTRAIT_ORIENTATION or
ZAF_LANDSCAPE_ORIENTATION. This member is normally set by the
native print job setup dialog invoked using PrintSetup().

PrinterType virtual ZafPrinterType PrinterType(void) const;

virtual ZafPrinterType SetPrinterType(ZafPrinterType
printerType);

PrinterType() specifies the type of printer being used, such as PostScript (level
1 or 2), PCL, or native printer driver. The printer types currently supported by
ZAF are as follows:

PrintSetup virtual bool PrintSetup(void);

PrintSetup() presents the end user with a print setup dialog window (com-
monly called page setup on environments that have native printer driver sup-
port), allowing the end user to modify the data members of the printer object,
plus others as necessary (resolution, for example) and to communicate with the
native printer driver on platforms that provide them. PrintSetup() should not
be called between calls to BeginJob() and EndJob(), but the printer object’s
data members should be initialized by the programmer in case the end user
doesn’t request the print setup dialog.

Printer Type Description

ZAF_NATIVE_PRINTER A native printer driver is being used.
This is the default for environments
with native support for printers.

ZAF_POSTSCRIPT_1_PRINTER The printer is a PostScript (Level 1)
printer.

ZAF_POSTSCRIPT_2_PRINTER The printer is a PostScript (Level 2)
printer. This is the default for environ-
ments without native support for print-
ers (e.g. Unix, MS-DOS.)

ZAF_PCL_PRINTER The printer supports HP’s PCL (not
yet supported by ZAF).

398 Zinc Application Framework 5

PrintSetup() returns true if the end user successfully modified the information
in the print setup dialog, and the printer’s data members were modified accord-
ingly; otherwise, the end user canceled the dialog and the printer’s data mem-
bers were not modified.

TextBlock virtual ZafCoordinate TextBlock(ZafCoordinate left,
ZafCoordinate top, ZafCoordinate right, ZafCoordinate
bottom, int &charactersPrinted, const ZafIChar *text,
int length = -1, ZafHzJustify hzJustify = ZAF_HZ_LEFT,
ZafVtJustify vtJustify = ZAF_VT_TOP, bool fill =
false);

TextBlock() prints text in the region specified by left, top, right, and bottom,
utilizing word wrapping, and stopping when it can no longer fit any more text
within the region provided. TextBlock() returns the vertical position it would
expect the next line of text to use. This is useful when positioning sequential
rows of data on a report. TextBlock() returns in charactersPrinted the number
of characters printed from the supplied text. This is useful when the program-
mer does not know whether the text to be printed will fit on a page since Text-
Block() will allow a page in progress to be ejected (via a call to EndPage()) and
the remaining text to be printed on subsequent pages. If length is -1, Text-
Block() will attempt to print all the text; otherwise, only up to length characters
will be printed. The text will be justified according to hzJustify and vtJustify,
and the region will be filled with the background color if fill is true. See
ZafDisplay::Text() for more information on the parameters to TextBlock().

TextLine virtual ZafCoordinate TextLine(ZafCoordinate left,
ZafCoordinate top, ZafCoordinate right, const ZafIChar
*text, int length = -1, ZafHzJustify hzJustify =
ZAF_HZ_LEFT, bool fill = false);

TextLine() prints a single line of text at the position specified by left, top, and
right. TextLine() returns the vertical position it would expect the next line of
text to use. This is useful when positioning sequential rows of data on a report.
If length is -1, TextLine() will attempt to print all the text on the line; other-
wise, only up to length characters will be printed on the line. The text will be
justified according to hzJustify, and the line will be filled with the background
color if fill is true. See ZafDisplay::Text() for more information on the param-
eters to TextLine().

ZafPrintJobStruct 399

ZafPrintJobStruct
Inheritance Root structure

Declaration #include <z_print.hpp>

Description ZafPrintJobStruct contains information about a print job. Since this structure
has no constructor, the programmer is responsible for initializing each of the
members. ZafPrintJobStruct is used by ZafPrintDialog.

The ZafPrintJobStruct structure is defined as follows:

struct ZAF_EXPORT ZafPrintJobStruct
{
 // --- Data Memebers ---
 bool collate;
 int copies, startPage, endPage, minPage, maxPage;
};

collate If collate is true, the application is responsible for collating the print job, mean-
ing that all pages are printed before printing another copy. For example, two
copies of a 2-page document would be printed as follows: page 1, page 2, page
1, page 2. If the printer handles collation, the application does not need to, so
collate is false in this case. collate defaults to false.

copies copies specifies the number of copies of the document that should be printed.
If the printer can print multiple copies the application does not need to, so cop-
ies is 1 in this case. copies defaults to 1.

startPage
endPage
minPage
maxPage startPage and endPage specify the first and last pages of the document to be

printed; and minPage and maxPage specify the first and last pages of the docu-
ment. (Some native print drivers require minPage and maxPage for internal
validation.) startPage should not be less than minPage and endPage should
not be greater than maxPage.

For example, a document whose first page is 1 and whose last page is 10 would
print the last page if startPage and endPage were both 10. On the other hand,
a document that represents a chapter of a book, whose first page is 6 and whose
last page is 15 would print the last page of the document (or chapter) if
startPage and endPage were both 15.

400 Zinc Application Framework 5

ZafProgressBar

Inheritance ZafProgressBar : ZafWindowObject : ZafElement

Declaration #include <z_prgrss.hpp>

Description The ZafProgressBar object is a static informational object generally used to
indicate the progress of some operation. The progress may be indicated in per-
centages or some other integral unit of measurement. The ZafProgressBar
object allows no user interaction, and is intended for use only to display infor-
mation.

Constructors All ZafProgressBar constructors initialize the member variables associated
with an instantiated ZafProgressBar object. The default values set by the Zaf-
ProgressBar and its base class constructors follow, if they differ from those set
by the base class constructor, or if a blocking function is implemented in Zaf-
ProgressBar. “†” Indicates a blocking function that prevents changes to the
attribute in this class.

Current Maximum ProgressType
Decrement Minimum Step
Delta ProgressData TextStyle
Increment ProgressStyle

Member Initializations

ZafProgressBar
ProgressData() null

ProgressStyle() ZAF_PROGRESS_NATIVE

ProgressType() ZAF_PROGRESS_HORIZONTAL

TextStyle() ZAF_PROGRESS_TEXT_VALUE

ZafWindowObject
AcceptDrop() false†

CopyDraggable() false†

Focus() false†

HelpContext() null†

LinkDraggable() false†

MoveDraggable() false†

Noncurrent() true†

OSDraw() false

ParentDrawBorder() false†

ParentDrawFocus() false†

ZafProgressBar 401

ZafProgressBar(int left, int top, int width, int height,
ZafScrollData *scrollData);

This constructor is useful in straight-code situations. The left and top parame-
ters specify the position where the left and top of the object will be placed on
its parent. The width and height parameters specify the width and height of the
object. All values are specified in cell coordinates by default, but may be spec-
ified using another coordinate system if desired. The scrollData parameter
specifies the ProgressData() object. If the scrollData parameter is null, this
constructor will create a ProgressData() object automatically, with the Zaf-
ScrollData class default information.

ZafProgressBar(const ZafProgressBar ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafProgressBar object and copies the object’s
information. If copy’s data objects are StaticData() then the new ZafProgress-
Bar object simply points to the original data objects, otherwise copies are made
for the new ZafProgressBar object. This behavior allows a programmer to use
static data for more than one ZafProgressBar object.

ZafProgressBar(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

The following shows how to create a ZafProgressBar:

// Create a sample window with a progress bar.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 4);
// Create the progress data for 0-100% with 20% intervals.
ZafScrollData *progressData = new ZafScrollData(0, 100, 0, 20);

ParentPalette() false†

Selected() false†

UserFunction() null†

ZafElement
ClassID() ID_ZAF_PROGRESS_BAR

ClassName() "ZafProgressBar"

Member Initializations

402 Zinc Application Framework 5

// Create the progress bar to display percentages.
ZafProgressBar *progressBar = new ZafProgressBar(5, 1, 30, 1,

progressData);
progressBar->SetTextStyle(ZAF_PROGRESS_TEXT_PERCENT);
// Add the progress bar to the window.
window1->Add(progressBar);

Destructor virtual ~ZafProgressBar(void);

This destructor is used to free the memory associated with a ZafProgressBar
object, including ProgressData(), if it is Destroyable(). It chains to the Zaf-
WindowObject and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafProgressBar object,
since it is automatically destroyed when it’s parent window is destroyed. For
more information on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Current long Current(void) const;

long SetCurrent(long current);

The current value of the progress bar appears as a numerical value in the mid-
dle of the progress bar when the progress bar supports textual information.
Current() returns the current value of the progress bar by calling Progress-
Data()->Current(). The current value of the progress bar may be set by calling
SetCurrent(), which simply calls ProgressData()->SetCurrent().

Decrement long Decrement(long value);

Decrement() decrements the progress bar by the amount Delta() by passing
value to ProgressData()->Decrement(). The current value of the progress bar
is returned.

Delta long Delta(void) const;

long SetDelta(long current);

The delta value of the progress bar is the amount that the progress bar incre-
ments or decrements each time it is updated. Delta() returns the delta value of
the progress bar by calling ProgressData()->Delta(). The delta value of the

ZafProgressBar 403

progress bar may be set by calling SetDelta(), which simply calls Progress-
Data()->SetDelta().

Increment long Increment(long value);

Increment() increments the progress bar by the amount Delta() by passing
value to ProgressData()->Increment(). The current value of the progress bar is
returned.

Maximum long Maximum(void) const;

long SetMaximum(long maximum);

The maximum value of the progress bar is the value at which the progress bar
quits updating, and the operation whose progress it is displaying is considered
done. Maximum() returns the maximum value of the progress bar by calling
ProgressData()->Maximum(). The maximum value of the progress bar may be
set by calling SetMaximum(), which simply calls ProgressData()->SetMaxi-
mum().

Minimum long Minimum(void) const;

long SetMinimum(long minimum);

The minimum value of the progress bar is the value at which the progress bar
begins updating, and the operation whose progress it is displaying is consid-
ered to be starting. Minimum() returns the minimum value of the progress bar
by calling ProgressData()->Minimum(). The minimum value of the progress
bar may be set by calling SetMinimum(), which simply calls ProgressData()-
>SetMinimum().

ProgressData ZafScrollData *ProgressData(void) const;

bool SetProgressData(ZafScrollData *progress);

ProgressData() specifies the ZafScrollData object that contains progress
parameters.

The ProgressData() object is the piece of the ZafProgressBar object where the
actual data is stored. ProgressData() stores the minimum, maximum, current,
delta and showing values for the progress bar (see ZafScrollData for more
information). The ProgressData() piece may be shared among several ZafPro-
gressBar objects, or it may belong to a single ZafProgressBar object. If shared
among several ZafProgressBar objects, all the associated ZafProgressBar
objects will be updated when the ProgressData() piece changes. SetProgress-
Data() may be used to associate a ProgressData() object with a ZafProgressBar

404 Zinc Application Framework 5

object. For more information on data sharing in ZAF, see ZafDataManager.
SetProgressData() will delete the previous ProgressData() object if it is
Destroyable() and no other object uses it.

The return value for ProgressData() is a pointer to the ProgressData() object
associated with the ZafProgressBar object. The return value for SetProgress-
Data() is normally ZAF_ERROR_NONE.

ProgressStyle ZafProgressStyle ProgressStyle(void) const;

ZafProgressStyle SetProgressStyle(ZafProgressStyle
progressStyle);

A ZafProgressBar object may be one of four different styles, according to the
ProgressStyle() attribute. The default value of this attribute is
ZAF_PROGRESS_NATIVE, but the user may call SetProgressStyle() to
change it. The possible values of this attribute are:

ProgressType ZafProgressType ProgressType(void) const;

ZafProgressType SetProgressType(ZafProgressType
progressType);

A ZafProgressBar object may be oriented either horizontally or vertical,
according to the ProgressType() attribute. The default value of this attribute is
ZAF_PROGRESS_HORIZONTAL, but the user may call SetProgressType()
to change it to ZAF_PROGRESS_VERTICAL.

Step long Step(void) const;

long SetStep(long step);

The step value of the progress bar is the same as the delta value. See Delta()
for more information.

ProgressStyle() Description

ZAF_PROGRESS_NATIVE Appears the same as a progress bar on
the native environment

ZAF_PROGRESS_INDENTED Appears bevelled into the plane of its
parent

ZAF_PROGRESS_FLAT Appears at the same level as the plane
of its parent

ZAF_PROGRESS_RAISED Appears raised above the plane of its
parent

ZafProgressBar 405

TextStyle ZafProgressTextStyle TextStyle(void) const;

ZafProgressTextStyle SetTextStyle(ZafProgressTextStyle
style);

A ZafProgressBar object may display its current value numerically at the same
time as it displays a graphical bar, or it may only display its current value as a
graphical bar, according to the TextStyle() attribute. The default value of this
attribute is ZAF_PROGRESS_TEXT_VALUE, but the user may call SetText-
Style() to change it. The possible values of this attribute are:

TextStyle() Description

ZAF_PROGRESS_TEXT_NONE Does not display the current value
numerically

ZAF_PROGRESS_TEXT_VALUE Displays the current value numeri-
cally

ZAF_PROGRESS_TEXT_PERCENT Displays the current value as a per-
centage

406 Zinc Application Framework 5

ZafPrompt

Inheritance ZafPrompt : ZafWindowObject : ZafElement

Declaration #include <z_prompt.hpp>

Description The ZafPrompt object is a single-line static text object generally used as a label
for an adjacent field. The ZafPrompt object allows almost no user interaction,
and is intended for use only to display information.

Note that ZafPrompt utilizes the Bordered() attribute differently than other
window objects. With ZafPrompt, the Bordered() attribute means the prompt
is to be aligned as if it were a Bordered() object, so that the prompt’s text is
aligned with an adjoining Bordered() field’s text. The prompt object, however,
does not display a border. For additional information see ZafWindowOb-
ject::Bordered().

Constructors All ZafPrompt constructors initialize the member variables associated with an
instantiated ZafPrompt object. The default values set by the ZafPrompt and its
base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafPrompt. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

AutoSize HzJustify TransparentBackground
HotKeyChar SetHotKey VtJustify
HotKeyIndex StringData

Member Initializations

ZafPrompt
AutoSize() true

HotKeyChar() ’\0’

HotKeyIndex() -1

HzJustify() ZAF_HZ_LEFT

StringData() null

TransparentBackground() false

VtJustify() ZAF_VT_TOP

ZafWindowObject
AcceptDrop() false †

Bordered() true

Changed() false†

CopyDraggable() false†

ZafPrompt 407

ZafPrompt(int left, int top, int width, const ZafIChar
*text);

This constructor is useful in straight-code situations, particularly if you wish
the ZafPrompt object to create, maintain and destroy its own ZafStringData
object automatically. The left and top parameters specify the position where
the left and top of the object will be placed on its parent. The width parameter
specifies the width of the object (height defaults to 1 cell). All values are spec-
ified in cell coordinates by default, but may be specified using another coordi-
nate system if desired. The text parameter is the string you wish to initially
appear in the new ZafPrompt object.

ZafPrompt(int left, int top, int width, ZafStringData
*stringData = ZAF_NULLP(ZafStringData));

This constructor is useful in straight-code situations where you have already
created a ZafStringData object. This constructor could be used to maintain
data pieces yourself, rather than having the ZafPrompt class create and main-
tain the data pieces automatically. For example, to maintain a database of Zaf-
StringData objects and tie them into ZafPrompt objects, maintain your own
ZafStringData objects and create ZafPrompt objects using your ZafStringData
objects by passing them into the stringData parameter of this constructor. For
more information on using ZafStringData objects, see ZafStringData. The left,
top and width parameters are the same as the previous constructor.

ZafPrompt(const ZafPrompt ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafPrompt object and copies the object’s informa-

Focus() false†

HelpContext() null†

LinkDraggable() false†

MoveDraggable() false†

Noncurrent() true†

RegionType() ZAF_INSIDE_REGION†

UserFunction() null†

ZafElement
ClassID() ID_ZAF_PROMPT

ClassName() "ZafPrompt"

Member Initializations

408 Zinc Application Framework 5

tion. If the copy’s data objects are StaticData() then the new ZafPrompt object
simply points to the original data objects, otherwise, a copy is made for the
new ZafPrompt object. This behavior allows a programmer to share data
between ZafPrompt objects.

ZafPrompt(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Below is an example illustrating creation techniques for ZafPrompt:

// Create a sample window with a prompt and a string.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);
window1->Add(new ZafPrompt(0, 1, 10, "String:"));
window1->Add(new ZafString(11, 1, 10, "String", 10));
...
// Create a sample window with a prompt and a string.
ZafWindow *window2 = new ZafWindow(10, 10, 40, 10);
ZafStringData *stringData1 = new ZafStringData("String:");
window2->Add(new ZafPrompt(0, 1, 10, stringData1));
window2->Add(new ZafString(11, 1, 10, "String", 10));

Destructor virtual ~ZafPrompt(void);

This destructor is used to free the memory associated with a ZafPrompt object,
including StringData() if it is Destroyable(). It chains to the ZafWindowObject
and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafPrompt object, since
it is automatically destroyed when it’s parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

AutoSize bool AutoSize(void) const;

virtual bool SetAutoSize(bool setAutoSize);

If AutoSize() is true, the prompt will automatically adjust the size of its back-
ground area so as to exactly match the size of its displayed text. This is partic-
ularly useful if the prompt has a helptip or if the prompt’s background color is

ZafPrompt 409

different from the window background. The original region (passed into the
constructor or read from the persistent object file) is preserved internally by
ZAF and is used if region computations are required by later programmer
interaction with the prompt.

If AutoSize() is false, the prompt will display with its original region. The
default value of this attribute is true, but the user may call SetAutoSize() to
change it.

HotKeyChar ZafIChar HotKeyChar(void) const;
HotKeyIndex int HotKeyIndex(void) const;
SetHotKey virtual ZafIChar SetHotKey(ZafIChar hotKeyChar, int index

= -1);

A prompt’s hot key character (hotKeyChar) is the character that when typed
with a modifier key (such as <ALT> or <Command>) causes the next object in
tabbing order is given focus. The hot key index is the zero-based index into the
prompt’s text that specifies the character to be visually displayed as the hot key
character, usually with an underline.

It is important to note that the hot key character does not cause any display
modification, and the hot key index does not cause any action to be performed
when that character is typed with the modifier key. The default value of Hot-
KeyChar() is 0, indicating that there is no hot key character associated with the
prompt, and the default value of HotKeyIndex() is -1, indicating that no char-
acter is to be displayed as the hot key character on the prompt. The user may
call SetHotKey() to change the HotKeyChar() and the HotKeyIndex()
attributes. The hotKeyChar parameter specifies the hot key character, and the
index parameter specifies the hot key index.

The following code shows hot to create a prompt and string pair with a hot key:

// Create a prompt and string pair with a hot key.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);
ZafPrompt *prompt1 = new ZafPrompt(0, 1, 10, "Name:");
prompt1->SetHotKey(‘N’, 0);
window1->Add(prompt1);
// The string following the prompt gets focus when the hot
// key is typed.
window1->Add(new ZafString(11, 1, 10, "", 10));

410 Zinc Application Framework 5

HzJustify ZafHzJustify HzJustify(void) const;

virtual ZafHzJustify SetHzJustify(ZafHzJustify
hzJustify);

HzJustify() controls the prompt’s horizontal justification, and is
ZAF_HZ_LEFT by default. The user may call SetHzJustify() to change to
ZAF_HZ_RIGHT or ZAF_HZ_CENTER.

StringData ZafStringData *StringData(void) const;

virtual ZafError SetStringData(ZafStringData *string);

The StringData() object is where the actual data is stored. The StringData()
piece may be shared among several ZafPrompt objects, or it may belong to a
single ZafPrompt object. If shared among several ZafPrompt objects, all the
associated ZafPrompt objects will be updated when the StringData() piece
changes. SetStringData() may be used to associate a StringData() object with a
ZafPrompt object. For more information on data sharing in ZAF, see ZafData-
Manager. SetStringData() will delete the previous StringData() object if it is
Destroyable() and no other object uses it.

The return value for StringData() is a pointer to the StringData() object associ-
ated with the ZafPrompt object. The return value for SetStringData() is nor-
mally ZAF_ERROR_NONE.

Transparent-
Background

bool TransparentBackground(void) const;

virtual bool SetTransparentBackground(bool
transparentBackground);

If TransparentBackground() is true, the prompt does not erase its background
area, but only draws its text. This is useful if the region the prompt overlaps
should show through. If TransparentBackground() is false, the prompt will
erase its background area. The default value of this attribute is false, but the
user may call Set TransparentBackground() to change it.

VtJustify ZafVtJustify VtJustify(void) const;

virtual ZafVtJustify SetVtJustify(ZafVtJustify
vtJustify);

VtJustify() controls the prompt’s vertical justification, and is ZAF_VT_TOP
by default. The user may call SetVtJustify() to change it to
ZAF_VT_CENTER or ZAF_VT_BOTTOM.

ZafPullDownItem 411

ZafPullDownItem

Inheritance ZafPullDownItem : ZafButton : ZafWindowObject :
ZafElement

Declaration #include <z_plldn.hpp>

Description ZafPullDownItem objects are the items on a ZafPullDownMenu bar. ZafPull-
DownItem objects may only be added to a ZafPullDownMenu object, and only
ZafPopUpItem objects may be added to a ZafPullDownItem object.

Constructors All ZafPullDownItem constructors initialize the member variables associated
with an instantiated ZafPullDownItem object. The default values set by the
ZafPullDownItem and its base class constructors follow if they differ from
those set by the base class constructor, or if a blocking function is implemented
in ZafPullDownItem. “†” Indicates a blocking function that prevents changes
to the attribute in this class.

Add FocusObject Sort
Count Get Subtract
Current GetObject operator +
Destroy Index operator -
Event Last
First menu

Member Initializations

ZafPullDownItem
menu ZafPopUpMenu(0, 0)

menu.Destroyable() false

menu.parent this

menu.StringID() “menu”

menu.Temporary() true

ZafButton
AllowDefault() false †

AllowToggling() false†

AutoRepeatSelection() false†

AutoSize() false†

BitmapData() ZAF_NULLP(ZafBitmapData)†

ButtonType() ZAF_FLAT_BUTTON†

Depressed() false†

Depth() 0†

412 Zinc Application Framework 5

ZafPullDownItem(const ZafIChar *text);

This constructor is useful in straight-code situations, particularly if you wish
the ZafPullDownItem object to create, maintain and destroy its own ZafString-
Data object automatically. You simply pass into the text parameter the text you
wish to appear in the new ZafPullDownItem object.

ZafPullDownItem(ZafStringData *stringData);

This constructor is also useful in straight-code situations, particularly if you
have already created a ZafStringData object to be associated with the ZafPull-
DownItem object. This constructor could be used to maintain string data
pieces yourself, rather than having the ZafPullDownItem class create and
maintain the string data pieces automatically. For example, to maintain a data-

HzJustify() ZAF_HZ_CENTER†

SelectOnDoubleClick() false†

SelectOnDownClick() false†

SendMessageText() null†

SendMessageWhenSe-
lected()

false†

Value() 0

VtJustify() ZAF_VT_CENTER†

ZafWindowObject
AcceptDrop() false†

Bordered() false†

CopyDraggable() false†

LinkDraggable() false†

MoveDraggable() false†

ParentDrawBorder() false†

ParentDrawFocus() false†

ParentPalette() false†

RegionType() ZAF_INSIDE_REGION†

Selected() false†

SupportObject() false†

ZafElement
ClassID() ID_ZAF_PULL_DOWN_ITEM

ClassName() “ZafPullDownItem”

Member Initializations

ZafPullDownItem 413

base of ZafStringData objects and tie them into ZafPullDownItem objects,
maintain your own ZafStringData objects and create ZafPullDownItem objects
using your ZafStringData objects. For more information see ZafStringData.
The stringData parameter specifies the string data object to be associated with
the ZafPullDownItem object.

ZafPullDownItem(const ZafPullDownItem ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It copies the information from another ZafPullDownItem object,
copy. If the data objects are StaticData() then the new ZafPullDownItem
object points to the original data objects, otherwise a copy is made for the new
ZafPullDownItem object. This allows a programmer to use static data for
more than one ZafPullDownItem object.

ZafPullDownItem(const ZafIChar *name,
ZafObjectPersistence &persist);

The final constructor is used for persistence. The parameters and values of this
constructor are deferred to the ZafWindow section of this manual, since most
persistence is done at the ZafWindow level.

Refer to ZafPullDownMenu for an example of how to create a ZafPullDown-
Item object:

Destructor virtual ~ZafPullDownItem(void);

The destructor is used to free the memory associated with a ZafPullDownItem
object, including all the data object pieces that are Destroyable(). It chains to
the ZafWindowObject and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafPullDownItem
object, since it is automatically destroyed when its parent menu bar is
destroyed. For more information on child object deletion, see ZafWin-
dow::~ZafWindow().

Members
Add virtual ZafWindowObject *Add(ZafWindowObject *object,

ZafWindowObject *position =
ZAF_NULLP(ZafWindowObject));

operator + ZafPullDownItem &operator+(ZafWindowObject *object);

This function and operator are used for adding ZafPopUpItem objects to the
ZafPullDownItem object. The functionality is provided by the ZafPopUp-
Menu class through the menu member. object is a pointer to the ZafPopUpI-
tem object to be added to the ZafPullDownItem object. position specifies the

414 Zinc Application Framework 5

ZafPopUpItem object (already in the menu) that object should appear before.
If position is null, object is added to the end of the menu. See ZafWin-
dow::Add() for more information.

Count int Count(void) const;

Count() returns the number of ZafPopUpItem objects in the menu. See
ZafList::Count() for more information.

Current ZafWindowObject *Current(void) const;

Current() returns the current ZafPopUpItem object in the menu, if there is one.
The Current() item does not necessarily have focus. Some native environment
implementations of menus do not allow the menu to ever have focus. See
ZafList::Current() for more information.

Destroy virtual void Destroy(void);

Destroy() causes all the ZafPopUpItem objects in the menu to be destroyed.
This is useful if a menu is to be recreated from scratch. See ZafList::Destroy()
for more information.

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events that get sent to the ZafPullDown-
Item object, either by processing the events itself, or by passing the event down
for base class processing. Refer to ZafWindowObject for complete details.
Following are events that are handled by ZafPullDownItem in addition to those
handled by its base classes:

First ZafWindowObject *First(void) const;

First() returns the first ZafPopUpItem object in the menu, if any. See
ZafList::First() for more information.

Event Action

S_ADD_OBJECT Causes event.windowObject to be added to the
menu

S_SUBTRACT_OBJECT Causes event.windowObject to be subtracted
from the menu

ZafPullDownItem 415

FocusObject virtual ZafWindowObject *FocusObject(void) const;

FocusObject() returns the ZafPopUpItem object in the menu that has focus, if
one does. Some native environment implementations of menus do not allow
the menu to ever have focus, so this function will always return null in these
cases. See ZafWindow::FocusObject() for more information.

Get ZafWindowObject *Get(int index);

Get() returns the ZafPopUpItem object at position index in the menu, if there is
one. The index parameter is zero-based, meaning the first ZafPopUpItem
object is at position 0. See ZafList::Get() for more information.

GetObject virtual ZafWindowObject *GetObject(ZafNumberID numberID);

virtual ZafWindowObject *GetObject(const ZafIChar
*stringID);

GetObject() returns the ZafPopUpItem object with either the numberID of
numberID, or the stringID of stringID, if it is found. See ZafWindowOb-
ject::GetObject() for more information.

Index int Index(ZafWindowObject const *element);

Index() returns the zero-based index of the ZafPopUpItem object element in
the menu. If element is not found in the menu, Index() returns -1. See
ZafList::Index() for more information.

Last ZafWindowObject *Last(void) const;

Last() returns the last ZafPopUpItem object in the menu, if there is one. See
ZafList::Last() for more information.

menu ZafPopUpMenu menu;

The menu member, used internally by the ZAF libraries to maintain the Zaf-
PopUpItem objects added to the ZafPullDownItem object, should normally not
be accessed by the programmer. See ZafPopUpMenu for more information.

416 Zinc Application Framework 5

Sort virtual void Sort(void);

Sort() causes the ZafPopUpItem objects in the menu to be sorted by the func-
tion returned by menu.CompareFunction(). See ZafList::CompareFunction()
for more information.

Subtract virtual ZafWindowObject *Subtract(ZafWindowObject
*object);

operator - ZafPullDownItem &operator-(ZafWindowObject *object);

This function and operator are used for subtracting ZafPopUpItem objects
from the ZafPullDownItem object. The functionality is provided by the Zaf-
PopUpMenu class through the menu member. object is a pointer to the Zaf-
PopUpItem object to be subtracted from the ZafPullDownItem object. See
ZafWindow::Subtract() for more information.

ZafPullDownMenu 417

ZafPullDownMenu
Inheritance ZafPullDownMenu : ZafWindow : ((ZafWindowObject :

ZafElement), ZafList)

Declaration #include <z_plldn.hpp>

Description The ZafPullDownMenu object is a menu bar object that supports multiple-lev-
eled menu hierarchies. As with all other ZAF classes, the ZafPullDownMenu
class utilizes the native menu bar API if available, so the look-and-feel is
exactly what the end user expects. For example, the menu bar on the Macin-
tosh is at the top of the screen, rather than on the window itself, as with
Microsoft Windows.

The menu bar object itself only reserves space for the menu items, so it is use-
ful only when menu items are added to it. Only ZafPullDownItem objects may
be added to a ZafPullDownMenu object.

Constructors All ZafPullDownMenu constructors initialize the member variables associated
with an instantiated ZafPullDownMenu object. The default values set by the
ZafPullDownMenu and its base class constructors follow, if they differ from
those set by the base class constructor, or if a blocking function is implemented
in ZafPullDownMenu. “†” Indicates a blocking function that prevents changes
to the attribute in this class.

Member Initializations

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() true†

SelectionType() ZAF_SINGLE_SELECTION†

Sizeable() false†

Temporary() false†

ZafWindowObject
AcceptDrop() false†

Bordered() true†

Disabled() false†

418 Zinc Application Framework 5

ZafPullDownMenu(void);

This constructor is useful in straight-code situations. Since the ZafPullDown-
Menu object is automatically placed at the appropriate position on the window
or on the screen according to the native environment, there are no parameters
to this constructor.

ZafPullDownMenu(const ZafPullDownMenu ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafPullDownMenu object and copies the object’s
information.

ZafPullDownMenu(const ZafIChar *name,
ZafObjectPersistence &persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

The following shows how to create a ZafPullDownMenu object:

// Create a sample window with a menu bar.
ZafWindow *window1 = new ZafWindow(0, 0, 50, 10);
// Create the menu bar and a file menu.
ZafPullDownMenu *menuBar = new ZafPullDownMenu();
// Create and populate the file menu.
ZafPullDownItem *fileMenu = new ZafPullDownItem("File");
fileMenu->Add(new ZafPopUpItem("New"));
fileMenu->Add(new ZafPopUpItem("Open"));
fileMenu->Add(new ZafPopUpItem("", ZAF_SEPARATOR));
fileMenu->Add(new ZafPopUpItem("", ZAF_EXIT_OPTION));

Noncurrent() false†

ParentPalette() false†

RegionType() ZAF_AVAILABLE_REGION†

SupportObject() true†

ZafElement
ClassID() ID_ZAF_PULL_DOWN_MENU

ClassName() "ZafPullDownMenu"

SetNumberID() ZAF_NUMID_PULL_DOWN_MENU

SetStringID() "ZAF_NUMID_PULL_DOWN_MENU"

Member Initializations

ZafPullDownMenu 419

// Add the file menu to the menu bar.
menuBar->Add(fileMenu);
// Add the menu bar to the window.
window1->Add(fileMenu);

Destructor virtual ~ZafPullDownMenu(void);

The destructor is used to free the memory associated with a ZafPullDown-
Menu object. It chains to the ZafWindow, ZafList, ZafWindowObject and
ZafElement destructors.

Generally, the programmer will not directly destroy a ZafPullDownMenu
object, since it is automatically destroyed when its parent window is destroyed.
For more information on child object deletion, see ZafWindow::~ZafWin-
dow().

420 Zinc Application Framework 5 - Beta

ZafQueueBlock
Inheritance ZafQueueBlock : ZafListBlock : ZafList

Declaration #include <z_evtmgr.hpp>

Description ZafQueueBlock is a container object used by ZafEventManager to maintain a
queue block of ZafEventStruct objects. ZafQueueElement is used to contain
the actual ZafEventStruct objects. Only ZafQueueElement objects may be
added to a ZafQueueBlock, and it will generally not be used by the program-
mer, as ZafEventManager maintains a ZafQueueBlock internally.

Constructors All ZafQueueBlock constructors initialize the member variables associated
with an instantiated ZafQueueBlock object.

ZafQueueBlock(int noOfElements);

This constructor creates a ZafQueueBlock of noOfElements ZafQueueEle-
ments. It is used only by ZafEventManager.

Destructor virtual ~ZafQueueBlock(void);

The destructor is used to free the memory associated with a ZafQueueBlock
object, including all the ZafQueueElement objects associated with it. It chains
to the ZafListBlock and ZafList destructors.

ZafQueueElement 421

ZafQueueElement

Inheritance ZafQueueElement : ZafElement

Declaration #include <z_evtmgr.hpp>

Description ZafQueueElement is a container object used by ZafQueueBlock and ZafEvent-
Manager to maintain a queue of ZafEventStruct objects. A ZafQueueElement
may only be added to a ZafQueueBlock, and generally will not be used by the
programmer, as ZafEventManager maintains a ZafQueueBlock internally.

Constructors All ZafQueueElement constructors initialize the member variables associated
with an instantiated ZafQueueElement object.

ZafQueueElement(void);

This constructor creates a ZafQueueElement, and is used only by ZafQueue-
Block.

Destructor virtual ~ZafQueueElement(void);

The destructor is used to free the memory associated with a ZafQueueElement
object. It chains to the ZafElement destructor.

Members ZafEventStruct event;
event The event member stores the actual event associated with the ZafQueueEle-

ment object. It is initialized by ZafEventManager::Get(), and retrieved by
ZafEventManager::Put().

event

422 Zinc Application Framework 5

ZafReal

Inheritance ZafReal : ZafString : ZafWindowObject : ZafElement

Declaration #include <z_real1.hpp>

Description ZafReal is a single-line real number (floating point) object that allows user
input through the keyboard. ZafReal is fully internationalized to display and
input using any format. See ZafString::AllowInvalid() and ZafString::Report-
Invalid() for information on these attributes and how they affect validation for
this class.

All ZafReal objects refer to data contained in a ZafRealData object (refer to
this class for additional essential information).

Formats ZafString and derived classes parse input and display output based on default
or programmer-defined input and output formats. Programmers may use the
SetInputFormat() and SetOutputFormat() families of functions to change the
default format. These functions are documented in the ZafString reference.

Each class derived from ZafFormatData handles a different set of formatting
arguments, in addition to those supported by its base classes. ZafRealData
(and therefore ZafReal) handles the following arguments in addition to those
used by ZafInteger and ZafString:

Event SetReal
RealData Value

Format Argument Substitution

%[ww.dd]A Optional arguments in “[]”: ww indicates the minimum
width of the output (left-padded with spaces if neces-
sary). dd indicates the mandatory number of digits after
the decimal (right-padded with zeros if necessary). A is
a proxy for any of the arguments below. For example, a
complete format argument might be: "%10.2f"

%f, %F Signed floating point value

%e Signed floating point value with lower-case exponent

%E Signed floating point value with upper-case exponent

%g Signed floating point value using the most compact of
either %f or %e format

%G Signed floating point value using the most compact of
either %F or %E format

ZafReal 423

Constructors All ZafReal constructors initialize the member variables associated with an
instantiated ZafReal object. The default values set by the ZafReal and its base
class constructors follow, if they differ from those set by the base class con-
structor, or if a blocking function is implemented in ZafReal. “†” Indicates a
blocking function that prevents changes to the attribute in this class.

ZafReal(int left, int top, int width, double value);

This constructor is useful in straight-code situations, particularly if the ZafReal
object is to create, maintain and destroy its own ZafRealData object automati-
cally. left, top, and width specify the position and size of the object on its par-
ent. All values are specified in cell coordinates by default, but may be
specified using another coordinate system if desired. value is the value that
initially appears in the new ZafReal object.

ZafReal(int left, int top, int width, ZafRealData
*realData = ZAF_NULLP(ZafRealData));

This constructor is useful in straight-code situations where a ZafRealData
object has already been created. This constructor could be used when manu-
ally maintaining a ZafRealData object, rather than having the ZafReal class
create and maintain the data object automatically. For more information on
using ZafRealData objects, see ZafRealData. left, top, and width are the same
as the previous constructor.

Member Initializations

ZafReal
RealData() null

ZafString
LowerCase() false†

Password() false†

StringData() null†

UpperCase() false†

VariableName() false†

ZafElement
ClassID() ID_ZAF_REAL

ClassName() "ZafReal"

424 Zinc Application Framework 5

ZafReal(const ZafReal ©);

The copy constructor calls the overloaded Duplicate() to create a new ZafReal
object and initialize its data from copy. If the original data objects are Static-
Data() then the new ZafReal object simply points to the original data, other-
wise StaticData() copies are made.

ZafReal(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Sample ZafReal creation techniques follow:

// Create a sample window with real number objects.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);

// Create real numbers and pass in the values directly.
window1->Add(new ZafReal(0, 1, 25, 3.1415927));
window1->Add(new ZafReal(0, 2, 25, 360.0));
...

// Create a sample window with real number objects.
ZafWindow *window2 = new ZafWindow(10, 10, 40, 10);

// Create real number data objects.
ZafRealData *realData1 = new ZafRealData(3.1415927);
ZafRealData *realData2 = new ZafRealData(360.0);

// Create real numbers that use the data previously created.
window2->Add(new ZafReal(0, 1, 25, realData1));
window2->Add(new ZafReal(0, 2, 25, realData2));

Destructor virtual ~ZafReal(void);

The destructor is used to free the memory associated with a ZafReal object,
including all data objects that are Destroyable(). It chains to the ZafString,
ZafWindowObject, and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafReal object, since it is
automatically destroyed when its parent window is destroyed. For more infor-
mation on child object deletion, see ZafWindow::~ZafWindow().

ZafReal 425

Members virtual ZafEventType Event(const ZafEventStruct &event);
Event This overloaded function receives all events that get sent to the ZafReal object

and either handles them or passes them to ZafString, its immediate base class.
See ZafWindowObject for more information.

ZafReal specifically handles the following events:

RealData ZafRealData *RealData(void) const;

virtual ZafError SetRealData(ZafRealData *number);

*RealData() contains the actual information used by ZafReal. The RealData()
object may be used by one or more ZafReal objects, or other objects. If shared,
all associated ZafReal objects will be notified when the RealData() changes.
For more information on data sharing in ZAF, see ZafDataManager. SetReal-
Data() will delete the previous RealData() object if it is Destroyable() and no
other object uses it.

RealData() returns a pointer to the RealData() object associated with the Zaf-
Real object. The return value for SetRealData() is normally
ZAF_ERROR_NONE. See the Constructors code snippet for an example
using ZafRealData objects with ZafReal.

SetReal virtual ZafError SetReal(double value);

SetReal() sets the value of the ZafRealData associated with this ZafReal from
value.

Value double Value(void);

Value() returns the value of the ZafRealData associated with this ZafReal as a
double.

Event Description

N_RESET_I18N causes the object to redisplay its data according to the
new internationalization values

S_COPY_DATA causes the object to copy event.windowObject’s Real-
Data() if event.windowObject is a ZafReal object

S_SET_DATA causes the object to create a new RealData() object, then
copy into it event.windowObject’s RealData() if
event.windowObject is non-null and is a ZafReal object

426 Zinc Application Framework 5

ZafRealData

Inheritance ZafRealData : ZafFormatData : ZafData : ZafElement,
ZafNotification

Declaration #include <z_real.hpp>

Description ZafRealData objects can be used to store and manipulate 64-bit doubles.

ZafRealData combines number encapsulation with data and object notification
from ZafData. ZafRealData objects are normally used as the data portion of
ZafReal user interface objects but they may also be used independently.

ZafRealData supports the use of printf-style formatting and parsing arguments
during string operations. Refer to standard library documentation for detailed
information on printf functions and conversion characters.

Constructors ZafRealData constructors allocate space to hold the instance data, and initialize
the member variables associated with a new ZafRealData object.

The default values set by ZafRealData follow, if they are overridden from
those set by base class constructors:

ZafRealData(void);

The basic constructor allocates a ZafRealData instance and initializes its value
to 0.

Clear operator ++ operator *=
double operator -- operator /=
FormattedText operator = operator %=
SetReal operator +=
Value operator -=

Member Initializations

ZafRealData
Value() (varies with constructor)

ZafElement
ClassID() ID_ZAF_REAL_DATA

ClassName() "ZafRealData"

ZafRealData 427

ZafRealData(double value);

This constructor allocates a ZafRealData instance and initialize its contents to
value.

ZafRealData(const ZafIChar *string, const ZafIChar
*format = ZAF_NULLP(ZafIChar));

This constructor allocates a ZafRealData instance and initializes its value to
the numeric equivalent of string. The conversion uses the printf-style specifier
format to interpret the string. If format is null ZafRealData uses its locale-spe-
cific default format.

ZafRealData(const ZafRealData ©);

This constructor is the copy constructor. It allocates a new ZafRealData
instance and copies all member data from copy.

ZafRealData(const ZafIChar *name, ZafDataPersistence
&persist);

This constructor is the persistent constructor. It allocates a new ZafRealData
instance and reads most member data from directory name in the persistent
data file referred to by persist. The StringID() of the new data is name.

// Sample ZafRealData creation techniques
double value = 10.0;
ZafRealData real1(value);
ZafRealData copyReal = real1;
ZafRealData zeroReal;

Destructor virtual ~ZafRealData(void);

The virtual destructor is used to free the memory associated with an instanti-
ated ZafRealData object. Unless a ZafRealData object is marked as Static-
Data() it will be automatically destroyed when all ZafReal objects that refer to
it are destroyed.

Members virtual void Clear(void);
Clear Clear() sets the value of a ZafRealData object to zero.

428 Zinc Application Framework 5

double operator double();

See Value().

FormattedText virtual int FormattedText(ZafIChar *buffer, int
maxLength, const ZafIChar *format = 0) const;

FormattedText() fills buffer with a string representation of the ZafRealData
using the printf-style specifier format to build the string. A locale-specific
default format is used if format is not included. Buffer contents will be trun-
cated if they exceed maxLength characters. FormattedText() returns the inte-
ger value it receives from its call to sprintf().

// Show results of FormattedText().
ZafIChar buffer[256];

ZafRealData myreal(1234.56);
myreal.FormattedText(buffer, 256);
printf("real - %s\n", buffer);
myreal.FormattedText(buffer, 256, "%+8.3g");
printf("real - %s\n", buffer);

==========
real - 1234.5600
real - +1234.560

SetReal virtual ZafError SetReal(double value);

virtual ZafError SetReal(const ZafIChar *buffer, const
ZafIChar *format);

virtual ZafError SetReal(const ZafRealData &real);

SetReal() functions set the numeric value of the ZafRealData object from dou-
bles, another ZafRealData, or an interpreted string. Refer to FormattedText()
for more information on ZafRealData/string conversions. Overloaded operator
= offers similar functionality to SetBignum and is more commonly used.

Value double Value(void) const;
double operator double();

Value() returns the value of a ZafRealData object as a double. The conve-
nience operator double(), which returns Value(), is more commonly used.
Refer to ZafIntegerData for sample code showing the different usages of these
two functions.

ZafRealData 429

operator ++ ZafRealData operator++(void);

ZafRealData operator++(int);

These pre- and post-operators increment the ZafRealData object’s value by 1.

operator -- ZafRealData operator--(void);

ZafRealData operator--(int);

These pre- and post-operators decrement the ZafRealData object’s value by 1.

operator = ZafRealData &operator=(double value);

This operator assigns the ZafRealData object’s value to the input value.

operator += ZafRealData &operator+=(double value);
operator -= ZafRealData &operator-=(double value);

These operators increments or decrement the ZafRealData object’s value by
the input value.

operator *= ZafRealData &operator*=(double value);

This operator multiplies the ZafRealData object’s value by the input value and
uses the resulting product to set the ZafRealData object’s value.

operator /= ZafRealData &operator/=(double value);

This operator divides the ZafRealData object’s value by the input value and
uses the resulting quotient to set the ZafRealData object’s value.

operator %= ZafRealData &operator%=(double value);

This operator divides the ZafRealData object’s value by the input value and
uses the resulting remainder to set the ZafRealData object’s value.

430 Zinc Application Framework 5

ZafRegionStruct

Inheritance Root structure

Declaration #include <z_region.hpp>

Description ZafRegionStruct provides support for storing a two-dimensional rectangular
region. Various different coordinate systems may be specified for the region
(see ZafCoordinateType for more information).

Members
Assign void Assign(int left, int top, int width, int height,

ZafCoordinateType type = ZAF_COORD_DEFAULT);

Assign() sets the region’s boundaries to left, top, width, and height. If type is
ZAF_COORD_DEFAULT, coordinateType is unchanged; otherwise, coordi-
nateType is set to type.

ConvertCoordinates void ConvertCoordinates(ZafCoordinateType newType,
ZafDisplay *display = ZAF_NULLP(ZafDisplay));

ConvertCoordinates() converts the region to the newType coordinate system
for use on the display device.

coordinateType ZafCoordinateType coordinateType;

coordinateType stores the coordinate system used by the region. See ZafCoor-
dinateType for more information on coordinate systems in ZAF.

Encompassed bool Encompassed(const ZafRegionStruct ®ion) const;

Encompassed() returns true if region is encompassed by this region; otherwise
it returns false. A region is encompassed within another if each of the four

Assign ImportPixel Width
bottom ImportPoint operator ==
ConvertCoordinates left operator !=
coordinateType Overlap operator ++
Encompassed Region operator --
ExportPixel right operator +=
ExportPoint top operator -=
Height Touching
HzShift VtShift

ZafRegionStruct 431

boundaries is either inside or equal to the encompassing region’s boundaries. If
the coordinate systems are different, a converted version of region is used in
the comparison.

ExportPixel void ExportPixel(OSRegion &rect) const;
ExportPoint void ExportPoint(OSRegion &rect) const;
ImportPixel void ImportPixel(const OSRegion &rect);
ImportPoint void ImportPoint(const OSRegion &rect);

On environments whose coordinate system is based on infinitely small points
(rather than pixels, which have finite size on the screen) such as Macintosh and
Microsoft Windows, conversion is necessary when passing a region between
ZAF and the native API.

Since ZAF’s coordinate systems are based on pixels, ExportPixel() exports the
region to rect as a pixel-based rectangle in the native environment’s rectangle
type without any conversion and ImportPixel() imports the region from rect as
a pixel-based rectangle in the native environment’s rectangle type without any
conversion. ExportPoint() exports the region to rect as a point-based rectangle
in the native environment’s rectangle type by adding one to the right and bot-
tom boundaries of the ZafRegionStruct object and ImportPoint() imports the
region from rect as a point-based rectangle in the native environment’s rectan-
gle type by subtracting one from the right and bottom boundaries of the native
rectangle.

Height int Height(void) const;

Height() returns the height of the region.

HzShift void HzShift(int shift);

HzShift() modifies the region along the x-axis by the amount specified in shift.
If shift is positive, the region moves in the positive direction. If shift is nega-
tive, the region moves in the negative direction.

left
top
right
bottom int left, top, right, bottom;

left, top, right, and bottom store the boundaries of the region.

432 Zinc Application Framework 5

Overlap bool Overlap(const ZafRegionStruct ®ion) const;

bool Overlap(const ZafPositionStruct &position) const;

bool Overlap(const ZafPositionStruct &position, int
columnShift, int lineShift) const;

bool Overlap(const ZafRegionStruct ®ion,
ZafRegionStruct &result) const;

Overlap() returns true if the arguments specified overlap the region; otherwise
it returns false. If the coordinate systems are different, a converted version of
region or position is used in the comparison. region and position specify the
object to be compared. columnShift and lineShift specify the amount using the
same coordinate system as this region that position is shifted before compar-
ing. The original region or position is not modified. In the fourth method, the
intersection of the two regions are returned in result if the regions overlap.

Region ZafRegionStruct Region(ZafCoordinateType type);

Region() returns the region converted to the type coordinate system. The orig-
inal region is not modified.

Touching bool Touching(const ZafPositionStruct &position) const;

Touching() returns true if position lies exactly on one of the four boundaries of
this region; otherwise it returns false. If the coordinate systems are different, a
converted version of position is used in the comparison.

VtShift void VtShift(int shift);

VtShift() modifies the region along the y-axis by the amount specified in shift.
If shift is positive, the region moves in the positive direction. If shift is nega-
tive, the region moves in the negative direction.

Width int Width(void) const;

Width() returns the width of the region.

operator == bool operator==(const ZafRegionStruct ®ion) const;

This operator returns true if region is equal to this region object; otherwise it
returns false. If the coordinate systems are different, a converted version of
region is used in the comparison.

ZafRegionStruct 433

operator != bool operator!=(const ZafRegionStruct ®ion) const;

This operator returns true if region is not equal to this region object; otherwise
it returns false. If the coordinate systems are different, a converted version of
region is used in the comparison.

operator ++ ZafRegionStruct operator++(void);

ZafRegionStruct operator++(int);

The prefix and postfix versions of this operator enlarge the region by subtract-
ing one from the left and top boundaries and by adding one to the right and bot-
tom boundaries.

operator -- ZafRegionStruct operator--(void);

ZafRegionStruct operator--(int);

The prefix and postfix versions of this operator shrink the region by adding one
to the left and top boundaries and by subtracting one from the right and bottom
boundaries.

operator += ZafRegionStruct &operator+=(int offset);

This operator enlarges the region by subtracting offset from the left and top
boundaries and by adding offset to the right and bottom boundaries.

operator -= ZafRegionStruct &operator-=(int offset);

This operator shrinks the region by adding offset to the left and top boundaries
and by subtracting offset from the right and bottom boundaries.

434 Zinc Application Framework 5

ZafRelativeConstraint

Inheritance ZafRelativeConstraint : ZafConstraint : ZafElement

Declaration #include <z_gmgr.hpp>

Description ZafRelativeConstraint allows a window object to be placed on its parent win-
dow object relative to a ratio of the parent’s available region (see Ratio() for
more information). ZafRelativeConstraint objects must be added to the ZafGe-
ometryManager object that has been added to the managed object’s parent (see
ZafGeometryManager for more information).

Constructors All ZafRelativeConstraint constructors initialize the member variables associ-
ated with an instantiated ZafRelativeConstraint object. The default values set
by the ZafRelativeConstraint and its base class constructors follow, if they dif-
fer from those set by the base class constructor.

ZafRelativeConstraint(ZafWindowObject *object,
ZafRelativeConstraintType type);

This constructor is useful in straight-code situations to create a ZafRelative-
Constraint object. object specifies the window object the constraint applies to,
and type specifies the type of relative constraint. See ZafConstraint::Object()
and ZafRelativeConstraint::Type() for more information.

Center OppositeSide Stretch
Event Ratio Type

Member Initializations

ZafRelativeConstraint
Center() false

OppositeSide() false

Ratio() 0

Stretch() false

Type() user-supplied parameter

ZafElement
ClassID() ID_ZAF_RELATIVE_CONSTRAINT

ClassName() "ZafRelativeConstraint"

ZafRelativeConstraint 435

ZafRelativeConstraint(const ZafRelativeConstraint ©);

The copy constructor creates a new ZafRelativeConstraint object and initial-
izes its data from copy.

ZafRelativeConstraint(const ZafIChar *name,
ZafObjectPersistence &persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a relative constraint follows:

// Create a window with a geometry-managed child.
ZafWindow *win1 = new ZafWindow(1, 1, 60, 8);
ZafGeometryManager *geo = new ZafGeometryManager;

// The button will occupy the bottom right third of the window.
ZafButton *bottomRight = new ZafButton(15, 2, 15, 1, new

ZafStringData("bottom right"));

//Attach directly to right side.
ZafAttachment *attach = new ZafAttachment(bottomRight,

ZAF_ATCF_RIGHT);
attach->SetOffset(0);
geo->Add(attach);

//Attach directly to bottom.
attach = new ZafAttachment(bottomRight, ZAF_ATCF_BOTTOM);
attach->SetOffset(0);
geo->Add(attach);

//Attach left to imaginary 66% vertical divider line in window.
ZafRelativeConstraint *rel = new

ZafRelativeConstraint(bottomRight, ZAF_RLCF_LEFT);
rel->SetRatio(66);
rel->SetStretch(true);
geo->Add(rel);

//Attach top to imaginary 66% horizontal divider line in window.
rel = new ZafRelativeConstraint(bottomRight, ZAF_RLCF_TOP);
rel->SetRatio(66);
rel->SetStretch(true);
geo->Add(rel);

// Add the button and geometry manager to the window.
win1->Add(bottomRight);

436 Zinc Application Framework 5

win1->Add(geo);

Destructor virtual ~ZafRelativeConstraint(void);

The destructor is used to free the memory associated with a ZafRelativeCon-
straint object. It chains to the ZafConstraint and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafRelativeConstraint
object, since it is automatically destroyed when its parent geometry manager is
destroyed. For more information on child object deletion, see ZafWin-
dow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Center bool Center(void) const;

int SetCenter(bool center);

If Center() is true, then Object() is centered at Ratio(). For example, if Type()
is ZAF_RLCF_LEFT, Ratio() is 50, and Center() is true, then Object() will be
centered horizontally on its parent. If Center() is false, then the left edge of
Object() would be horizontally at the center of its parent. This attribute
defaults to false, but the programmer may change it with SetCenter().

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events sent to the ZafRelativeConstraint
object. The events handled by ZafRelativeConstraint are as follows:

ZafEventType Description

S_COMPUTE_SIZE causes the constraint to compute and modify the
size or position of its window object

S_INITIALIZE causes the constraint to initialize its numberID,
stringID, and Object()

ZafRelativeConstraint 437

OppositeSide bool OppositeSide(void) const;

bool SetOppositeSide(bool oppositeSide);

If OppositeSide() is true, then the opposite side of the parent object is used
when computing the position of Object(). For example, if Type() is
ZAF_RLCF_LEFT, Ratio() is 33, and OppositeSide() is true, then the left edge
of Object() will be placed a third of the way from the right side of the parent. If
OppositeSide() is false, then the left edge of Object() would be placed a third
of the way from the left side of the parent. This attribute defaults to false, but
the programmer may change it with SetOppositeSide().

Ratio int Ratio(void) const;

int SetRatio(int ratio);

Ratio() is the percentage used when calculating the relative offset of Object().
Ratio() is specified as a percentage, so 50% is specified as SetRatio(50). For
example, if Type() is ZAF_RLCF_LEFT, Ratio() is 50, and OppositeSide() is
false, then the left edge of Object() will be centered horizontally on its parent.
As another example, if Type() is ZAF_RLCF_RIGHT, Ratio() is 50, and
OppositeSide() is false, then the right edge of Object() will be centered hori-
zontally on its parent. This attribute defaults to 0, but the programmer may
change it with SetRatio().

Stretch bool Stretch(void) const;

bool SetStretch(bool stretch);

If Stretch() is true, then the opposite side of Object() than that specified by
Type() is not modified. For example, if Type() is ZAF_RLCF_RIGHT, Ratio()
is 66, and Stretch() is true, then the right edge of Object() will be placed a third
of the way from the right edge of its parent and the left edge of Object() will
remain where it is, in effect making it possible to stretch Object(). If Stretch()
is false, then the left edge of Object() would be modified so that the width of
Object() would remain the same. This attribute defaults to false, but the pro-
grammer may change it with SetStretch().

Type ZafRelativeConstraintType Type(void) const;

ZafRelativeConstraintType
SetType(ZafRelativeConstraintType type);

Type() is the relative constraint’s type, which specifies the side of Object() used
when calculating its position. If OppositeSide() is false, then Type() also spec-
ifies the side of the parent object used when calculating the position of
Object(). If OppositeSide() is true, then the opposite side of the parent object

438 Zinc Application Framework 5

is used when calculating the position of Object(). The programmer may use
SetType() to change this attribute. The possible values for Type() follow:

Type() Description

ZAF_RLCF_BOTTOM causes the constraint to affect the bottom side
of Object()

ZAF_RLCF_LEFT causes the constraint to affect the left side of
Object()

ZAF_RLCF_RIGHT causes the constraint to affect the right side of
Object()

ZAF_RLCF_TOP causes the constraint to affect the top side of
Object()

ZafScreenDisplay 439

ZafScreenDisplay

Inheritance ZafScreenDisplay : ZafDisplay

Declaration #include <z_scrdsp.hpp>

Description ZafScreenDisplay defines the basic functionality necessary to interface with
the screen. ZafScreenDisplay provides many useful graphic display primitives
for use in a ZAF application, such as Line(), Rectangle() and Text(). It also
provides methods for interfacing with images, such as bitmaps and icons. See
the base class ZafDisplay for complete descriptions of the display functions
provided by ZafScreenDisplay.

ZafScreenDisplay is important to displayable ZAF classes because it provides
the interface necessary to interact with the screen. A ZafScreenDisplay object
is instantiated by the ZafApplication class, and should not be instantiated by
the programmer. When needed, the method ZafWindowObject::Display()
should be used to access the ZafScreenDisplay object instantiated automati-
cally by the ZafApplication class.

Constructor The ZafScreenDisplay constructor initializes the member variables associated
with an instantiated ZafScreenDisplay object. The default values set by the
ZafScreenDisplay constructor and its base class constructor follow, if they dif-
fer from those set by the base class constructor.

colorTable lineTable monoTable
fontTable modeTable patternTable

Member Initializations

ZafScreenDisplay
colorTable[] display-dependent

fontTable[] display-dependent

lineTable[] display-dependent

modeTable[] display-dependent

monoTable[] display-dependent

patternTable[] display-dependent

ZafDisplay
cellHeight font-dependent

cellWidth font-dependent

columns display-dependent

coordinateType display-dependent

440 Zinc Application Framework 5

ZafScreenDisplay(int &argc, char **argv);

The constructor is useful in straight-code situations. argc and argv are simply
the argc and argv parameters passed into the application, and are used by some
environments to find the application’s name to be registered with the system
and/or to allow the user to specify a display mode (see the readme.* files in the
zaf/readme directory for more information). This constructor will not nor-
mally be called by the programmer, since it is automatically called by ZafAp-
plication.

Destructor virtual ~ZafScreenDisplay(void);

The destructor is used to free the memory associated with a ZafScreenDisplay
object. Generally, the programmer will not directly destroy a ZafScreenDis-
play object since it is automatically destroyed when the ZafApplication object
is destroyed.

Members
colorTable OSColor colorTable[ZAF_MAXCOLORS];

The colorTable array is the internal ZAF color table that stores environment-
specific information for each ZAF logical color. It is used internally by the
Zinc libraries, and should normally not be modified by the programmer. See
ZafDisplay::AddColor() for a description of adding support for RGB colors.

fontTable OSFont fontTable[ZAF_MAXFONTS];

The fontTable array is the internal ZAF font table that stores environment-spe-
cific information for each ZAF logical font. It is used internally by the Zinc
libraries, and should normally not be modified by the programmer. See
ZafDisplay::AddFont() for a description of adding support for available fonts.

DisplayType() "ZafScreenDisplay"

lines display-dependent

pixelsPerInchX display-dependent

pixelsPerInchY display-dependent

postSpace environment-specific

preSpace environment-specific

Member Initializations

ZafScreenDisplay 441

lineTable OSLineStyle lineTable[ZAF_MAXLINES];

The lineTable array is the internal ZAF line style table that stores environment-
specific information for each ZAF logical line style. It is used internally by the
Zinc libraries, and should normally not be modified by the programmer.

modeTable OSMode modeTable[ZAF_MAXMODES];

The modeTable array is the internal ZAF drawing mode table that stores envi-
ronment-specific information for each ZAF logical drawing mode. It is used
internally by the Zinc libraries, and should normally not be modified by the
programmer.

monoTable OSMono monoTable[ZAF_MAXCOLORS];

The monoTable array is the internal ZAF black and white color table that stores
environment-specific information for each ZAF logical black and white color.
It is used internally by the Zinc libraries, and should normally not be modified
by the programmer.

patternTable OSFillPattern patternTable[ZAF_MAXPATTERNS];

The patternTable array is the internal ZAF fill pattern table that stores environ-
ment-specific information for each ZAF logical fill pattern. It is used inter-
nally by the Zinc libraries, and should normally not be modified by the
programmer.

442 Zinc Application Framework 5

ZafScrollBar

Inheritance ZafScrollBar : ZafWindow : (ZafWindowObject :
ZafElement), ZafList

Declaration #include <z_scrll2.hpp>

Description The ZafScrollBar object provides support for both scroll bars and sliders.
Scroll bars are generally used as support objects for other classes that allow
scrolling, while sliders generally allow end users to select from a value-range.
ZafScrollBar utilizes native scroll bar and slider APIs, if available.

Constructors All ZafScrollBar constructors initialize the member variables associated with
an instantiated ZafScrollBar object. The default values set by the ZafScrollBar
and its base class constructors follow, if they differ from those set by the base
class constructor, or if a blocking function is implemented in ZafScrollBar.
“†” Indicates a blocking function that prevents changes to the attribute in this
class.

AutoSize ScrollData ScrollType

Member Initializations

ZafScrollBar
AutoSize() true

ScrollData() null

ScrollType() ZAF_VERTICAL_SCROLL

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() false†

SelectionType() ZAF_SINGLE_SELECTION†

Sizeable() false†

Temporary() false†

ZafWindowObject
AcceptDrop() false†

Bordered() false†

ZafScrollBar 443

ZafScrollBar(ZafScrollBarType scrollType);

This constructor is useful in straight-code situations, particularly if the Zaf-
ScrollBar object is to be a support object for its parent. In this case, the Zaf-
ScrollBar object’s data is initialized by the parent object, so no data values are
necessary.

scrollType specifies the type of ZafScrollBar object to be created. See
ScrollType() for more information.

ZafScrollBar(int left, int top, int width, int height,
long minimum, long maximum, long current, long delta,
long showing, ZafScrollBarType scrollType =
ZAF_VERTICAL_SCROLL);

This constructor is useful in straight-code situations, particularly if the Zaf-
ScrollBar object is to create, maintain, and destroy its own ZafScrollData
object automatically.

left and top specify the position where the left and top of the object will be
placed on its parent, while width and height specify the width and height of the
object. left, top, width, and height are specified in cell coordinates by default,
but may be specified using another coordinate system if desired. See ZafWin-
dowObject::SetCoordinateType() for more information.

minimum, maximum, current, delta, and showing specify the values to be used
in the ZafScrollData object automatically created by this constructor.
scrollType specifies the type of ZafScrollBar object to be created. See Zaf-
ScrollData and ScrollData() for more information.

ZafScrollBar(int left, int top, int width, int height,
ZafScrollData *scrollData = ZAF_NULLP(ZafScrollData),
ZafScrollBarType scrollType = ZAF_VERTICAL_SCROLL);

This constructor is also useful in straight-code situations, particularly when a
ZafScrollData object, scrollData, has already been created to be associated

ParentPalette() false†

SupportObject() true (if not a slider object)

ZafElement
ClassID() ID_ZAF_SCROLL_BAR

ClassName() "ZafScrollBar"

Member Initializations

444 Zinc Application Framework 5

with the ZafScrollBar object. For more information on using ZafScrollData
objects, see ZafScrollData. Other parameters have the same meaning as in the
previous constructor.

ZafScrollBar(const ZafScrollBar ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It allocates a new ZafScrollBar object and initializes its data from
copy. If the original ZafScrollBar’s internal data objects are StaticData() then
the new ZafScrollBar object points to the originals, otherwise copies are made.

ZafScrollBar(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

The following example demonstrates how to create ZafScrollBar objects:

// Create a vertical list with a support scroll bar.
ZafVtList *vList = new ZafVtList(1, 1, 40, 5);
vList->Add(new ZafScrollBar(0, 0, 0, 0));

// Create a slider control using a ZafScrollData object.
ZafScrollData *scrollData = new ZafScrollData(0, 100, 0, 10,

10);
window->Add(new ZafScrollBar(1, 1, 40, 1, scrollData,

ZAF_HORIZONTAL_SLIDER));

Destructor virtual ~ZafScrollBar(void);

The destructor is used to free the memory associated with a ZafScrollBar
object, including all the data object pieces that are Destroyable(). It chains to
the ZafWindow, ZafList, ZafWindowObject and ZafElement destructors.

Generally, the programmer will not destroy a ZafScrollBar object directly
since it is automatically destroyed when its parent object is destroyed. For
more information on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

ZafScrollBar 445

AutoSize bool AutoSize(void) const;

virtual bool SetAutoSize(bool autoSize);

If AutoSize() is true, the object will automatically adjust its thickness to match
the normal size for each environment. Otherwise, the object will display with
the region passed into the constructor. AutoSize() defaults to true.

ScrollData ZafScrollData *ScrollData(void) const;

virtual ZafError SetScrollData(ZafScrollData *scroll);

The ScrollData() object contains the actual data used by the ZafScrollBar. Zaf-
ScrollData objects may be shared among several ZafScrollBar objects (to save
memory, for example) or it may belong to a single ZafScrollBar object. If
shared, all the associated objects will be updated when the ScrollData()
changes. SetScrollData() may be used to associate a ScrollData() object with a
ZafScrollBar object. See ZafDataManager for more information on data shar-
ing. SetScrollData() will delete the previous ScrollData() object if it is
Destroyable() and no other object uses it.

ScrollData() returns a pointer to the ScrollData() object associated with the
ZafScrollBar. SetScrollData() normally returns ZAF_ERROR_NONE.

ScrollType ZafScrollBarType ScrollType(void) const;

virtual ZafScrollBarType SetScrollType(ZafScrollBarType
scrollType);

ScrollType() specifies the object’s type. Each type appears and behaves differ-
ently. ScrollType() defaults to ZAF_VERTICAL_SCROLL. Possible values
are listed:

ScrollType() Description

ZAF_CORNER_SCROLL Corner scroll bar (typically used for spacing
when both horizontal and vertical scroll bars
are present)

ZAF_HORIZONTAL_SCROLL Horizontal scroll bar

ZAF_VERTICAL_SCROLL Vertical scroll bar

ZAF_HORIZONTAL_SLIDER Horizontal slider control

ZAF_VERTICAL_SLIDER Vertical slider control

ZAF_SIZEGRIP_SCROLL Corner scroll bar with size-grip appearance
(typically used on ZafWindow objects for a
Windows95 look)

446 Zinc Application Framework 5

ZafScrollData

Inheritance ZafScrollData : (ZafData : (ZafNotification,
ZafElement)), ZafScrollStruct

Declaration #include <z_scrll1.hpp>

Description ZafScrollData objects can be used to store and manipulate scrolling informa-
tion.

ZafScrollData combines data encapsulation with data and object notification
from ZafData. It is most often used in conjunction with the ZafScrollBar user
interface object but may be used as a stand-alone object if desired.

Constructors All ZafScrollData constructors initialize the member variables associated with
an instantiated ZafScrollData object. The default values set by the ZafScroll-
Data and its base class constructors follow, if they differ from those set by the
base class constructor.

ZafScrollData(long minimum = 0, long maximum = 0, long
current = 0, long delta = 1, long showing = 1);

This constructor allocates a ZafScrollData instance and initializes its contents
according to the values passed in. minimum is the minimum value the scroll

Clear Increment Showing
Current Maximum Step
Decrement Minimum operator =
Delta SetScroll

Member Initializations

ZafScrollData
Current() user-supplied parameter

Delta() user-supplied parameter

Maximum() user-supplied parameter

Minimum() user-supplied parameter

Showing() user-supplied parameter

Step() same attribute as Delta()

ZafElement
ClassID() ID_ZAF_SCROLL_DATA

ClassName() "ZafScrollData"

ZafScrollData 447

data can be, maximum is the maximum value, current is the current value, delta
is the amount the scroll data changes for every scroll, and showing is the
amount the scroll data changes when paging (page-up or page-down).

ZafScrollData(ZafScrollStruct &data);

This constructor allocates a ZafScrollData instance and initializes its data to
the values in data.

ZafScrollData(const ZafScrollData ©);

The copy constructor creates a new ZafScrollData object and initializes its data
from copy.

ZafScrollData(const ZafIChar *name, ZafDataPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

The following code snippet shows how to create a ZafScrollData object:

// Create some ZafScrollData objects.
ZafScrollData scroll1;
ZafScrollData scroll2 = scroll1;
ZafScrollData scroll3(1, 100, 1, 1, 10);

Destructor virtual ~ZafScrollData(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafScrollData object. Unless StaticData() is true, a ZafScrollData object
will be destroyed automatically when all ZafScrollBar objects that refer to it
are destroyed.

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

448 Zinc Application Framework 5

Clear virtual void Clear(void);

Clear() sets the scroll data values as follows: current is set to 0, delta is set to 1,
maximum is set to 0, minimum is set to 0, and showing is set to 1.

Current long Current(void) const;

virtual long SetCurrent(long current);

Current() is the current scroll value. It may be changed by calling SetCur-
rent().

Decrement long Decrement(long value);

Decrement() subtracts Delta() from Current(). If the result would be less than
Minimum(), then Current() becomes Minimum().

Delta long Delta(void) const;

virtual long SetDelta(long delta);

Delta() is the amount that Current() changes during a scroll operation. Set-
Delta() may be called to change it.

Increment long Increment(long value);

Increment() adds Delta() to Current(). If the result would be greater than Max-
imum(), then Current() becomes Maximum().

Maximum long Maximum(void) const;

virtual long SetMaximum(long maximum);

Maximum() is the maximum value that Current() may be. SetMaximum() may
be called to change it.

Minimum long Minimum(void) const;

virtual long SetMinimum(long minimum);

Minimum() is the minimum value that Current() may be. SetMinimum() may
be called to change it.

ZafScrollData 449

SetScroll virtual ZafError SetScroll(long minimum, long maximum,
long current, long delta, long showing);

virtual ZafError SetScroll(const ZafScrollStruct
&scroll);

SetScroll() may be called to modify all of the scrolling values at once. mini-
mum is the minimum value the scroll data can be, maximum is the maximum
value, current is the current value, delta is the amount the scroll data changes
for every scroll, and showing is the amount the scroll data changes when pag-
ing (page-up or page-down). Since all these values are stored in the ZafScroll-
Struct, data refers to a ZafScrollStruct whose values are to be copied into the
ZafScrollData object.

Showing long Showing(void) const;

virtual long SetShowing(long showing);

Showing() specifies the amount the scroll data changes when paging (page-up
or page-down). SetShowing() may be called to change it.

Step long Step(void) const;

virtual long SetStep(long step);

Step() is identical to Delta(), and SetStep() is identical to SetDelta().

operator = ZafScrollData &operator=(const ZafScrollData &scroll);

ZafScrollData &operator=(const ZafScrollStruct &scroll);

These operators set the scroll values of the ZafScrollData object to be the same
as the scroll parameters.

450 Zinc Application Framework 5

ZafScrollStruct

Inheritance Root struct

Declaration #include <z_scrll.hpp>

Description ZafScrollStruct objects can be used to store and manipulate scrolling informa-
tion. ZafScrollStruct is most often used in conjunction with the ZafScrollData
class but may be used as a stand-alone object if desired.

Members long current;
current current is the current scroll value, and should always be a value between mini-

mum and maximum. current is analogous to the thumb button on a scroll bar.

delta long delta;

delta is the amount that current changes during a scroll operation. delta may be
thought of as the amount the thumb button on a scroll bar moves when one of
the arrows is selected.

maximum long maximum;

maximum is the maximum value that current may be, and must be greater than
or equal to minimum.

minimum long minimum;

minimum is the minimum value that current may be, and must be less than or
equal to maximum.

showing long showing;

showing is the amount that current changes when paging (page-up or page-
down).

current minimum operator !=
delta showing
maximum operator ==

ZafScrollStruct 451

operator == bool operator==(const ZafScrollStruct &scroll) const;

This operator checks equality of two ZafScrollStruct objects and returns true if
all the members are equal.

operator != bool operator!=(const ZafScrollStruct &scroll) const;

This operator checks inequality of two ZafScrollStruct objects and returns true
if any one of the members are not equal.

452 Zinc Application Framework 5

ZafScrolledWindow

Inheritance ZafScrolledWindow : ZafWindow : (ZafWindowObject :
ZafElement), ZafList

Declaration #include <z_sclwin.hpp>

Description ZafScrolledWindow provides support for scrolling the client area of a window
with ZafScrollBar support objects. All the functionality of the base ZafWin-
dow class is retained. The programmer must specify the size of the window’s
scrollable area which may not be more than 32K pixels in either dimension..

Constructors All ZafScrolledWindow constructors initialize the member variables associ-
ated with an instantiated ZafScrolledWindow object. The default values set by
the ZafScrolledWindow and its base class constructors follow, if they differ
from those set by the base class constructor.

ZafScrolledWindow(int left, int top, int width, int
height, int scrollWidth, int scrollHeight, int
hzScrollPos = 0, int vtScrollPos = 0);

This constructor is useful in straight-code situations. All values are specified
in cell coordinates by default, but may be specified using another coordinate
system if desired.

left and top specify the position where the left and top of the object will be
placed on the window manager or its parent. width and height specify the
width and height of the client region of the object.

HzScrollPos ScrollWidth
ScrollHeight VtScrollPos

Member Initializations

ZafScrolledWindow
HzScrollPos() 0

ScrollHeight() user-supplied parameter

ScrollWidth() user-supplied parameter

VtScrollPos() 0

ZafElement
ClassID() ID_ZAF_SCROLLED_WINDOW

ClassName() "ZafScrolledWindow"

ZafScrolledWindow 453

scrollWidth and scrollHeight specify the width and height of the scrollable
region of the window. Note neither the scrollWidth nor scrollHeight can be
more than 32K pixels. Since these parameters are often specified using
another coordinate system (e.g. ZAF_CELL) the programmer must be careful
not to specify a size that will convert to more than 32K pixels.

hzScrollPos and vtScrollPos specify the initial position of the viewable area of
the window.

ZafScrolledWindow(const ZafScrolledWindow ©);

The copy constructor creates a new ZafScrolledWindow object and initializes
its data from copy.

ZafScrolledWindow(const ZafIChar *name,
ZafObjectPersistence &persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a scrolled window follows:

// Create a scrolled window.
ZafScrolledWindow *window = new ZafScrolledWindow(1, 1, 50, 10,

100, 100);
window->AddGenericObjects(new ZafStringData("Scrolled

Window"));

// Add the scroll bars to the window.
window->Add(new ZafScrollBar(0, 0, 0, 0,

ZAF_NULLP(ZafScrollData), ZAF_CORNER_SCROLL));
window->Add(new ZafScrollBar(0, 0, 0, 0,

ZAF_NULLP(ZafScrollData), ZAF_VERTICAL_SCROLL));
window->Add(new ZafScrollBar(0, 0, 0, 0,

ZAF_NULLP(ZafScrollData), ZAF_HORIZONTAL_SCROLL));

// Add a string to the window.
window->Add(new ZafString(60, 15, 10, new

ZafStringData("String")));

Destructor virtual ~ZafScrolledWindow(void);

The destructor is used to free the memory associated with a ZafScrolledWin-
dow object. It chains to the ZafWindow, ZafWindowObject, ZafList, and

454 Zinc Application Framework 5

ZafElement destructors. For more information on child object deletion, see
ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

ScrollHeight int ScrollHeight(void);

void SetScrollHeight(int height);

ScrollHeight() specifies the height of the scrollable area in the same coordinate
system as Region(). When ScrollHeight() is larger than Region().Height(), the
window’s contents may be scrolled vertically. When it is smaller, the vertical
scroll bar becomes disabled, since all the window’s contents are visible within
its vertical client area. SetScrollHeight() may be called to modify the win-
dow’s scrollable height.

Note the scrollHeight cannot be more than 32K pixels. Since this parameter
may be specified using another coordinate system (e.g. ZAF_CELL) the pro-
grammer must be careful not to specify a size that will convert to more than
32K pixels.

ScrollWidth int ScrollWidth(void);

void SetScrollWidth(int width);

ScrollWidth() specifies the width of the scrollable area in the same coordinate
system as Region(). When ScrollWidth() is larger than Region().Width(), the
window’s contents may be scrolled horizontally. When it is smaller, the hori-
zontal scroll bar becomes disabled, since all the window’s contents are visible
within its horizontal client area. SetScrollWidth() may be called to modify the
window’s scrollable width.

Note the scrollWidth cannot be more than 32K pixels. Since this parameter
may be specified using another coordinate system (e.g. ZAF_CELL) the pro-
grammer must be careful not to specify a size that will convert to more than
32K pixels.

HzScrollPos int HzScrollPos(void);

void SetHzScrollPos(int pos);

HzScrollPos() specifies how much the window has scrolled horizontally. A
value of zero means that the left-most contents of the window are at the left of

ZafScrolledWindow 455

the window’s client region. A positive value means that the left-most contents
of the window are to the left of the window’s client region, and thus are not vis-
ible. SetHzScrollPos() may be called to scroll the window’s contents horizon-
tally.

VtScrollPos int VtScrollPos(void);

void SetVtScrollPos(int pos);

VtScrollPos() specifies how much the window has scrolled vertically. A value
of zero means that the top-most contents of the window are at the top of the
window’s client region. A positive value means that the top-most contents of
the window are above the window’s client region, and thus are not visible. Set-
VtScrollPos() may be called to scroll the window’s contents vertically.

456 Zinc Application Framework 5

ZafSpinControl

Inheritance ZafSpinControl : ZafWindow : (ZafWindowObject :
ZafElement), ZafList

Declaration #include <z_spin.hpp>

Description ZafSpinControl allows an end-user to automatically increment and decrement
another “value” object. Value objects derive from ZafString and define Incre-
ment() and Decrement() functions. They include ZafBignum, ZafDate, Zaf-
Time, ZafUTime, ZafInteger, and ZafReal. ZafSpinControl utilizes native spin
control APIs, if available.

The user manipulates a spin control by clicking on increment or decrement
buttons, or by using the keyboard. Each time the ZafSpinControl is changed it
adds or subtracts a “delta” value specified by the programmer until an optional
maximum or minimum value is reached. Values may “wrap” at maximum or
minimum if desired.

Constructors All ZafSpinControl constructors initialize the member variables associated
with an instantiated ZafSpinControl object. The default values set by the Zaf-
SpinControl and its base class constructors follow, if they differ from those set
by the base class constructor, or if a blocking function is implemented in Zaf-
SpinControl. “†” Indicates a blocking function that prevents changes to the
attribute in this class.

Delta WrappedData

Member Initializations

ZafSpinControl
Delta() user-supplied parameter

WrappedData() true

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() false†

SelectionType() ZAF_SINGLE_SELECTION†

ZafSpinControl 457

ZafSpinControl(int left, int top, int width, ZafData
*delta);

This constructor is useful in straight-code situations. left, top and width spec-
ify the position and size of the ZafSpinControl (which includes its child
object). ZafSpinControl objects are always one cell high. left, top, and width
are specified in cell coordinates by default, but may be specified using another
coordinate system if desired. See ZafWindowObject::SetCoordinateType() for
more information.

delta may be an instance of any ZafData subclass, but the spin control’s child
object must be able to utilize delta when incrementing and decrementing. For
more information on using ZafData objects, see ZafData. The following are
ZAF classes already supported by ZafSpinControl, listed together with the cor-
responding delta class that must be used:

ZafSpinControl(const ZafSpinControl ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It allocates a new ZafSpinControl object and initializes its data from
copy. If the original ZafSpinControl’s internal data objects are StaticData()
then the new ZafSpinControl object points to the originals, otherwise copies
are made.

Sizeable() false†

Temporary() false†

ZafElement
ClassID() ID_ZAF_SPIN_CONTROL

ClassName() "ZafSpinControl"

ZafSpinControl child object Corresponding delta object

ZafBignum ZafBignumData

ZafDate ZafDateData

ZafInteger ZafIntegerData

ZafReal ZafRealData

ZafTime ZafTimeData

ZafUTime ZafUTimeData

Member Initializations

458 Zinc Application Framework 5

ZafSpinControl(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

The following example demonstrates how to create ZafSpinControl objects:

// Create a spin control using a ZafInteger object and
// ZafIntegerData delta.
ZafIntegerData *delta = new ZafIntegerData(1);

// Use the ZafIntegerData delta with the spin control.
ZafSpinControl *spinner = new ZafSpinControl(1, 1, 12, delta);

// Add the ZafInteger field object to the spin control.
spinner->Add(new ZafInteger(0, 0, 0, 1));
window->Add(spinner);

Destructor virtual ~ZafSpinControl(void);

The destructor is used to free the memory associated with a ZafSpinControl
object, including all the data object pieces that are Destroyable(). It chains to
the ZafWindow, ZafList, ZafWindowObject and ZafElement destructors.

Generally, the programmer will not destroy a ZafSpinControl object directly
since it is automatically destroyed when its parent object is destroyed. For
more information on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. If the Set*() function
does not successfully change the state as requested, however, it will instead
return the current state.

Delta const ZafData *Delta(void);

virtual ZafError SetDelta(ZafData *data);

The Delta() object contains the actual data used by the ZafSpinControl when
spinning its child object. Each time the child object is spun, it is incremented
or decremented by the value of Delta(). The Delta() object must be an instance
of a class that the spin control’s child object supports with its Increment() and
Decrement() functions. ZafData objects may be shared among several Zaf-
SpinControl objects (to save memory, for example) or they may belong to a
single ZafSpinControl object. SetDelta() may be used to associate a Delta()

ZafSpinControl 459

object with a ZafSpinControl object. See ZafDataManager for more informa-
tion on data sharing.

Delta() returns a pointer to the Delta() object associated with the ZafSpinCon-
trol. SetDelta() normally returns ZAF_ERROR_NONE.

WrappedData bool WrappedData(void) const;

virtual bool SetWrappedData(bool wrappedData);

If WrappedData() is true, the spin control wraps from end to beginning or from
beginning to end when it reaches the maximum or minimum of the value or of
the range. This attribute is true by default, but SetWrappedData() may be
called to change it.

460 Zinc Application Framework 5

ZafSplitter

Inheritance ZafSplitter : ZafWindowObject : ZafElement

Declaration #include <z_split.hpp>

Description The ZafSplitter object allows a window to be divided or “split” into sections or
“panes” so that different information may be displayed in each pane. The
panes may also be sized by the user at runtime (by the end user). The ZafSplit-
ter object may be added to any type of window to provide this functionality.

Each splitter object divides a region called a “split region” into two logical
panes. The split region is divided horizontally or vertically depending on the
type of splitter. Each pane is simply the region within the split region on one
side or the other of the visual splitter object. The pane above or to the left of
the splitter object is called the next pane.

While a pane is only a conceptual region, a “pane object” is a window object
that is forced to occupy an entire pane. Each splitter object controls the sizing
of two pane objects, one for each pane. Its previous pane object occupies its
entire previous pane, and its next pane object occupies its entire next pane.
The splitter object acts as a geometry manager for its pane objects, forcing
them to occupy its panes.

In order to achieve multiple splits within a window, a splitter object may also
be a pane object. As a pane object, a splitter object divides its pane into sub-
panes.

This class is not available in the Personal or Registered versions of ZAF, but is
included with the Professional version.

Constructors All ZafSplitter constructors initialize the member variables associated with an
instantiated ZafSplitter object. The default values set by the ZafSplitter and its
base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafSplitter. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

Live Position SplitterType
NextPaneObject PreviousPaneObject Thickness

Member Initializations

ZafSplitter
Live() true (false on Motif)

NextPaneObject() null

Position() 50 percent

ZafSplitter 461

ZafSplitter(int left, int top, int width, int height,
ZafSplitterType splitType, int position = 50, bool
percent = true);

This constructor is useful in straight-code situations. left, top, width, and
height specify the location and size of the split region within the parent win-
dow. Since splitters are usually ZAF_AVAILABLE_REGION or pane objects,
these parameters usually have no effect (the split region is determined by the
available region or a controlling splitter object) and may be zero. All values
are specified in cell coordinates by default, but may be specified using another
coordinate system if desired.

splitType specifies the orientation of the splitter object, and may be
ZAF_HORIZONTAL_SPLITTER or ZAF_VERTICAL_SPLITTER.

position specifies the position of the splitter object within the split region. If
splitType is ZAF_HORIZONTAL_SPLITTER, position specifies the distance
from the top edge of the split region to the top edge of the splitter object. If

PreviousPaneObject() null

SplitterType() parameter

Thickness() 3

ZafWindowObject
AcceptDrop() false†

CopyDraggable() false†

Focus() false†

Font() ZAF_FNT_NULL†

HelpContext() null†

LinkDraggable() false†

MoveDraggable() false†

Noncurrent() true†

OSDraw() false†

ParentDrawBorder() false†

ParentDrawFocus() false†

Selected() false†

SupportObject() false†

TextColor() ZAF_CLR_NULL†

ZafElement
ClassID() ID_ZAF_SPLITTER

ClassName() "ZafSplitter"

Member Initializations

462 Zinc Application Framework 5

splitType is ZAF_VERTICAL_SPLITTER, position specifies the distance
from the left edge of the split region to the left edge of the splitter object.

percent specifies whether or not position is given as a percentage. If percent is
true, position species the percentage of the split region that will be in the previ-
ous pane; otherwise position specifies the size (height for horizontal splitters or
width for vertical splitters) of the previous pane, and the units (ZAF_CELL,
ZAF_MINICELL, etc.) are specified by the coordinate type of the splitter
object.

ZafSplitter(ZafSplitterType splitType, int position = 50,
bool percent = true);

This constructor is useful in straight-code situations. Since splitters are usually
ZAF_AVAILABLE_REGION or pane objects, this constructor doesn’t require
left, top, width, and height parameters for ease of use. See the previous con-
structor for descriptions of the parameters to this constructor.

ZafSplitter(const ZafSplitter ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafSplitter object and copies the object’s informa-
tion.

ZafSplitter(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Below is an example showing how to use ZafSplitter:

// Create a sample window with a splitter object.
ZafWindow *window = new ZafWindow(0, 0, 60, 10);
ZafSplitter *splitter = new

ZafSplitter(ZAF_HORIZONTAL_SPLITTER);
splitter->SetRegionType(ZAF_AVAILABLE_REGION);
window->Add(splitter);

// Add a text object to the top side of the splitter.
ZafStringData *data = new ZafStringData("Sample text object.")
ZafText *text = new ZafText(0, 0, 0, 0, data);
text->Add(new ZafScrollBar(ZAF_VERTICAL_SCROLL));
splitter->SetPreviousPaneObject(text);
window->Add(text);

ZafSplitter 463

// Add a text object to the other side of the splitter.
text = new ZafText(0, 0, 0, 0, data);
text->Add(new ZafScrollBar(ZAF_VERTICAL_SCROLL));
splitter->SetNextPaneObject(text);
window->Add(text);

Destructor virtual ~ZafSplitter(void);

This destructor is used to free the memory associated with a ZafSplitter object.
It chains to the ZafWindowObject and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafSplitter object, since
it is automatically destroyed when it’s parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Live bool Live(void) const;

virtual bool SetLive(bool live);

If Live() is true, pane objects will resize as the splitter is being positioned
(while the mouse is dragging); otherwise the pane objects won’t resize until the
mouse button is released. The default value of this attribute is true, but the user
may call SetLive() to change it (except in Motif, where this attribute is always
false).

NextPaneObject ZafWindowObject *NextPaneObject(void) const;
PreviousPaneOb-
ject

ZafWindowObject *PreviousPaneObject(void) const;

virtual void SetNextPaneObject(ZafWindowObject *object);

virtual void SetPreviousPaneObject(ZafWindowObject
*object);

These functions are used to get and set the next and previous pane objects. Set-
NextPaneObject() and SetPreviousPaneObject() both modify the regions of the
objects being set to occupy the appropriate panes. These attributes default to
null, but may be set by the programmer using SetNextPaneObject() and Set-
PreviousObject().

464 Zinc Application Framework 5

Position int Position(bool percent = true) const;

virtual void SetPosition(int position, bool percent =
true);

Position() gets a splitter object’s position and SetPosition() sets it. If percent is
true, the position specifies the percentage of the split region contained in the
previous pane; otherwise the position specifies the size (height for horizontal
splitters and width for vertical splitters) of the previous pane, and the units
(ZAF_CELL, ZAF_MINICELL, etc.) are specified by the coordinate type of
the splitter object.

SplitterType ZafSplitterType SplitterType(void) const;

virtual void SetSplitterType(ZafSplitterType
splitterType);

SplitterType() and SetSplitterType() are used to get and set the type of a splitter
object. The valid splitter types are ZAF_HORIZONTAL_SPLITTER and
ZAF_VERTICAL_SPLITTER. A horizontal splitter is a horizontal bar that
splits the split region into two panes, one above the splitter object and one
below the splitter object. A vertical splitter is a vertical bar that splits the split
region into two panes, one to the left of the splitter object and one to the right
of the splitter object.

Thickness int Thickness(void) const;

virtual void SetThickness(int thickness);

Thickness() specifies the thickness of the splitter object in pixels. The thick-
ness of a splitter object is the height of a horizontal splitter bar or the width of a
vertical splitter bar. (Height and width refer to the zafRegion or in other
words, the height and width of the actual splitter object.) The default value of
this attribute is 3, but the user may call SetThickness() to change it.

ZafStandardArg 465

ZafStandardArg

Inheritance Root class

Declaration #include <z_stdarg.hpp>

Description ZafStandardArg provides support for internationalized standard argument
functions that work correctly with Unicode strings, as well as ISO strings.
ZAF standard functions such as sprintf() and sscanf() utilize ZafStandardArg
to internationalize their use of standard arguments. These functions should
generally be used in ZAF applications instead of their standard library equiva-
lents. As these functions are all static, and ZafStandardArg has no constructor,
no ZafStandardArg object needs to be created by the programmer.

Members static void RearrangeArgs(bool isScanf, void *newBuffer,
const ZafIChar *format, const va_list ap, ZafIChar
*newFormat, va_list *toRet);

RearrangeArgs RearrangeArgs() is at the heart of ZAF’s internationalization of variable argu-
ment lists. It allows a format character to specify which variable argument it
matches with, regardless of its order within the format string. This is espe-
cially useful when string translations causes the order of translated words to be
different. RearrangeArgs() is generally not called by the programmer, since
the standard ZAF functions call it when necessary.

isScanf should be true when RearrangeArgs() requires the sscanf() functional-
ity of [...] arguments. newBuffer is the buffer used to store the new variable
argument list, so it must be large enough to hold them (and the Borland com-
pilers require this buffer to be on the stack). format is the original format string
and ap is the original variable argument list. newFormat is the resulting format
string, and toRet is the resulting variable argument list.

For example, to specify the second variable argument in a format character for
a string, "%2s" would be used in the format string. The following code snippet
shows how this feature is used within ZAF’s sscanf():

int sscanf(const ZafIChar *dst, const ZafIChar *format, ...)
{
// Rearrange the arguments before passing to _vsscanf().
va_list args;
va_start(args, format);

#if defined(ZAF_REARRANGEARGS)

RearrangeArgs SetSscanf vsscanf
SetSprintf vsprintf

466 Zinc Application Framework 5

ZafIChar *newFormat = new ZafIChar[ZAF_MAXPARAMLEN];
char buff[ZAF_MAXPARAMLEN]; // Borland expects this in the
stack.

va_list newArgs;
ZafStandardArg::RearrangeArgs(true, buff, format, args,
newFormat, &newArgs);

int i = ZafStandardArg::_vsscanf(dst, newFormat, newArgs);
delete []newFormat;

#else
int i = ZafStandardArg::_vsscanf(dst, format, &args);

#endif
va_end(args);
return i;

}

SetSprintf static void SetSprintf(ZafIChar fmtCH, objectFormat
format);

SetSprintf() adds support for the format character fmtCH through the format
routine format. This routine should normally not be called by the programmer,
but is used internally by ZAF. For example, ZafIntegerData adds support for
the format character ’d’ in the format routine ZafIntegerData::Format() by call-
ing ZafStandardArg::SetSprintf(’d’, ZafIntegerData::Format). Thereafter, calls
to sprintf() using the format character ’d’ will be formatted by passing the argu-
ment to ZafIntegerData::Format().

SetSscanf static void SetSscanf(ZafIChar fmtCH, objectParse parse);

SetSscanf() adds support for the format character fmtCH through the parsing
routine parse. This routine should normally not be called by the programmer,
but is used internally by ZAF. For example, ZafIntegerData adds support for
the format character ’d’ in the parsing routine ZafIntegerData::Parse() by call-
ing ZafStandardArg::SetSscanf(’d’, ZafIntegerData::Parse). Thereafter, calls to
sscanf() using the format character ’d’ will be parsed by passing the argument
to ZafIntegerData::Parse().

vsprintf static int vsprintf(ZafIChar *buffer, const ZafIChar
*format, va_list *argList);

static int _vsprintf(ZafIChar *fp, const ZafIChar *fmt,
va_list *ap);

vsprintf() calls RearrangeArgs() if the macro ZAF_REARRANGEARGS is
defined, then calls _vsprintf() with the fixed arguments. If
ZAF_REARRANGEARGS is not defined, then vsprintf() simply calls
_vsprintf() with the same arguments. buffer is the output buffer, format is the

ZafStandardArg 467

format string, and argList is the list of variable arguments. See the compiler’s
documentation for the standard function vsprintf() for more information.

In addition to the normal format options supported by the standard library
vsprintf(), ZAF’s vsprintf() provides a few more:

These format options are normally only used internally by ZAF. The following
code snippet shows the preferred method of using sprintf() with a complex data
object:

// Load outputString with a bignum.
ZafBignumData bignum(123.456);
ZafIChar bignumString[64], outputString[64];
bignum.FormattedText(bignumString, strlen(bignumString),

"%$@B");
sprintf(outputString, "Bignum: %s", bignumString);

vsscanf static int vsscanf(const ZafIChar *buffer, const ZafIChar
*format, va_list *argList);

static int _vsscanf(const ZafIChar *fp, const ZafIChar
*fmt, va_list *ap);

vsscanf() calls RearrangeArgs() if the macro ZAF_REARRANGEARGS is
defined, then calls _vsscanf() with the fixed arguments. If
ZAF_REARRANGEARGS is not defined, then vsscanf() simply calls
_vsscanf() with the same arguments. buffer is the input buffer, format is the
format string, and argList is the list of variable arguments. See the compiler's
documentation for the standard function vsscanf() for more information.

Format option Description

%Z[$@+-,]B allows a ZafBignumData pointer to be an argument (see
ZafBignumData::FormattedText() for more information)

%ZU allows a ZafUTimeData pointer to be an argument

468 Zinc Application Framework 5

ZafStatusBar
Inheritance ZafStatusBar : ZafWindow : (ZafWindowObject :

ZafElement), ZafList

Declaration #include <z_status.hpp>

Description The ZafStatusBar object is generally used for informational purposes. For
example, a string field on a status bar may display help messages (see ZafHelp-
Tips for more information). Many objects available in ZAF may be placed on
a status bar, but any object placed on a status bar will act Noncurrent(), since
the status bar is Noncurrent(), meaning that it does not receive focus.

Constructors All ZafStatusBar constructors initialize the member variables associated with
an instantiated ZafStatusBar object. The default values set by the ZafStatusBar
and its base class constructors follow, if they differ from those set by the base
class constructor, or if a blocking function is implemented in ZafStatusBar.
“†” Indicates a blocking function that prevents changes to the attribute in this
class.

Member Initializations

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() false†

SelectionType() ZAF_SINGLE_SELECTION†

Sizeable() false†

Temporary() false†

ZafWindowObject
AcceptDrop() false†

Bordered() true

Focus() false†

Noncurrent() true†

RegionType() ZAF_AVAILABLE_REGION†

SupportObject() true†

UserFunction() null†

ZafStatusBar 469

ZafStatusBar(int left, int top, int right, int bottom);

This constructor is useful in straight-code situations. The left, top, right and
bottom parameters specify the left, top, right and bottom of the object, respec-
tively. All values are specified in cell coordinates by default, but may be spec-
ified using another coordinate system if desired. Currently, the left and right
parameters are ignored since the status bar automatically fills the bottom edge
of its parent’s client region, but they may be used in the future. Note that the
ZafStatusBar object is always positioned on the bottom of its parent window’s
client region, so the top and bottom parameters are only used in calculating the
height of the status bar.

ZafStatusBar(const ZafStatusBar ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafStatusBar object and copies the object’s infor-
mation.

ZafStatusBar(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a status bar follows:

// Create a sample window with a status bar and a string.
ZafWindow *window1 = new ZafWindow(0, 0, 50, 10);
// Create a status bar.
ZafStatusBar *statusBar = new ZafStatusBar(0, 0, 80, 1);
// Add a string that occupies the entire status bar.
ZafString *bigString = new ZafString(0, 0, 0, "Big Sample

String", -1);
bigString->SetRegionType(ZAF_AVAILABLE_REGION);
statusBar->Add(bigString);
// Add the status bar to the window.
window1->Add(statusBar);

ZafElement
ClassID() ID_ZAF_STATUS_BAR

ClassName() "ZafStatusBar"

Member Initializations

470 Zinc Application Framework 5

Destructor virtual ~ZafStatusBar(void);

The destructor is used to free the memory associated with a ZafStatusBar
object. It chains to the ZafWindow, ZafList, ZafWindowObject and ZafEle-
ment destructors.

Generally, the programmer will not directly destroy a ZafStatusBar object,
since it is automatically destroyed when its parent window is destroyed. For
more information on child object deletion, see ZafWindow::~ZafWindow().

ZafStorage 471

ZafStorage

Inheritance ZafStorage : ZafFileSystem : ZafElement

Declaration #include <z_store.hpp>

Description ZafStorage and ZafStorageFile provide support for persistence in ZAF. Any
information may be portably stored with ZafStorage, and most ZAF classes
provide built-in support for persistence through ZafStorage.

ZafStorage may be thought of as a file system. There can be many ZafStorage-
Files and levels of subdirectories. ZafStorage allows ZafStorageFiles to be
copied, deleted, and moved across directories.

ZafStorage is typically used for persistent objects (usually created in Zinc
Designer) and for storing internationalization data. It is also commonly used
as a simple database.

Constructors All ZafStorage constructors initialize the member variables associated with an
instantiated ZafStorage object. Default values set by the ZafStorage follow.

ZafStorage(const ZafIChar *name, ZafFileMode mode =
ZAF_FILE_READWRITE);

This constructor initializes the members associated with a ZafStorage object
and opens the disk file specified by name. The file is opened using the mode
file mode (see the ZafFile constructor for more information). This constructor
chains to the ZafFileSystem and ZafElement constructors.

ChDir GetCWD Remove
Close MkDir Rename
Create Open RmDir
FindClose OpenCreate Save
FindFirst ReadOnly SaveAs
FindNext ReadWrite Version

Member Initializations

ZafStorage
Version() 0

472 Zinc Application Framework 5

ZafStorage(void);

This constructor initializes the members associated with a ZafStorage object
and opens a temporary storage object that is useful to store and retrieve tempo-
rary information. This constructor chains to the ZafFileSystem and ZafEle-
ment constructors.

Destructor virtual ~ZafStorage(void);

This virtual destructor is used to free the memory associated with an instanti-
ated ZafStorage object and chains to the ZafFileSystem and ZafElement
destructors.

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

ChDir virtual int ChDir(const ZafIChar *newPath, ZafStringID
stringID = ZAF_NULLP(ZafIChar), ZafNumberID numberID =
0);

ChDir() changes the current ZafStorage directory. newPath specifies the path
name of the directory to be changed to. stringID specifies the string identifica-
tion constant associated with the directory and numberID specifies the numeric
identification constant associated with the directory. ChDir() returns 0 on suc-
cess, and -1 on failure. Error() is also set to an appropriate value.

Close virtual void Close(ZafFile *file);

Close() closes file, which is a ZafStorageFile previously opened with Open().

Create bool Create(void) const;

If Create() is true, the ZafStorage object is created, even if it already exists.

FindClose virtual int FindClose(ZafFileInfoStruct &fileInfo);

FindClose() finalizes a find operation begun with FindFirst(). fileInfo is the
same ZafFileInfoStruct object used by FindFirst() and FindNext(), and mem-
ory allocated in fileInfo is deleted by FindClose(). FindClose() returns 0 if the
operation was successful; otherwise it returns -1.

ZafStorage 473

FindFirst virtual int FindFirst(ZafFileInfoStruct &fileInfo, const
ZafIChar *searchName, ZafStringID stringID =
ZAF_NULLP(ZafIChar), ZafNumberID numberID = 0);

FindFirst() initializes a find operation. FindFirst() searches for a ZafStorage-
File with the search pattern specified by searchName, or with the string identi-
fication constant specified by stringID, or with the numeric identification
constant specified by numberID. searchName may contain wildcards. For
example, "?" means any single character, and "*" means any string of charac-
ters. fileInfo is a ZafFileInfoStruct object allocated by the programmer, and
fileInfo is initialized by FindFirst(). FindFirst() returns 0 if a ZafStorageFile
was found; otherwise it returns -1.

FindNext virtual int FindNext(ZafFileInfoStruct &fileInfo, const
ZafIChar *searchName, ZafStringID stringID =
ZAF_NULLP(ZafIChar), ZafNumberID numberID = 0);

FindNext() continues a find operation initiated by FindFirst(). FindNext()
searches for the next ZafStorageFile with the same values for searchName,
stringID, or numberID as were specified in the call to FindFirst(). fileInfo is
the same ZafFileInfoStruct object passed to FindFirst(). FindNext() returns 0
if a ZafStorageFile was found; otherwise it returns -1.

GetCWD virtual int GetCWD(ZafIChar *pathName, int pathLength);

GetCWD() copies the path name of the current storage directory (without a ter-
minating path separating character) into the buffer specified by pathName.
pathName must be allocated by the programmer, and pathLength specifies the
number of ZafIChar characters in pathName. GetCWD() returns 0 on success,
and -1 on failure. Error() is also set to an appropriate value.

MkDir virtual int MkDir(const ZafIChar *pathName, ZafStringID
stringID = ZAF_NULLP(ZafIChar), ZafNumberID numberID =
0);

MkDir() creates a new storage directory. pathName specifies the path name of
the directory to be created. stringID specifies the string identification constant
associated with the directory and numberID specifies the numeric identifica-
tion constant associated with the directory. MkDir() returns 0 on success, and -
1 on failure. Error() is also set to an appropriate value.

474 Zinc Application Framework 5

Open virtual ZafFile *Open(const ZafIChar *fileName, const
ZafFileMode mode, ZafStringID stringID =
ZAF_NULLP(ZafIChar), ZafNumberID numberID = 0);

Open() opens the ZafStorageFile specified by fileName. mode specifies the
mode the ZafStorageFile is opened with (see the ZafFile constructor for more
information). stringID specifies the string identification constant associated
with the ZafStorageFile and numberID specifies the numeric identification
constant associated with the ZafStorageFile. A pointer to the ZafStorageFile
opened is returned.

OpenCreate bool OpenCreate(void) const;

If OpenCreate() is true, the ZafStorage object is opened if it exists, or it is cre-
ated if it doesn’t exist.

ReadOnly bool ReadOnly(void) const;

If ReadOnly() is true, the ZafStorage object and its ZafStorageFile objects can-
not be written.

ReadWrite bool ReadWrite(void) const;

If ReadWrite() is true, the ZafStorage object and its ZafStorageFile objects
may be read and written.

Remove virtual int Remove(const ZafIChar *fileName);

Remove() deletes the ZafStorageFile specified by name. Remove() returns 0
on success, and -1 on failure. Error() is also set to an appropriate value.

Rename virtual int Rename(const ZafIChar *oldName, const
ZafIChar *newName, ZafStringID stringID =
ZAF_NULLP(ZafIChar), ZafNumberID numberID = 0);

Rename() renames the storage file or directory specified by oldName to
newName. A non-null stringID specifies the string identification constant to
be copied to the file or directory. A non-zero numberID specifies the numeric
identification constant to be copied to the file or directory. If oldName and
newName are the same, stringID and numberID are still copied to the file or
directory (if not null and 0, respectively). Rename() returns 0 on success, and -
1 on failure. Error() is also set to an appropriate value.

ZafStorage 475

RmDir virtual int RmDir(const ZafIChar *pathName, bool
deleteContents = false);

RmDir() deletes a storage directory. pathName specifies the path name of the
directory to be deleted. If deleteContents is false, RmDir() will only delete the
directory if it is empty; otherwise, RmDir() will delete the contents of the
directory along with the directory itself. RmDir() returns 0 on success, and -1
on failure. Error() is also set to an appropriate value.

Save int Save(int backups = 0);

Save() causes the ZafStorage object’s Changed() ZafStorageFile objects to be
saved permanently. The ZafStorage object keeps its name for the operation.
backups specifies the number of backups the ZafStorage object keeps of itself.
Save() returns 0 on success, and -1 on failure. Error() is also set to an appropri-
ate value.

SaveAs int SaveAs(const ZafIChar *newName, int backups = 0);

SaveAs() changes its name to newName, then calls Save(), passing it backups.
SaveAs() returns whatever Save() returns.

Version ZafVersion Version(void) const;

ZafVersion SetVersion(ZafVersion version);

Version() returns the version of the ZafStorage object. The high byte contains
the major version number, and the low byte contains the minor version number.
SetVersion() may be called to change it, but SetVersion() is an advanced rou-
tine and should normally not be called by the programmer. The definition of
ZafVersion follows:

typedef ZafInt16 ZafVersion;

The following code snippet shows how to get the version of a ZafStorage
object:

// Make sure the version of the ZafStorage is at least 5.0.
ZafVersion version = storage->Version();
if ((version >> 8) < 5)
break;

476 Zinc Application Framework 5

ZafStorageFile

Inheritance ZafStorageFile : ZafFile : ZafElement

Declaration #include <z_store.hpp>

Description ZafStorage and ZafStorageFile provide support for persistence in ZAF. Any
information may be portably stored with ZafStorage, and most ZAF classes
provide built-in support for persistence through ZafStorage. ZafStorageFile is
used exclusively with ZafStorage for persistence support. See ZafStorage for
more information.

Constructor ZafStorageFile(ZafFileMode mode, char *initData =
ZAF_NULLP(char), int initDataSize = 0);

This constructor is protected, and is only called from ZafStorage::Open(). It
initializes the members associated with a ZafStorageFile object, and chains to
the ZafFile and ZafElement constructors. mode specifies the mode in which
the storage file is opened (see the ZafFile constructor for more information).
initData specifies the data that the ZafStorageFile object is initialized with, and
initDataSize specifies the number of bytes in initData.

Destructor virtual ~ZafStorageFile(void);

This virtual destructor is protected, and is only called from ZafStor-
age::Close(). It frees the memory associated with an instantiated ZafStorage-
File object and chains to the ZafFile and ZafElement destructors.

Members bool Changed(void);
Changed Changed() returns true if the contents of the storage file have changed since it

was opened; otherwise it returns false.

Data const char *Data(void);

Data() returns a pointer the internal data buffer for the storage file. This is an
advanced function, and should not be called by the programmer.

Length virtual ZafOffset Length(void) const;

Length() returns the length of the storage file in bytes, or it returns -1 if an error
occurs.

Changed ReadData WriteData
Data Seek
Length Tell

ZafStorageFile 477

ReadData virtual int ReadData(void *buffer, int size);

ReadData() reads data from the storage file. The data is read into buffer, which
must have already been allocated by the programmer, and size specifies the
number of bytes to read. On success, ReadData() returns the number of bytes
read into buffer; otherwise zero is returned. Error() is also set to an appropriate
value.

Seek virtual int Seek(ZafOffset offset, ZafSeek location);

Seek() moves the file pointer of the storage file. location specifies the position
in the file from where offset specifies. Possible values of location and what
they mean follow:

Seek() returns 0 if successful, and -1 if an error occurs (in which case Error() is
also set appropriately).

Tell virtual ZafOffset Tell(void) const;

Tell() returns the current offset of the file pointer in the storage file, or it
returns -1 if an error occurs.

WriteData virtual int WriteData(const void *buffer, int size);

WriteData() writes data to a storage file. buffer is a pointer to the data to be
written, and size specifies the number of bytes to write. On success, Write-
Data() returns the number of bytes written; otherwise zero is returned. Error()
is also set to an appropriate value.

ZafSeek ZafOffset

ZAF_SEEK_START The offset is measured from the beginning of
the file toward the end of the file

ZAF_SEEK_CURRENT A positive offset is measured from the current
file pointer, and a negative offset is measured
toward the beginning of the file.

ZAF_SEEK_END The offset is measured from the end of the file
toward the beginning of the file

478 Zinc Application Framework 5

ZafString

Inheritance ZafString : ZafWindowObject : ZafElement

Declaration #include <z_str1.hpp>

Description The ZafString object is a single-line text object that allows user input through
the keyboard. Other user interaction is also supported such as copy/cut/paste.
Several formatting options are available in ZafString objects such as password,
upper-case, lower-case, and variable-name.

The ZafString class is used as a base class for other single-line text classes such
as ZafFormattedString, ZafInteger, and ZafReal. These classes inherit much of
the base functionality provided by ZafString.

Constructors All ZafString constructors initialize the member variables associated with an
instantiated ZafString object. Default values set by the ZafString follow, as
well as base class values when overridden by ZafString.

AllowInvalid LowerCase SetSelected
AutoClear OutputFormatData StringData
CursorOffset OutputFormatText Text
Decrement Password Unanswered
DefaultValidateFunction RangeData UpperCase
Event RangeText Validate
HzJustify SetInputFormat VariableName
Increment SetOutputFormat ViewOnly
InputFormatData SetRange
Invalid ReportInvalid

Member Initializations

ZafString

AllowInvalid() false

AutoClear() true

HzJustify() ZAF_HZ_LEFT

InputFormatData() null

Invalid() false

LowerCase() false

OutputFormatData() null

Password() false

RangeData() null

ZafString 479

ZafString(int left, int top, int width, const ZafIChar
*text, int maxLength);

This constructor is useful in straight-code situations, particularly to have the
ZafString object to create, maintain and destroy its own ZafStringData object
automatically. The left and top parameters specify the position where the left
and top of the object will be placed on its parent, respectively. The width
parameter specifies the width of the object. All values are specified in cell
coordinates by default, but may be specified using another coordinate system if
desired. text is the string that initially appears in the new ZafString object, and
maxLength is passed to the ZafStringData constructor, the maximum number
of characters the user may type into the field (see the ZafStringData construc-
tor for more information). If you pass -1 in for the maxLength parameter, the
number of characters the user may type is not restricted.

ZafString(int left, int top, int width, ZafStringData
*stringData);

This constructor is useful in straight-code situations where a ZafStringData
object has already been created. This constructor may be used to maintain data
pieces yourself, rather than have the ZafString class create and maintain the
data pieces automatically. For example, to maintain a database of ZafString-
Data objects and tie them into ZafString objects, maintain your own ZafString-

ReportInvalid() true

StringData() null

Unanswered() false

UpperCase() false

VariableName() false

ViewOnly() false

ZafWindowObject

Bordered() true

memberUserFunction ZafString::DefaultValidateFunction

zafRegion.bottom top

ZafElement

ClassID() ID_ZAF_STRING

ClassName() "ZafString"

Member Initializations

480 Zinc Application Framework 5

Data objects and create ZafString objects using your ZafStringData objects by
passing them into the stringData parameter of this constructor. For more infor-
mation on using ZafStringData objects, see ZafStringData. The left, top and
width parameters are the same as the previous constructor.

ZafString(const ZafString ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafString object and copies the object’s informa-
tion. If the data objects are StaticData() then the new ZafString object points to
the original data objects, otherwise a copy is made for the new ZafString
object. This allows a programmer to use static data for more than one Zaf-
String object.

ZafString(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Sample ZafString creation techniques follow:

// Create a sample window with string objects.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);
// Create strings and pass in the text directly.
window1->Add(new ZafString(0, 1, 25, "String1", 25));
window1->Add(new ZafString(0, 2, 25, "String2", 25));
...
// Create a sample window with string objects.
ZafWindow *window2 = new ZafWindow(10, 10, 40, 10);
// Create string data objects.
ZafStringData *stringData1 = new ZafStringData("String1", 25);
ZafStringData *stringData2 = new ZafStringData("String2", 25);
// Create strings that use the data previously created.
window2->Add(new ZafString(0, 1, 25, stringData1));
window2->Add(new ZafString(0, 2, 25, stringData2));

Destructor virtual ~ZafString(void);

The destructor is used to free the memory associated with a ZafString object,
including all the data object pieces (such as StringData()) that are Destroy-
able(). It chains to the ZafWindowObject and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafString object, since it
is automatically destroyed when its parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

ZafString 481

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

AllowInvalid bool AllowInvalid(void) const;

virtual bool SetAllowInvalid(bool allowInvalid);

AllowInvalid() is used in classes derived from ZafString that require valida-
tion, such as ZafBignum and ZafTime. If AllowInvalid() is false when the data
is validated during a focus change, the field will not be allowed to lose focus
(such as when the end user uses the <Tab> key). The default value of this
attribute is false, but the user may call SetAllowInvalid() to change it.

AutoClear bool AutoClear(void) const;

virtual bool SetAutoClear(bool autoClear);

If AutoClear() is true, the string becomes entirely highlighted when the object
gains focus, so that whatever the user types replaces the current text. The
default value of this attribute is true, but the user may call SetAutoClear() to
change it.

CursorOffset int CursorOffset(void) const;

virtual ZafError SetCursorOffset(int position);

CursorOffset() returns the character offset of the cursor (the insertion point) in
the ZafString object. This offset is zero-based, so the first character offset in
the ZafString is 0. The user may call SetCursorOffset() to reposition the cursor
to position in the ZafString. For example:

// Move the cursor to the beginning of the string.
object->SetCursorOffset(0);

Decrement virtual ZafError Decrement(ZafData *data, bool wrapData =
false);

Decrement() does nothing by default in the ZafString class, but is overloaded
by other classes such as ZafDate and ZafInteger to decrement values. The cor-
responding data object is decremented via the -= operator by the amount speci-
fied in data. wrapData specifies whether or not to allow wrapping at the range
minimum. If wrapData is true and the new value would be less than the allow-

482 Zinc Application Framework 5

able range minimum, the new value will be the range maximum; otherwise the
new value will be the range minimum. The visual object is updated accord-
ingly. If data is not of the correct class, nothing happens. For example, data
for a ZafDate object must be a ZafDateData object.

DefaultValidate-
Function

ZafEventType DefaultValidateFunction(const ZafEventStruct
&event, ZafEventType ccode);

DefaultValidateFunction() is automatically called when a ZafString gets
L_SELECT or N_NON_CURRENT events. The programmer should never
call DefaultValidateFunction() directly. DefaultValidateFunction() calls Vali-
date(), which does nothing by default in the ZafString class, but is overloaded
by other classes that require validation, such as ZafDate and ZafInteger. event
is the event that triggered the call to DefaultValidateFunction(), and ccode is
the event type that triggered the call.

The return value for DefaultValidateFunction() is an error code indicating the
result of the field validation. The return value is ZAF_ERROR_NONE if vali-
dation succeeded, and another value of the enumeration ZafError appropriate
to the derived class otherwise. For example,
ZAF_ERROR_OUT_OF_RANGE may be returned by a ZafDate object if a
date out of the required range was entered.

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events sent to the ZafString object,
whether by processing the events itself, or by passing them to ZafWindowOb-
ject::Event() for base class processing. See ZafWindowObject for more infor-
mation.

In addition to those handled by its base classes, ZafString handles the follow-
ing events:

Event Description

S_COPY causes the object to copy its selected data to the clip-
board

S_CUT causes the object to cut its selected data to the clipboard

S_PASTE causes the object to paste the clipboard’s data to its cur-
rent cursor position, replacing any selected data

S_COPY_DATA causes the object to copy event.windowObject's String-
Data() if event.windowObject is a ZafString object

ZafString 483

HzJustify ZafHzJustify HzJustify(void) const;

virtual ZafHzJustify SetHzJustify(ZafHzJustify
hzJustify);

HzJustify() controls the string’s horizontal justification, and is ZAF_HZ_LEFT
by default. The user may call SetHzJustify() to change it to ZAF_HZ_RIGHT
or ZAF_HZ_CENTER.

Increment virtual ZafError Increment(ZafData *data, bool wrapData =
false);

Increment() does nothing by default in the ZafString class, but is overloaded by
other classes such as ZafDate and ZafInteger to increment values. The corre-
sponding data object is incremented via the += operator by the amount speci-
fied in data. wrapData specifies whether or not to allow wrapping at the range
maximum. If wrapData is true and the new value would be greater than the
allowable range maximum, the new value will be the range minimum; other-
wise the new value will be the range maximum. The visual object is updated
accordingly. If data is not of the correct class, nothing happens. For example,
data for a ZafDate object must be a ZafDateData object.

InputFormatData ZafStringData *InputFormatData(void) const;
SetInputFormat ZafError SetInputFormat(const ZafIChar *format);

virtual ZafError SetInputFormatData(ZafStringData
*format);

The InputFormatData() portion of ZafStringData is used in use input validation
for classes derived from ZafString, such as ZafDate and ZafFormattedString.
InputFormatData() returns a pointer to the actual ZafStringData object that
stores the input format data. InputFormatText() returns the string portion of
the input format data.

The programmer may set the InputFormatData() with SetInputFormat() or Set-
InputFormatData(). SetInputFormat() is useful for passing in a simple string to
be used in either modifying an existing input format data object, or automati-
cally creating a new input format data object using the string you pass in. Set-
InputFormatData() is useful when you want ZafString to use an existing input

S_SET_DATA causes the object to create a new StringData() object,
then copy into it event.windowObject's StringData() if
event.windowObject is non-null and is a ZafString
object

Event Description

484 Zinc Application Framework 5

format data object. SetInputFormatData() will delete the previous InputFor-
matData() object if it is Destroyable() and no other object uses it.

InputFormatData() returns the string data object used for the input formatting
and InputFormatText() returns the text contained in the string data object. Set-
InputFormat() and SetInputFormatData() generally return
ZAF_ERROR_NONE. For more information on format string arguments and
what they mean, see ZafStringData and derived ZafStrings (ZafBignum,
ZafInteger, ZafReal, ZafDate, ZafTime, and ZafUTime). Sample usage fol-
lows:

// Get the input format two different ways.
const ZafStringData *inputFormat = object->InputFormatData();
const ZafIChar *inputText = object->InputFormatText();
...
// Set the input format two different ways.
ZafDate *date1 = new ZafDate(0, 0, 15);
ZafDate *date2 = new ZafDate(0, 1, 15);
date1->SetInputFormat("%m/%d/%y");
ZafStringData *inputFormatData = new ZafStringData("%m/%d/%y");
date2->SetInputFormatData(inputFormatData);

Invalid bool Invalid(void) const;

virtual bool SetInvalid(bool invalid);

Invalid() is used in classes derived from ZafString that require validation, such
as ZafBignum and ZafTime. If Invalid() is true, the user is forced to enter a
valid value into the field. The default value of this attribute is false, but the
user may call SetInvalid() to change it.

As an example, if a ZafInteger has a range of 1..100 and initially has the value
0, SetInvalid(true) would be called so that the user must enter a value in the
range 1..100. Invalid() may be used in any scenario where a field is restricted
by validation, whether the validation be automatically handled by ZAF or by
another validation method that the programmer has implemented. After the
user has entered a valid value into the field, Invalid() will be reset to false auto-
matically by ZAF.

For example:

// Create the object with invalid data and force the user to
// enter something valid.
ZafInteger *int1 = new ZafInteger(0, 0, 15, 0);
int1->SetInvalid(true);
int1->SetRange("1..100");

ZafString 485

LowerCase bool LowerCase(void) const;

virtual bool SetLowerCase(bool lowerCase);

If LowerCase() is true, any upper-case characters typed into the ZafString field
will be converted to lower-case. Any characters the programmer directly
places into the ZafString’s StringData() will be displayed as lower-case, but not
converted. LowerCase() is false by default, but the user may call SetLower-
Case() to change it. The programmer should never set both LowerCase() and
UpperCase() on the same object at the same time, as the result is undefined.

OutputFormatData ZafStringData *OutputFormatData(void) const;
OutputFormatText const ZafIChar *OutputFormatText(void) const;
SetOutputFormat ZafError SetOutputFormat(const ZafIChar *format);

virtual ZafError SetOutputFormatData(ZafStringData
*format);

The OutputFormatData() piece of ZafString is used to display the user’s input
in a uniform format, for classes derived from ZafString—such as ZafDate and
ZafFormattedString. OutputFormatData() returns a pointer to the actual Zaf-
StringData object that stores the output format data. OutputFormatText()
returns the string portion of the output format data.

The programmer may set the output format data with SetOutputFormat() or
SetOutputFormatData(). SetOutputFormat() is useful for passing in a simple
string to be used in either modifying an existing output format data object, or
automatically creating an output format data object using the string you pass
in. SetOutputFormatData() is useful when you want ZafString to use an exist-
ing output format data object. SetOutputFormatData() will delete the previous
OutputFormatData() object if it is Destroyable() and no other object uses it.

Derived classes such as ZafDate and ZafTime may concatenate several format
strings separated with ‘\n’ characters in OutputFormatText(). For example, a
sample OutputFormatText() for ZafDate may be:

"%m/%d/%y\n%d/%m/%y\n%m-%d-%y\n%d-%m-%y".

For more information on format string arguments and what they mean, see Zaf-
StringData and derived ZafStrings (ZafBignum, ZafInteger, ZafReal, ZafDate,
ZafTime, and ZafUTime). Set SetInputFormat() for sample code.

Format Argument Substitution

%c ZafIChar character

%s ZafIChar array (string)

486 Zinc Application Framework 5

Password bool Password(void) const;

virtual bool SetPassword(bool password);

If Password() is true, all characters typed into the ZafString field will be hidden
by appearing as asterisk or bullet characters. Internally, however, the data will
accurately represent what was typed in. Password() is false by default, but the
user may call SetPassword() to change it. Note: if drag-and-drop is enabled on
a Password() ZafString, the user may drop away from it and reveal the actual
contents.

RangeData ZafStringData *RangeData(void) const;
RangeText const ZafIChar *RangeText(void) const;
SetRange ZafError SetRange(const ZafIChar *range);

virtual ZafError SetRangeData(ZafStringData *range);

The RangeData() portion of ZafString is used to validate that the user’s input
matches a specified range of values that are valid for the object, for classes
derived from ZafString such as ZafDate and ZafFormattedString. RangeData()
returns a pointer to the actual ZafStringData object that stores the range data.
RangeText() returns the string portion of the range data.

The programmer may set the range data with SetRange() or SetRangeData().
SetRange() is useful for passing in a simple string to be used in either modify-
ing an existing range data object, or automatically creating a range data object
using the string you pass in. SetRangeData() is useful when you want Zaf-
String to use an existing range data object. SetRangeData() will delete the pre-
vious RangeData() object if it is Destroyable() and no other object uses it.

Sample usage follows:

// Get the range two different ways.
const ZafStringData *rangeFormat = object->RangeData();
const ZafIChar *rangeText = object->RangeText();
...
// Set the range two different ways.
ZafInteger *myInt = new ZafInteger(10);
ZafReal *myReal = new ZafReal(10.0);
myInt->SetRange("1..100");
ZafStringData *realRange = new ZafStringData("1.0..100.0");
myReal->SetRangeData(realRange);

ZafString 487

ReportInvalid bool ReportInvalid(void) const;

virtual bool SetReportInvalid(bool reportInvalid);

ReportInvalid() is used in classes derived from ZafString that require valida-
tion, such as ZafBignum and ZafTime. If ReportInvalid() is true when the data
is validated in Validate(), an error window is presented to the end user. The
default value of this attribute is true, but the user may call SetReportInvalid()
to change it.

SetSelected virtual bool SetSelected(bool selected);

This overloaded function adds to the functionality of ZafWindowObject::Set-
Selected() by performing platform-specific display operations such as display-
ing the contents of the string in a “selected” state.

StringData ZafStringData *StringData(void) const;

virtual ZafError SetStringData(ZafStringData *string);

The StringData() object is where the actual data is stored for the ZafString
object. The StringData() piece may be shared among several ZafString
objects, or it may belong to a single ZafString object. If shared among several
ZafString objects, all the associated ZafString objects will be updated when the
StringData() piece changes. SetStringData() may be used to associate a String-
Data() object with a ZafString object. For more information on data sharing in
ZAF, see ZafDataManager. SetStringData() will delete the previous String-
Data() object if it is Destroyable() and no other object uses it.

The return value for StringData() is a pointer to the StringData() object associ-
ated with the ZafString object. The return value for SetStringData() is nor-
mally ZAF_ERROR_NONE. The following code shows the proper use of
these functions:

// Get the data.
const ZafStringData *data = string->StringData();
...
// Add the string data.
ZafStringData *newData = new ZafStringData("String", 25);
string->SetStringData(newData);

Text virtual const ZafIChar *Text(void);

virtual ZafError SetText(const ZafIChar *text);

The textual data of a ZafString (contained in the StringData() object) may be
returned or set with Text() and SetText(). These functions provide simple

488 Zinc Application Framework 5

accessibility to the StringData() of a ZafString, and may be used if the pro-
grammer does not wish to interact with the data portion of the object.

The return value for Text() is a pointer to the textual information in the data
object of a ZafString. The return value for SetText() is normally
ZAF_ERROR_NONE. The following code shows the proper use of these
functions:

// Get the text.
const ZafIChar *text = string->Text();
...
// Set the new text.
string->SetText("New Text");

Unanswered bool Unanswered(void) const;

virtual bool SetUnanswered(bool unanswered);

If Unanswered() is true, the ZafString field will be initially blank. As soon as
text is entered into the ZafString object—either by calling SetText() or by the
end user entering data—the Unanswered() attribute is set to false. Unan-
swered() is false by default, but the user may call SetUnanswered() to make
changes. Calling SetUnanswered(true) will clear the contents of the string
object and its StringData().

UpperCase bool UpperCase(void) const;

virtual bool SetUpperCase(bool upperCase);

If UpperCase() is true, any lower-case characters typed into the ZafString field
will be converted to upper-case. Any characters the programmer directly
places into the ZafString’s StringData() will be displayed as upper-case, but not
converted. UpperCase() is false by default, but the user may call SetUpper-
Case() make changes. The programmer should never set both LowerCase()
and UpperCase() on the same object at the same time, as the result is unde-
fined.

Validate virtual ZafError Validate(bool processError = true);

Validate() does nothing by default in the ZafString class, but is overloaded by
other classes such as ZafDate and ZafInteger that require validation. Validate()
is called by DefaultValidateFunction(), but may be called in user functions for
custom validation (see ZafWindowObject::UserFunction()). If processError is
true and an error occurs, Validate() causes ZafErrorSystem to report the error;
otherwise Validate() simply returns the appropriate error code. If Validate() is
called as a result of a focus change (such as N_CURRENT and

ZafString 489

N_NON_CURRENT messages), processError must be false so that an error
window does not cause an untimely focus change to occur.

The return value for Validate() is an error code indicating the result of the field
validation. The return value is ZAF_ERROR_NONE if validation succeeded,
and another value of the enumeration ZafError appropriate to the derived class
otherwise. For example, ZAF_ERROR_OUT_OF_RANGE may be returned
by a ZafDate object if a date out of the required range was entered.

VariableName bool VariableName(void) const;

virtual bool SetVariableName(bool variableName);

If VariableName() is true, all space characters typed into the ZafString field
will be converted to underscore (‘_’) characters. Any space characters the pro-
grammer directly places into the ZafString’s StringData() will be converted to
underscores. VariableName() is false by default, but the user may call SetVari-
ableName() to change it.

ViewOnly bool ViewOnly(void) const;

virtual bool SetViewOnly(bool viewOnly);

A ViewOnly() ZafString object may not be edited, but may be the current
object of a window, may be copied into the clipboard, and arrow keys may be
used to navigate it. ViewOnly() is false by default, but the user may call Set-
ViewOnly() to change it.

490 Zinc Application Framework 5

ZafStringData

Inheritance ZafStringData : ZafFormatData : ZafData :
ZafNotification, ZafElement

Declaration #include <z_str.hpp>

Description ZafStringData objects can be used to store and conveniently manipulate char-
acter-based data, including Unicode (double-byte) characters.

ZafStringData combines string encapsulation with data and object notification
from ZafData. It is most often used in conjunction with user interface objects
such as ZafString, ZafFormattedString, ZafText and ZafButton but may be
used as a stand-alone object if desired.

Multi-line text stored in a ZafStringData object for use by the native environ-
ment (as when presented visually to the end user) contains carriage return/line
feed ("\r\n") pairs for portability. When passing multi-line text to a ZafString-
Data object via the constructor or the SetText() methods for use by the native
environment, "\r\n" pairs should be used. Any multi-line text passed to the
native environment by ZAF is converted internally by the libraries if needed,
and any multi-line text retrieved from the native environment is converted
internally by the libraries if needed to maintain "\r\n" pairs. For example, Unix
strings utilize only the ’\n’ character to denote the end of a line, and Macintosh
strings utilize only the ’\r’ character to denote the end of a line. ZAF converts
these strings when necessary.

All ZafData objects may make use of printf-style formatting and parsing argu-
ments during string operations. Refer to user interface object reference for
descriptions of the format arguments available for each data type. (For exam-
ple, see ZafString for format arguments available when displaying a ZafString-
Data.)

Numerous overloaded operators are available to facilitate manipulation of Zaf-
StringData objects.

Append Remove operator +
Char Replace operator +=
Clear StaticData operator <
DynamicText SetOSText operator <=
DynamicOSText SetOSWText operator =
DynamicOSWText Text operator ==
Compare ZafIChar operator >
Insert operator - operator >=
Length operator -= operator []
MaxLength operator !=

ZafStringData 491

Constructors ZafStringData constructors initialize the member variables associated with a
new ZafStringData object and allocate space to hold the string data.

The default values set by ZafStringData follow, if they are overridden from
those set by base class constructors:

ZafStringData(bool staticData = false);

This constructor allocates a ZafStringData and initializes its contents to null. If
staticData is true its internal string array is not deleted when the ZafStringData
is destroyed.

ZafStringData(const ZafIChar *value, int maxLength = -1,
bool staticData = false);

ZafStringData(const char *value, int maxLength = -1, bool
staticData = false);

These constructors allocate a ZafStringData instance and initialize its contents
to value. The data is automatically truncated at maxLength unless maxLength
is -1 which allows the ZafStringData to dynamically allocate the minimum
space necessary to store value. Refer to the destructor and StaticData() for
more information about staticData.

Note: The third constructor is available for use with Unicode since ZafIChar
defaults to be a char in ISO mode.

ZafStringData(const ZafStringData ©);

This constructor is the copy constructor, which allocates a new ZafStringData
instance and copies all member data from copy.

Member Initializations

ZafStringData
MaxLength() -1 (varies by constructor)

StaticData() false (varies by constructor)

Text() "" (varies by constructor)

ZafElement
ClassID() ID_ZAF_STRING_DATA

ClassName() "ZafStringData"

492 Zinc Application Framework 5

ZafStringData(const ZafIChar *name, ZafDataPersistence
&persist);

This constructor is the persistent constructor. It allocates a new ZafStringData
instance and reads most member data from directory name in the persistent
data file referred to by persist. The StringID() of the new data is name.

// Sample ZafStringData creation techniques
ZafScrollData string1("Hello World!");
ZafStringData copyString = string1;
ZafStringData emptyString;

Destructor virtual ~ZafStringData(void);

The destructor is used to free the memory associated with a ZafStringData
object. If StaticData() is true the string array associated with the ZafStringData
object is not freed.

Members virtual ZafStringData &Append(const ZafIChar *text);
Append This function concatenates text onto the end of the string. If the length of the

old string plus the length of the string that is being appended is greater than
MaxLength() then the string is truncated.

// Create the string-data.
ZafStringData hello("Hello world", 20);
printf("String: %s\n", hello.Text());
...
// Append to the object’s contents.
hello.Append("!!!");
printf("String: %s\n", hello.Text());
==========
String: Hello world
String: Hello world!!!

Char ZafIChar Char(int offset) const;

virtual ZafError SetChar(int offset, ZafIChar value, bool
ignoreNotification = true);

Char() returns the character at the zero-based index offset.

SetChar() replaces one character at position offset with value. If ignoreNotifi-
cation is true then the ZafStringData object will not notify the items in its noti-
fication list about changes made during this operation.

Clear virtual Void Clear(void);

ZafStringData 493

Clear() sets the Text() portion of the specified object to the empty string ("").

Compare virtual int Compare(const ZafIChar *text, bool
caselessCompare = false) const;

Compare() provides a safe method for performing string comparisons on Zaf-
StringData objects. If caselessCompare is true, the strings are compared with-
out regard for case. The following code shows the proper use of, and results
from performing a Compare() operation.

// Create the string-data.
ZafStringData hello("Hello World");

if (!hello.Compare("hello world")
printf("#1: The strings are equal.\n");

if (!hello.Compare("hello world", true)
printf("#2: The strings are equal.\n");

==========

#2: The strings are equal.

DynamicText ZafIChar *DynamicText(void) const;
DynamicOSText char *DynamicOSText(void) const;
DynamicOSWText wchar_t *DynamicOSWText(void) const;

These functions duplicate the string contained in ZafStringData and return a
pointer to the duplicate. They are useful in situations when the programmer
requires a pointer to a string that may be safely deleted (by another function,
for example). These functions return the result in different formats.

DynamicOSText() and DynamicOSWText() convert "\r\n" pairs in multi-line
text to what the native environment expects if needed, so the return value may
be passed directly to the native environment. For example, on Unix the "\r\n"
pairs are converted to ’\n’ and on Macintosh the "\r\n" pairs are converted to
’\r’.

DynamicOSWText() is only available in Unicode mode. It converts the data to
a wide character array in the native OS codeset.

494 Zinc Application Framework 5

Insert virtual ZafStringData &Insert(int offset, const ZafIChar
*text, int length = -1);

Insert() will insert the string text into a ZafStringData object at the zero-based
index offset. length specifies the maximum length of the resulting ZafString-
Data. The following code shows the use of the Insert() operation.

// Create the string-data.
ZafStringData hello("Hello world");
printf("String: %s\n", hello.Text());
...
// Insert a string into the object’s contents.
hello.Insert(6, "to the ");
printf("String: %s\n", hello.Text());
==========
String: Hello world
String: Hello to the world

Length int Length(void) const;

Length() returns the number of characters in the ZafStringData regardless of
MaxLength().

MaxLength int MaxLength(void) const;

virtual int SetMaxLength(int maxLength);

MaxLength() returns the maximum length of the string that may be stored in
this ZafStringData. If the maximum length is dynamic (allowing ZAF to real-
locate the buffer as the string length changes) MaxLength() returns -1.

SetMaxLength() sets the internal maximum length allowed by the ZafString-
Data object. If maxLength is greater than the allocated buffer and the object
does not have static data then the object will allocate a larger buffer and copy
the data. If maxLength is -1 the ZafStringData will dynamically allocate the
minimum buffer necessary to hold its data.

Remove virtual ZafString &Remove(int offset, int size);

virtual ZafString &Remove(const ZafIChar *text);

These functions remove text from the ZafStringData object. The first method
removes size characters beginning with the character at zero-based offset. The
second form removes the first occurrence of text. The following code shows
the use of the Remove() methods.

ZafStringData 495

// Create the string-data.
ZafStringData hello("Hello to the world");
printf("String: %s\n", hello.Text());
...
// Remove text from the object’s contents.
hello.Remove("the ");
printf("String: %s\n", hello.Text());
...
// Remove text from the object’s contents.
hello.Remove(6, 3);
printf("String: %s\n", hello.Text());

==========
String: Hello to the world
String: Hello to world
String: Hello world

Replace virtual ZafStringData &Replace(int offset, int size,
const ZafIChar *text, int length = -1);

This function combines the functionality of Remove() and Insert() to replace
text in a ZafStringData object. See Remove() and Insert() for description of
parameters. The following code demonstrates the proper use of the Replace()
function.

// Create the string-data.
ZafStringData hello("Hello world");
printf("String: %s\n", hello.Text());
...
// Insert a string into the object’s contents.
hello.Replace(6, 5, "Universe");
printf("String: %s\n", hello.Text());

==========
String: Hello world
String: Hello Universe

SetOSText virtual ZafError SetOSText(const char *text);
SetOSWText ZafError SetOSWText(const wchar_t *text);

SetOSText() converts text from the internal representation used by the native
OS to the portable representation used by ZAF. These functions are used inter-
nally by ZAF and will generally not be called by the programmer.

SetOSText() and SetOSWText() convert native environment end-of-line repre-
sentations in multi-line text to "\r\n" pairs if needed, so the new value of the

496 Zinc Application Framework 5

ZafStringData object is portable. For example, on Unix the ’\n’ characters are
converted to "\r\n" pairs and on Macintosh the ’\r’ characters are converted to
"\r\n" pairs.

SetOSWText() is only available in Unicode mode.

StaticData bool StaticData(void) const;

virtual bool SetStaticData(bool staticData);

If StaticData() is true, the string array associated with a ZafStringData object
will not be deleted when the ZafStringData is destroyed or reallocated. If Set-
StaticData(false) while StaticData()==true, the object will make a copy of the
data it was pointing to.

Text const ZafIChar *Text(void) const;

virtual ZafError SetText(const ZafIChar *text);

virtual ZafError SetText(const ZafIChar *text, int
maxLength);

virtual ZafError SetText(const ZafStringData &string);

virtual ZafError SetText(const ZafIChar *buffer, const
ZafIChar *format);

Text() returns the internal pointer to the string array maintained by ZafString-
Data. The contents of this array should not be directly manipulated.

SetText() functions set the text of the ZafStringData object. For example:

// Create the string-data.
ZafStringData hello("", 20);
printf("String: %s\n", hello.Text());
...
// Append to the object’s contents.
hello.SetText("Hello world";
printf("String: %s\n", hello.Text());
==========
String:
String: Hello world

ZafIChar operator const ZafIChar *() const { return value; }

ZafIChar() provides a useful alternative to Text(). Refer to Text() for more
information. For example:

// Create a string data.
ZafStringData string ("mystring");

ZafStringData 497

// The following test uses the overloaded operator
if (string)
DoSomething();

operator - ZafStringData operator-(const ZafStringData &string1,
const ZafStringData &string2);

ZafStringData operator-(const ZafStringData &string,
const ZafIChar *value);

ZafStringData operator-(const ZafIChar *value, const
ZafStringData &string);

These operators create and return a new ZafStringData object that is the equiv-
alent of the first string with the second string removed. For more information
see Remove().

operator -= ZafStringData &operator-=(const ZafStringData &value);

ZafStringData &operator-=(const ZafIChar *value);

These operators provide shortcuts to using the Remove methods. For more
information see Remove().

operator != bool operator!=(const ZafStringData &string1, const
ZafStringData &string2);

bool operator!=(const ZafStringData &string, const
ZafIChar *value);

bool operator!=(const ZafIChar *value, const
ZafStringData &string);

These operators use the Compare method of ZafStringData to determine if the
two strings are different. For more information see Compare().

operator + ZafStringData operator+(const ZafStringData &string1,
const ZafStringData &string2);

ZafStringData operator+(const ZafStringData &string,
const ZafIChar *value);

ZafStringData operator+(const ZafStringData &string,
const ZafIChar value);

ZafStringData operator+(const ZafIChar *value, const
ZafStringData &string);

ZafStringData operator+(const ZafIChar value, const
ZafStringData &string);

498 Zinc Application Framework 5

These operators create and return a new ZafStringData object that is the equiv-
alent of the first string (or character) with the second string (or character)
appended to it. For more information see Append().

operator += ZafStringData &operator+=(const ZafStringData &value);

ZafStringData &operator+=(const ZafIChar value);

ZafStringData &operator+=(const ZafIChar *value);

These operators provide shortcuts to using the Append() methods. For more
information see Append(). The second of the three operators provides support
for adding a single ZafIChar to the end of the string data.

operator < bool operator<(const ZafStringData &string1, const
ZafStringData &string2);

bool operator<(const ZafStringData &string, const
ZafIChar *value);

bool operator<(const ZafIChar *value, const ZafStringData
&string);

These operators use the Compare method of ZafStringData to determine if the
first string is alphabetically before the second string. For more information see
Compare().

operator <= bool operator<=(const ZafStringData &string1, const
ZafStringData &string2);

bool operator<=(const ZafStringData &string, const
ZafIChar *value);

bool operator<=(const ZafIChar *value, const
ZafStringData &string);

These operators use the Compare method of ZafStringData to determine if the
first string is alphabetically before the second string, or if the strings are equiv-
alent. For more information see Compare().

operator = ZafStringData &operator=(const ZafStringData &value);

ZafStringData &operator=(const ZafIChar *value);

ZafStringData &operator=(const ZafIChar value);

These operators provide shortcuts to using the SetText() methods. For more
information see SetText().

ZafStringData 499

Note that these operators are different than other assignment operators in that
they return const values.

operator == bool operator==(const ZafStringData &string1, const
ZafStringData &string2);

bool operator==(const ZafStringData &string, const
ZafIChar *value);

bool operator==(const ZafIChar *value, const
ZafStringData &string);

These operators use the Compare method of ZafStringData to determine if the
two strings are equivalent. For more information see Compare().

operator > bool operator>(const ZafStringData &string1, const
ZafStringData &string2);

bool operator>(const ZafStringData &string, const
ZafIChar *value);

bool operator>(const ZafIChar *value, const ZafStringData
&string);

These operators use the Compare method of ZafStringData to determine if the
first string is alphabetically after the second string. For more information see
Compare().

operator >= bool operator>=(const ZafStringData &string1, const
ZafStringData &string2);

bool operator>=(const ZafStringData &string, const
ZafIChar *value);

bool operator>=(const ZafIChar *value, const
ZafStringData &string);

These operators use the Compare method of ZafStringData to determine if the
first string is alphabetically after the second string, or if the strings are equiva-
lent. For more information see Compare().

operator [] ZafIChar operator[](int offset) const;

ZafIChar &operator[](int offset);

These operators provide a method of accessing individual characters in the
string contained in the string data object. offset is the zero-based index of the
character to access. The following code shows a use of the operators.

500 Zinc Application Framework 5

// Create the string-data.
ZafStringData hello("Hello world.", 20);
printf("String: %s\n", hello.Text());
...
// Append to the object’s contents.
hello[11] = ‘!’;
printf("String: %s\n", hello.Text());
==========
String: Hello world.
String: Hello world!

ZafSystemButton 501

ZafSystemButton

Inheritance ZafSystemButton : ZafButton : ZafWindowObject :
ZafElement

Declaration #include <z_sys.hpp>

Description The ZafSystemButton object may only be added to a ZafWindow. The ZafSys-
temButton is the system button decoration on a ZafWindow, and is generally
drawn by the environment. The ZafSystemButton object is used to close the
parent window and on environments that support it, to present a system menu
with other functions available such as move and size.

Constructors All ZafSystemButton constructors initialize the member variables associated
with an instantiated ZafSystemButton object. The default values set by the
ZafSystemButton and its base class constructors follow, if they differ from
those set by the base class constructor, or if a blocking function is implemented
in ZafSystemButton. “†” Indicates a blocking function that prevents changes
to the attribute in this class.

Add Get Subtract
Count Index SystemButtonType
Current Last operator +
Destroy menu operator -
First Sort

Member Initializations

ZafSystemButton
menu ZafPopUpMenu(0, 0)

menu.parent this

menu.Temporary() true

menu.Destroyable() false

menu.NumberID() ZAF_NUMID_SYSTEM_BUTTON_MENU

menu.StringID() "ZAF_NUMID_SYSTEM_BUTTON_MENU
"

SystemButtonType() ZAF_NATIVE_SYSTEM_BUTTON

ZafButton
AllowDefault() false†

AllowToggling() false†

AutoRepeatSelection() false†

AutoSize() true†

502 Zinc Application Framework 5

ButtonType() ZAF_3D_BUTTON†

Depth() 1†

HotKeyChar() 0†

HotKeyIndex() -1†

HzJustify() ZAF_HZ_CENTER†

SelectOnDoubleClick() false†

SelectOnDownClick() false†

SendMessageText() null†

SendMessageWhenSelected() false†

Value() 0†

VtJustify() ZAF_VT_CENTER†

ZafWindowObject
AcceptDrop() false†

Bordered() false†

CopyDraggable() false†

Disabled() false†

HelpContext() null†

HelpObjectTip() null†

LinkDraggable() false†

MoveDraggable() false†

Noncurrent() false†

ParentDrawBorder() false†

ParentDrawFocus() false†

ParentPalette() false†

QuickTip() null†

RegionType() ZAF_AVAILABLE_REGION†

Selected() false†

SupportObject() true†

SystemObject() false

UserFunction() null†

ZafElement
ClassID() ID_ZAF_SYSTEM_BUTTON

ClassName() "ZafSystemButton"

NumberID() ZAF_NUMID_SYSTEM

StringID() "ZAF_NUMID_SYSTEM"

Member Initializations

ZafSystemButton 503

ZafSystemButton(ZafSystemButtonType systemButtonType =
ZAF_NATIVE_SYSTEM_BUTTON);

This constructor is useful in straight-code situations to create a ZafSystemBut-
ton object. systemButtonType specifies the type of system button to be created.
See SystemButtonType() for more information.

ZafSystemButton(const ZafSystemButton ©);

The copy constructor creates a new ZafSystemButton object and initializes its
data from copy.

ZafSystemButton(const ZafIChar *name,
ZafObjectPersistence &persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a system button follows:

// Create a sample window with a native system button.
ZafWindow *window = new ZafWindow(0, 0, 40, 10);
ZafSystemButton *sys = new ZafSystemButton;
window->Add(sys);

Destructor virtual ~ZafSystemButton(void);

The destructor is used to free the memory associated with a ZafSystemButton
object. It chains to the ZafButton, ZafWindowObject, and ZafElement
destructors. Generally, the programmer will not directly destroy a ZafSystem-
Button object, since it is automatically destroyed when its parent window is
destroyed. For more information on child object deletion, see ZafWin-
dow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Add virtual ZafWindowObject *Add(ZafWindowObject *object,
ZafWindowObject *position =
ZAF_NULLP(ZafWindowObject));

504 Zinc Application Framework 5

operator + ZafSystemButton &operator+(ZafWindowObject *object);

This function and operator are used to create system menu items on environ-
ments that support them by adding ZafPopUpItem objects to the ZafSystem-
Button. The functionality is provided by the ZafPopUpMenu class through the
menu member. object is a pointer to the ZafPopUpItem object to be added to
the ZafSystemButton object’s system menu. position specifies which ZafPop-
UpItem object already in the menu that object should appear before. If posi-
tion is null, object is added to the end of the menu. See ZafWindow::Add() for
more information.

Count int Count(void);

Count() returns the number of ZafPopUpItem objects in the system menu, or 0
if there is no system menu. See ZafList::Count() for more information.

Current ZafWindowObject *Current(void) const;

Current() returns the current ZafPopUpItem object in the system menu, if there
is one. The Current() item does not necessarily have focus. Some native envi-
ronment implementations of menus do not allow the menu to ever have focus.
See ZafList::Current() for more information.

Destroy virtual void Destroy(void);

Destroy() causes all the ZafPopUpItem objects in the system menu to be
destroyed, if there is one. This is useful if a system menu is to be recreated
from scratch. See ZafList::Destroy() for more information.

First ZafWindowObject *First(void) const;

The First() function returns the first ZafPopUpItem object in the system menu,
if any. See ZafList::First() for more information.

Get ZafWindowObject *Get(int index);

Get() returns the ZafPopUpItem object at position index in the system menu, if
there is one. index is zero-based, meaning the first ZafPopUpItem object in the
system menu is at position 0. See ZafList::Get() for more information.

ZafSystemButton 505

Index int Index(ZafWindowObject const *element);

If there is a system menu, the Index() function returns the zero-based index of
the ZafPopUpItem object element in the system menu. If there is no system
menu or element is not found in the system menu, Index() returns -1. See
ZafList::Index() for more information.

Last ZafWindowObject *Last(void) const;

Last() returns the last ZafPopUpItem object in the system menu, if any. See
ZafList::Last() for more information.

menu ZafPopUpMenu menu;

The menu member, used internally by the ZAF libraries to maintain the Zaf-
PopUpItem objects added to the ZafSystemButton object (forming the system
menu), should normally not be accessed by the programmer. See ZafPopUp-
Menu for more information.

Sort virtual void Sort(void);

Sort() causes the ZafPopUpItem objects in the system menu (if there is one) to
be sorted according to the function returned by CompareFunction(). See
ZafList::CompareFunction() for more information. Since some environments
maintain the system menu, Sort() may have no effect.

Subtract virtual ZafWindowObject *Subtract(ZafWindowObject
*object);

operator - ZafSystemButton &operator-(ZafWindowObject *object);

This function and operator are used for subtracting (or removing) ZafPopUpI-
tem objects from the ZafSystemButton object’s system menu. The functional-
ity is provided by the ZafPopUpMenu class through the menu member. object
is a pointer to the ZafPopUpItem object to be subtracted. See ZafWin-
dow::Subtract() for more information.

SystemButtonType ZafSystemButtonType SystemButtonType(void) const;

virtual ZafSystemButtonType
SetSystemButtonType(ZafSystemButtonType
systemButtonType);

SystemButtonType() specifies the type of system button a ZafSystemButton
object is. The default value of this attribute is

506 Zinc Application Framework 5

ZAF_NATIVE_SYSTEM_BUTTON, but the user may call SetSystemButton-
Type() to change it. Here are the possible system button types:

IconType() Description

ZAF_EMPTY_SYSTEM_BUTTON Creates a system button object with no
menu items in it so that the system
menu may be custom-built (or remain
empty)

ZAF_NATIVE_SYSTEM_BUTTON Creates a native system button object
with the default menu if supported on
the environment (may look different
from environment to environment)

ZafTable 507

ZafTable

Inheritance ZafTable : ZafWindow : (ZafWindowObject : ZafElement),
ZafList

Declaration #include <z_table.hpp>

Description ZafTable is designed to display and modify data in a tabular format. It is opti-
mized for interaction with a database, but can be used to interact with data in a
variety of formats. It is not, however, intended to be used as a spreadsheet.

Data in a ZafTable is displayed in a familiar row/column format. Each row in
a table represents one record, while each column represents a field within each
record. If desired, ZafTableHeader objects are automatically provided to dis-
play row and column labels.

The columns (or fields) of a table are defined by adding objects to the table.
For example, if a ZafString object is added to the table, each record in the table
will contain a ZafString object. If the ZafString is the first object in the table,
then the first column of the table will consist of ZafString objects, each Zaf-
String object being the first field of a record.

Each row of a table is identical, each being one record, except for the data dis-
played in the fields. The number of rows is determined by MaxOffset() which
is modified by using SetMaxOffset(), InsertRecord(), and DeleteRecord().
SetMaxOffset() should be called in the constructor for the derived table class to
specify the number of records in the table. See the code sample below.

ZafTable defines two functions that must be overridden by a derived class:
ReadRecord() and WriteRecord(). ReadRecord() is used to obtain data and
make it available to the fields of a ZafTableRecord object. WriteRecord() is
used to take data from the fields of a ZafTableRecord object and update the
external data source. (See ReadRecord() and WriteRecord() for more informa-
tion.)

BottomOffset HeaderWidth SeekRandomRecord
CurrentOffset InsertRecord SetColumnText
DeleteRecord MaxOffset SetCoordinateType
Flush ReadRecord SetReadFunction
FocusOffset Record SetWriteFunction
Grid Repopulate Tell
HeaderBackgroundColor RowHeight TopOffset
HeaderHeight SeekNextRecord VirtualRecord
HeaderTextColor SeekPreviousRecord WriteRecord

508 Zinc Application Framework 5

In addition to ReadRecord() and WriteRecord(), a class derived from ZafTable
can optionally overload three other functions to optimize performance: SeekN-
extRecord(), SeekPreviousRecord(), and SeekRandomRecord(). Whenever
possible, ZafTable reads and writes records in sequential order using Seek-
NextRecord() or SeekPreviousRecord(). Database implementations that are
optimized by sequential access should overload these functions. (See Seek-
NextRecord(), SeekPreviousRecord(), and SeekRandomRecord() for more
information.)

This class is not available in the Personal or Registered versions of ZAF, but is
included with the Professional version.

Constructors All ZafTable constructors initialize the member variables associated with an
instantiated ZafTable object. The default values set by the ZafTable and its
base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafTable. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

Member Initializations

ZafTable
CurrentOffset() -1

Grid() true

HeaderHeight() user-supplied parameter

HeaderWidth() user-supplied parameter

MaxOffset() -1

readFunction ZafTable::DefaultReadFunction

RowHeight() user-supplied parameter

VirtualRecord() null

writeFunction ZafTable::DefaultWriteFunction

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() false†

SelectionType() ZAF_MULTIPLE_SELECTION

Sizeable() false†

Temporary() false†

ZafWindowObject

ZafTable 509

ZafTable(int left, int top, int width, int height, int
headerWidth, int headerHeight, int rowHeight = 1);

This constructor is useful in straight-code situations. ZafTableHeader objects
are automatically provided for displaying labels for the rows and columns of a
table. left, top, width and height specify the position and size of the table on
its parent. headerWidth and headerHeight specify the size of the row header
and column header respectively. Zero values for headerWidth and/or header-
Height cause the corresponding headers not to be displayed. rowHeight speci-
fies the height of each row of the table. All values are specified in cell
coordinates by default, but may be specified using another coordinate system if
desired.

ZafTable(const ZafTable ©);

The copy constructor creates a new ZafTable object and initializes its data from
copy.

ZafTable(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a database-linked table follows:

// Declare a generic database.
extern SimpleDatabase *database;

// Derive a user table class.
class SampleTable : public ZafTable
{

AcceptDrop() false†

Bordered() true

OSDraw() false

ZafElement
ClassID() ID_ZAF_TABLE

ClassName() "ZafTable"

Member Initializations

510 Zinc Application Framework 5

public:
SampleTable(void);
virtual ZafError ReadRecord(ZafTableRecord &record,
ZafWindowObject *row);

virtual ZafError WriteRecord(ZafTableRecord &record,
ZafWindowObject *row);

};

SampleTable::SampleTable(void) :
ZafTable(5, 10, 400, 100, 25, 15, 15)

{
// Use pixel coordinate type for the table, headers, and
// records. SetCoordinateType() on the table affects them all.
SetCoordinateType(ZAF_PIXEL);

// Add a vertical scroll bar.
Add(new ZafScrollBar(0, 0, 0, 0));

// Add a string column for "Name".
Add(new ZafString(0, 0, 20, ZAF_NULLP(ZafIChar), 32), "Name");

// Add a formatted string column for "SSN".
Add(new ZafFormattedString(20, 0, 20, ZAF_NULLP(ZafIChar), new
ZafStringData("NNNLNNLNNNN"), new ZafStringData("...-..-
....")), "SSN");

// Add a string column for "Grade".
Add(new ZafString(40, 0, 10, ZAF_NULLP(ZafIChar), 32),
"Grade");

// Set the number of records.
// This should be in the constructor.
SetMaxOffset(database->Records() - 1);

}

// ReadRecord() must be overloaded in the derived class.
ZafError SampleTable::ReadRecord(ZafTableRecord &record,

ZafWindowObject *row)
{
// Read the fields in the record.
ZafIChar name[32], ssn[16], grade[8];
database->SeekRandomRecord(record.Offset(), name, ssn, grade);
record(0)->SetText(name);
record(1)->SetText(ssn);
record(2)->SetText(grade);

// Set the row header.
ZafIChar rowText[16];
sprintf(rowText, "%d", record.Offset() + 1);

ZafTable 511

row->SetText(rowText);
return (ZAF_ERROR_NONE);

}

// WriteRecord() must be overloaded in the derived class.
ZafError SampleTable::WriteRecord(ZafTableRecord &record,

ZafWindowObject *)
{
// Write the fields in the record.
database->ModifyRecord(record.Offset(), record(0)->Text(),
record(1)->Text(), record(2)->Text());

return (ZAF_ERROR_NONE);
}

int ZafApplication::Main(void)
{
// Ensure main() is linked properly.
LinkMain();

// Initialize the database.
database = new SimpleDatabase;

// Create the table and add it to a window.
ZafWindow *window = new ZafWindow(0, 0, 60, 15);
window->AddGenericObjects(new ZafStringData("Table Window"));
window->Add(new SampleTable);
zafWindowManager->Add(window);

// Get the user input and return success.
Control();
return (0);

}

Destructor virtual ~ZafTable(void);

The destructor is used to free the memory associated with a ZafTable object. It
chains to the ZafWindow, ZafWindowObject, ZafList, and ZafElement
destructors. Generally, the programmer will not directly destroy a ZafTable
object, since it is automatically destroyed when its parent window is destroyed.
For more information on child object deletion, see ZafWindow::~ZafWin-
dow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

512 Zinc Application Framework 5

BottomOffset ZafOffset BottomOffset(void) const;

virtual ZafOffset SetBottomOffset(ZafOffset
currentOffset);

BottomOffset() specifies the zero-based index of the record currently at the
bottom of the table’s viewable area. SetBottomOffset() may be called to
change it. SetBottomOffset() causes ReadRecord() to get any necessary data,
but does not change which record has focus. See TopOffset().

SetColumnText ZafError SetColumnText(int columnNumber, const ZafIChar
*text);

SetColumnText() sets the text on a column header. columnNumber is the zero-
based index of the column number, and text is the text copied into the column
header.

SetCoordinateType virtual ZafCoordinateType
SetCoordinateType(ZafCoordinateType coordinateType);

This overloaded function sets the coordinate type for the table headers and Vir-
tualRecord(), as well as for the ZafTable object itself. See ZafWindowOb-
ject::SetCoordinateType() and the code snippet for the constructors for more
information.

CurrentOffset ZafOffset CurrentOffset(void) const;
Tell virtual ZafOffset Tell(void);

virtual ZafOffset SetCurrentOffset(ZafOffset
currentOffset);

CurrentOffset() and Tell() return the zero-based offset of the record that was
most recently read into the table. CurrentOffset() and Tell() are used internally
by the ZAF libraries to optimize database seeks, and may be modified by the
derived ZafTable class by overriding SeekNextRecord(), SeekPrevious-
Record(), and SeekRandomRecord() as described in this chapter.

DeleteRecord virtual ZafError DeleteRecord(ZafOffset deleteOffset);

ZafTable 513

DeleteRecord() causes the ZafTableRecord object at zero-based offset dele-
teOffset to be deleted from the ZafTable. The corresponding database record,
if any, is not deleted. DeleteRecord() generally returns ZAF_ERROR_NONE.

Flush ZafError Flush(ZafOffset offset = -1);

Flush() causes the table record at zero-based index offset to be written to the
database using WriteRecord(). If offset specifies a record that is not in the
viewable area of the database, nothing happens. If offset is -1, all records in the
viewable area of the table are written to the database. If the operation was suc-
cessful, ZAF_ERROR_NONE is returned; otherwise
ZAF_ERROR_INVALID is returned.

FocusOffset ZafOffset FocusOffset(void) const;

virtual ZafOffset SetFocusOffset(ZafOffset focusOffset);

FocusOffset() specifies the zero-based index of the record in the table that cur-
rently has focus. SetFocusOffset() may be called to set the focus to the record
with zero-based index focusOffset. If the record gaining focus is not in the
viewable area of the table, it is scrolled into view. The table is not scrolled if
the the focusOffset record is in view.

Grid bool Grid(void) const;

virtual bool SetGrid(bool grid);

If Grid() is true, grid lines are drawn between each field in the record, and
between each record. This attribute defaults to true, but the programmer may
change it by calling SetGrid().

HeaderBackground-
Color

ZafLogicalColor HeaderBackgroundColor(ZafLogicalColor
*color = ZAF_NULLP(ZafLogicalColor), ZafLogicalColor
*mono = ZAF_NULLP(ZafLogicalColor));

virtual ZafLogicalColor
SetHeaderBackgroundColor(ZafLogicalColor color,
ZafLogicalColor mono = ZAF_MONO_NULL);

HeaderBackgroundColor() is the background color used for the ZafTable-
Header objects in the ZafTable. SetHeaderBackgroundColor() may be called
to change the background color used by all the ZafTableHeader objects
attached to the ZafTable. See ZafWindowObject::BackgroundColor() for more
information.

514 Zinc Application Framework 5

HeaderHeight int HeaderHeight(void) const;

virtual int SetHeaderHeight(int headerHeight);

HeaderHeight() specifies the height of the column ZafTableHeader object in
the same coordinate system as Region(). A zero value indicates the absence of
a column ZafTableHeader object. SetHeaderHeight() should only be called
from the constructor for the derived ZafTable class.

HeaderTextColor ZafLogicalColor HeaderTextColor(ZafLogicalColor *color =
ZAF_NULLP(ZafLogicalColor), ZafLogicalColor *mono =
ZAF_NULLP(ZafLogicalColor));

virtual ZafLogicalColor
SetHeaderTextColor(ZafLogicalColor color,
ZafLogicalColor mono = ZAF_MONO_NULL);

HeaderTextColor() is the text color used for the ZafTableHeader objects in the
ZafTable. SetHeaderTextColor() may be called to change the text color used
by all the ZafTableHeader objects attached to the ZafTable. See ZafWin-
dowObject::TextColor() for more information.

HeaderWidth int HeaderWidth(void) const;

virtual int SetHeaderWidth(int headerWidth);

HeaderWidth() specifies the width of the row ZafTableHeader object in the
same coordinate system as Region(). A zero value indicates the absence of a
row ZafTableHeader object. SetHeaderWidth() should only be called from the
constructor for the derived ZafTable class.

InsertRecord virtual ZafError InsertRecord(ZafOffset insertOffset);

InsertRecord() inserts the database record at offset insertOffset into the ZafT-
able at offset insertOffset. The corresponding database record, if any, is not
modified. InsertRecord() generally returns ZAF_ERROR_NONE.

MaxOffset ZafOffset MaxOffset(void) const;

virtual ZafOffset SetMaxOffset(ZafOffset maxOffset);

MaxOffset() specifies one less than the number of records in the ZafTable.
MaxOffset() is zero- based, so a value of 0 means that there is one record in the
ZafTable, and the default value of -1 means that there are no records in the
ZafTable. MaxOffset() must be set in the constructor for the derived ZafTable
class using SetMaxOffset(). It is automatically updated appropriately by Dele-
teRecord() and InsertRecord().

ZafTable 515

SetReadFunction MemberTableFunction SetReadFunction(MemberTableFunction
readFunction);

Any function may be used to override ReadRecord() by passing that function
into SetReadFunction(). SetReadFunction() returns readFunction. See
ReadRecord() for more information. The definition for MemberTableFunction
is as follows:

typedef ZafError
(ZafTable::*MemberTableFunction)(ZafTableRecord &record,
ZafWindowObject *row);

ReadRecord virtual ZafError ReadRecord(ZafTableRecord &record,
ZafWindowObject *row);

ReadRecord() must be overridden by the derived ZafTable class to read the
data from a record in the database. The data must be loaded into the ZafT-
ableRecord record (see ZafTableRecord for more information). row specifies
the row header, and the programmer must call SetText() for row to set the row
header text. If the programmer’s ReadRecord() method takes a true ZafT-
ableRecord parameter (where there is no derivation of ZafTableRecord), the
base ZafTable::ReadRecord() must be called before any additional functional-
ity occurs.

ReadRecord() returns ZAF_ERROR_INVALID if an error occurred, otherwise
ZAF_ERROR_NONE is returned. Any function may be used to override
ReadRecord() by passing that function into SetReadFunction().

Record ZafTableRecord *Record(ZafOffset offset);

Record() returns a pointer to the table record at zero-based index offset if it is
in the viewable area of the table. If the specified record is not in the viewable
area of the table, or if it doesn’t exist, null is returned.

Repopulate ZafError Repopulate(ZafOffset offset = -1);

Repopulate() causes the table record at zero-based index offset to be read from
the database using ReadRecord(). If offset specifies a record that is not in the
viewable area of the database, nothing happens. If offset is -1, all records in the
viewable area of the table are read from the database. If the operation was suc-
cessful, ZAF_ERROR_NONE is returned; otherwise
ZAF_ERROR_INVALID is returned.

516 Zinc Application Framework 5

RowHeight int RowHeight(void) const;

virtual int SetRowHeight(int rowHeight, ZafCoordinateType
coordinateType = ZAF_CELL);

RowHeight() specifies the height of each ZafTableRecord object in the same
coordinate system as Region(). To modify the height of the ZafTableRecord
objects, SetRowHeight() may be called before the table is added to the window
manager. rowHeight specifies the new row height, and coordinateType speci-
fies the coordinate system that rowHeight is specified in.

SeekNextRecord virtual ZafError SeekNextRecord(void);

SeekNextRecord() causes CurrentOffset() to specify the next record in the
ZafTable. If CurrentOffset() already specifies the last record,
ZAF_ERROR_INVALID is returned; otherwise, ZAF_ERROR_NONE is
returned. SeekNextRecord() may be overridden by the derived ZafTable class
to provide additional functionality.

SeekPrevious-
Record

virtual ZafError SeekPreviousRecord(void);

SeekPreviousRecord() causes CurrentOffset() to specify the previous record in
the ZafTable. If CurrentOffset() already specifies the first record,
ZAF_ERROR_INVALID is returned; otherwise, ZAF_ERROR_NONE is
returned. SeekPreviousRecord() may be overridden by the derived ZafTable
class to provide additional functionality.

SeekRandom-
Record

virtual ZafError SeekRandomRecord(ZafOffset offset,
ZafSeek location);

SeekRandomRecord() modifies CurrentOffset() according to offset and loca-
tion. The possible values of location and how they interpret offset follow:

If the resulting offset is invalid, ZAF_ERROR_INVALID is returned; other-
wise, ZAF_ERROR_NONE is returned. SeekRandomRecord() may be over-
ridden by the derived ZafTable class to provide additional functionality.

ZafSeek Description

ZAF_SEEK_START Interprets offset as the offset from the beginning of
the ZafTable

ZAF_SEEK_CURRENT Interprets offset as the offset from CurrentOffset()

ZAF_SEEK_END Interprets offset as the offset from the end of the
ZafTable

ZafTable 517

TopOffset ZafOffset TopOffset(void) const;

virtual ZafOffset SetTopOffset(ZafOffset topOffset);

TopOffset() specifies the zero-based index of the record currently at the top of
the table’s viewable area. SetTopOffset() may be called to change it. Set-
TopOffset() does not change which record has focus.

VirtualRecord ZafTableRecord *VirtualRecord(void) const;

virtual ZafTableRecord *SetVirtualRecord(ZafTableRecord
*virtualRecord);

VirtualRecord() is the one ZafTableRecord that actually exists for a ZafTable.
It is used as a template record for all records in the ZafTable. VirtualRecord()
is created automatically by the constructor, but SetVirtualRecord() may be
called to change it. Normally, the programmer should not need to call SetVir-
tualRecord(), but VirtualRecord() may be necessary to modify the virtual
record template.

SetWriteFunction MemberTableFunction SetWriteFunction(MemberTableFunction
writeFunction);

Any function may be used to override WriteRecord() by passing that function
into SetWriteFunction(). SetWriteFunction() returns writeFunction. See Writ-
eRecord() for more information. The definition for MemberTableFunction is
as follows:

typedef ZafError
(ZafTable::*MemberTableFunction)(ZafTableRecord &record,
ZafWindowObject *row);

WriteRecord virtual ZafError WriteRecord(ZafTableRecord &record,
ZafWindowObject *row);

WriteRecord() must be overridden by the derived ZafTable class to write the
data in record to the corresponding record in the database. row specifies the
row header, and the programmer may call Text() for row to get the row header
text. If the programmer’s WriteRecord() method takes a true ZafTableRecord
parameter (where there is no derivation of ZafTableRecord), the base ZafT-
able::WriteRecord() must be called before any additional functionality occurs.

WriteRecord() returns ZAF_ERROR_INVALID if an error occurred, other-
wise ZAF_ERROR_NONE is returned. Any function may be used to override
WriteRecord() by passing that function into SetWriteFunction().

518 Zinc Application Framework 5

ZafTableHeader

Inheritance ZafTableHeader : ZafWindow : (ZafWindowObject :
ZafElement), ZafList

Declaration #include <z_table.hpp>

Description ZafTableHeader provides support for displaying header rows and columns in a
ZafTable object. ZafTableHeader is designed as a support class only, so the
programmer should normally not need to create a ZafTableHeader object.
ZafTableHeader objects are automatically added to a ZafTable object in the
ZafTable constructor.

This class is not available in the Personal or Registered versions of ZAF, but is
included with the Professional version.

Constructors All ZafTableHeader constructors initialize the member variables associated
with an instantiated ZafTableHeader object. The default values set by the
ZafTableHeader and its base class constructors follow, if they differ from those
set by the base class constructor, or if a blocking function is implemented in
ZafTableHeader. “†” Indicates a blocking function that prevents changes to
the attribute in this class.

HeaderType Table VirtualField

Member Initializations

ZafTableHeader
HeaderType() user-supplied parameter

VirtualField() null

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() false†

Sizeable() false†

Temporary() false†

ZafWindowObject

ZafTableHeader 519

ZafTableHeader(int width, int height, ZafTableHeaderType
headerType = ZAF_ROW_HEADER);

This constructor is useful in straight-code situations. width and height specify
the width and height of the object. All values are specified in cell coordinates
by default, but may be specified using another coordinate system if desired.
headerType specifies the header type (see HeaderType() for more information).

ZafTableHeader(const ZafTableHeader ©);

The copy constructor creates a new ZafTableHeader object and initializes its
data from copy.

ZafTableHeader(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

A simple example of how to create table headers follows:

// To ensure proper sizing, always add the corner header first.

AcceptDrop() false†

Bordered() false†

Focus() false†

HelpContext() null†

Noncurrent() true†

OSDraw() false

RegionType() ZAF_AVAILABLE_REGION†

SupportObject() true†

UserFunction() null†

ZafElement
ClassID() ID_ZAF_TABLE_HEADER

ClassName() "ZafTableHeader"

NumberID() ZAF_NUMID_COLUMN_HEADER,
ZAF_NUMID_CORNER_HEADER, or
ZAF_NUMID_ROW_HEADER

StringID() "ZAF_COLUMN_HEADER",
"ZAF_CORNER_HEADER", or
"ZAF_ROW_HEADER"

Member Initializations

520 Zinc Application Framework 5

table->Add(new ZafTableHeader(5, 1, ZAF_CORNER_HEADER));

//Add the "top" column header.
table->Add(new ZafTableHeader(0, 1, ZAF_COLUMN_HEADER));

//Create the "side" row header.
ZafTableHeader *rowHeader = new ZafTableHeader(5, 0,

ZAF_ROW_HEADER);
ZafString *string = new ZafString(0, 0, 5, "", -1);
string->SetHzJustify(ZAF_HZ_RIGHT);
rowHeader->SetVirtualField(string);
table->Add(rowHeader);

Destructor virtual ~ZafTableHeader(void);

The destructor is used to free the memory associated with a ZafTableHeader
object. It chains to the ZafWindow, ZafWindowObject, ZafList, and ZafEle-
ment destructors. Generally, the programmer will not directly destroy a ZafT-
ableHeader object, since it is automatically destroyed when its parent table is
destroyed. For more information on child object deletion, see ZafWin-
dow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

HeaderType ZafTableHeaderType HeaderType(void) const;

virtual ZafTableHeaderType
SetHeaderType(ZafTableHeaderType headerType);

HeaderType() specifies what type of header this ZafTableHeader is. SetHead-
erType() may be called to change the value of this attribute before the header is
added to the ZafTable. The possible values for HeaderType() follow:

HeaderType() Description

ZAF_COLUMN_HEADER Specifies a column header to be positioned at
the top edge of the ZafTable

ZAF_CORNER_HEADER Specifies a corner header to be positioned in the
space between the column and row headers in
the top left corner of the ZafTable

ZAF_ROW_HEADER Specifies a row header to be positioned at the
left edge of the ZafTable

ZafTableHeader 521

Table ZafTable *Table(void) const;

Table() returns a pointer to the ZafTable object that the ZafTableHeader is
attached to. Table() returns null if the header has not been added to a table.

VirtualField ZafWindowObject *VirtualField(void) const;

virtual ZafWindowObject *SetVirtualField(ZafWindowObject
*virtualField);

VirtualField() is the one ZafWindowObject that actually exists for a row ZafT-
ableHeader. It is used as a template field for all fields in the row ZafTable-
Header. VirtualField() must be set before the row header is added to the
ZafTable by calling SetVirtualField(). Column and corner headers display the
text of their respective children, and do not use VirtualField().

522 Zinc Application Framework 5

ZafTableRecord

Inheritance ZafTableRecord : ZafWindow : (ZafWindowObject :
ZafElement), ZafList

Declaration #include <z_table.hpp>

Description ZafTableRecord provides support for displaying records in a ZafTable object.
ZafTableRecord is designed as a support class only, so the programmer should
normally not need to create a ZafTableRecord object. A virtual ZafT-
ableRecord object is automatically added to a ZafTable object in the ZafTable
constructor. See ZafTable for more information.

This class is not available in the Personal or Registered versions of ZAF, but is
included with the Professional version.

Constructors All ZafTableRecord constructors initialize the member variables associated
with an instantiated ZafTableRecord object. The default values set by the
ZafTableRecord and its base class constructors follow, if they differ from those
set by the base class constructor, or if a blocking function is implemented in
ZafTableRecord. “†” Indicates a blocking function that prevents changes to
the attribute in this class.

ActivateObject Offset
DeactivateObject Table

Member Initializations

ZafTableRecord
Offset() -1

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() false†

SelectionType() ZAF_MULTIPLE_SELECTION

Sizeable() false†

Temporary() false†

ZafTableRecord 523

ZafTableRecord(int width, int height);

This constructor is useful in straight-code situations. width and height specify
the width and height of the object. All values are specified in cell coordinates
by default, but may be specified using another coordinate system if desired.

ZafTableRecord(const ZafTableRecord ©);

The copy constructor creates a new ZafTableRecord object and initializes its
data from copy.

ZafTableRecord(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

See ZafTable for an example of how to utilize ZafTableRecord objects.

Destructor virtual ~ZafTableRecord(void);

The destructor is used to free the memory associated with a ZafTableRecord
object. It chains to the ZafWindow, ZafWindowObject, ZafList, and ZafEle-
ment destructors. Generally, the programmer will not directly destroy a ZafT-
ableRecord object, since it is automatically destroyed when its parent table is
destroyed. For more information on child object deletion, see ZafWin-
dow::~ZafWindow().

ZafWindowObject
AcceptDrop() false†

Bordered() false†

Disabled() false†

Noncurrent() false†

ParentDrawFocus() true†

RegionType() ZAF_INSIDE_REGION†

SupportObject() false†

ZafElement
ClassID() ID_ZAF_TABLE_RECORD

ClassName() "ZafTableRecord"

Member Initializations

524 Zinc Application Framework 5

Members virtual bool ActivateObject(ZafWindowObject *object);
ActivateObject ActivateObject() causes object (which is a child of the table record) to be acti-

vated. In other words, the object becomes editable. ActivateObject() returns
true if successful, and false otherwise. Normally, the programmer should not
call ActivateObject(), as it is used internally by ZAF.

DeactivateObject virtual bool DeactivateObject(ZafWindowObject *object);

DeactivateObject() causes object (which is a child of the table record) to be
deactivated. In other words, if the object is editable, it becomes non-editable.
DectivateObject() returns false if successful, and true otherwise. Normally, the
programmer should not call DeactivateObject(), as it is used internally by ZAF.

Offset ZafOffset Offset(void) const;

virtual ZafOffset SetOffset(ZafOffset offset);

Offset() is the zero-based record offset for the ZafTableRecord in the ZafTable.
Offset() is maintained by the ZafTable object, so the programmer should nor-
mally not call SetOffset(), but Offset() is useful when a record’s offset in the
parent table is needed.

Table ZafTable *Table(void) const;

Table() returns a pointer to the ZafTable object that the ZafTableRecord is
attached to. Table() returns null if the header has not been added to a table.

ZafText 525

ZafText

Inheritance ZafText : ZafWindow : (ZafWindowObject : ZafElement),
ZafList

Declaration #include <z_text.hpp>

Description The ZafText object is a multi-line text object that allows user input through the
keyboard. Other user interaction is also supported such as copy/cut/paste. A
ZafText object may have scroll bars associated with it. Only 32K of text may
be portably contained in a ZafText object, due to the limitation of various
native environments.

Constructors All ZafText constructors initialize the member variables associated with an
instantiated ZafText object. The default values set by the ZafText and its base
class constructors follow, if they differ from those set by the base class con-
structor, or if a blocking function is implemented in ZafText. “†” Indicates a
blocking function that prevents changes to the attribute in this class.

AutoClear HzJustify Unanswered
CursorOffset Invalid ViewOnly
CursorPosition StringData WordWrap
Event Text

Member Initializations

ZafText
AutoClear() false

HzJustify() ZAF_HZ_LEFT

Invalid() false

StringData() null

Unanswered() false

ViewOnly() false

WordWrap() true

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() false†

526 Zinc Application Framework 5

ZafText(int left, int top, int width, int height, const
ZafIChar *text, int maxLength);

This constructor is useful in straight-code situations, particularly if you wish
the ZafText object to create, maintain and destroy its own ZafStringData object
automatically. left and top specify the position where the left and top of the
object will be placed on its parent. width and height specify the width and
height of the object. All values are specified in cell coordinates by default, but
may be specified using another coordinate system if desired. text is the text
you wish to initially appear in the new ZafText object, and maxLength is
passed to the ZafStringData constructor, the maximum number of characters
the user may type into the field (see the ZafStringData constructor for more
information). If you pass -1 in for the maxLength parameter, the number of
characters the user may type is not restricted.

ZafText(int left, int top, int width, int height,
ZafStringData *stringData = ZAF_NULLP(ZafStringData));

This constructor is useful in straight-code situations where you have already
created a ZafStringData object. This constructor could be used to maintain
data pieces yourself, rather than having the ZafText class create and maintain
the data pieces automatically. For example, to maintain a database of Zaf-
StringData objects and tie them into ZafText objects, maintain your own Zaf-
StringData objects and create ZafText objects using your ZafStringData
objects by passing them into the stringData parameter of this constructor. For
more information on using ZafStringData objects, see ZafStringData. The left,
top, width and height parameters are the same as the previous constructor.

ZafText(const ZafText ©);

SelectionType() ZAF_SINGLE_SELECTION†

Sizeable() false†

Temporary() false†

ZafWindowObject
Bordered() true

ZafElement
ClassID() ID_ZAF_TEXT

ClassName() "ZafText"

Member Initializations

ZafText 527

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafText object and copies the object’s information.
If the data objects are StaticData() then the new ZafText object simply points to
the original data objects, otherwise a copy is made of them for the new ZafText
object. This allows a programmer to use static data for more than one ZafText
object.

ZafText(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Sample ZafText creation techniques follow:

// Create a sample window with text objects.
ZafWindow *window1 = new ZafWindow(0, 0, 50, 10);
// Create text objects and pass in the text directly.
window1->Add(new ZafText(0, 1, 20, 3, "Text1", 200));
window1->Add(new ZafText(25, 1, 20, 3, "Text2", 200));
...
// Create a sample window with text objects.
ZafWindow *window2 = new ZafWindow(10, 10, 50, 10);
// Create string data objects.
ZafStringData *stringData1 = new ZafStringData("Text1", 200);
ZafStringData *stringData2 = new ZafStringData("Text2", 200);
// Create text objects that use the data previously created.
window2->Add(new ZafText(0, 1, 20, 3, stringData1));
window2->Add(new ZafText(25, 1, 20, 3, stringData2));

Destructor virtual ~ZafText(void);

The destructor is used to free the memory associated with a ZafText object,
including all the data object pieces that are Destroyable(). It chains to the Zaf-
Window, ZafList, ZafWindowObject and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafText object, since it is
automatically destroyed when its parent window is destroyed. For more infor-
mation on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

528 Zinc Application Framework 5

AutoClear bool AutoClear(void) const;

virtual bool SetAutoClear(bool autoClear);

If AutoClear() is true, the text becomes entirely highlighted when the object
gains focus so whatever the user types replaces the current text. The default
value of this attribute is true, but the user may call SetAutoClear() to change it.

CursorOffset int CursorOffset(void) const;

virtual ZafError SetCursorOffset(int position);

CursorOffset() returns the character offset of the cursor (the insertion point) in
the ZafText object. This offset is zero-based, so the first character offset in the
ZafText is 0. The user may call SetCursorOffset() to reposition the cursor to
position in the ZafText. For example:

// Move the cursor to the beginning of the text.
object->SetCursorOffset(0);

CursorPosition ZafPositionStruct CursorPosition(void) const;

virtual ZafError SetCursorPosition(ZafPositionStruct
position);

CursorPosition() returns the character position of the cursor (the insertion
point) in the ZafText object. This position is zero-based, so the first character
position in the ZafText is (0, 0). The user may call SetCursorPosition() to
reposition the cursor to position in the ZafText. For example:

// Move the cursor down one line in the text.
ZafPositionStruct cursorPos = object->CursorPosition();
cursorPos.line++;
object->SetCursorOffset(cursorPos);

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events that get sent to the ZafText object,
whether by processing the events itself, or by passing them to a base class for
processing. See ZafWindowObject for more information.

ZafText 529

In addition to those handled by its base classes, ZafText handles the following
events:

HzJustify ZafHzJustify HzJustify(void) const;

virtual ZafHzJustify SetHzJustify(ZafHzJustify
hzJustify);

HzJustify() controls the text’s horizontal justification, and is ZAF_HZ_LEFT
by default. The user may call SetHzJustify() to change it to ZAF_HZ_RIGHT
or ZAF_HZ_CENTER.

Invalid bool Invalid(void) const;

virtual bool SetInvalid(bool invalid);

This attribute provides a user hook that may be used during validation on a
ZafText object. During validation, the programmer may set Invalid() to true to
indicate that the end user has entered invalid data. Because it is a user hook,
Invalid() is an advanced function that does not have any default behavior in
ZafText. The default value of this attribute is false, but the user may call Set-
Invalid() to change it.

StringData ZafStringData *StringData(void) const;

virtual ZafError SetStringData(ZafStringData *string);

StringData() is where the actual data is stored for the ZafText object. The
StringData() piece may belong to a single ZafText object, or may be shared
among several ZafText objects, in which case all the associated ZafText
objects will be updated when the StringData() piece changes. SetStringData()
may be used to associate a StringData() object with a ZafText object. For more

Event Description

S_COPY causes the object to copy its selected data to the clip-
board

S_COPY_DATA causes the object to copy event.windowObject’s String-
Data() if event.windowObject is a ZafText object

S_CUT causes the object to cut its selected data to the clipboard

S_PASTE causes the object to paste the clipboard’s data to its cur-
rent cursor position, replacing any selected data

S_SET_DATA causes the object to create a new StringData() object,
then copy into it event.windowObject’s StringData() if
event.windowObject is non-null and is a ZafText object

530 Zinc Application Framework 5

information on data sharing in ZAF, see ZafDataManager. SetStringData()
will delete the previous StringData() object if it is Destroyable() and no other
object uses it.

The return value for StringData() is a pointer to the StringData() object associ-
ated with the ZafText object. The return value for SetStringData() is normally
ZAF_ERROR_NONE. The following code shows the proper use of these
functions:

// Get the data.
const ZafStringData *data = text->StringData();
...
// Add the string data.
ZafStringData *newData = new ZafStringData("Text", 25);
text->SetStringData(newData);

Text virtual const ZafIChar *Text(void);

virtual ZafError SetText(const ZafIChar *text);

The textual data of a ZafText (contained in the StringData() object) may be
returned or set with Text() and SetText(). These functions provide simple
accessibility to the StringData() of a ZafText, and may be used if the program-
mer does not wish to interact with the data portion of the object.

The return value for Text() is a pointer to the textual information in the data
object of a ZafText. The return value for SetText() is normally
ZAF_ERROR_NONE. The following code shows the proper use of these
functions:

// Get the text.
const ZafIChar *text = textObject->Text();
...
// Set the new text.
textObject->SetText("New Text");

Unanswered bool Unanswered(void) const;

virtual bool SetUnanswered(bool unanswered);

If Unanswered() is true, the ZafText field will be initially blank. When text is
entered into the ZafText object, either by calling SetText(), or by the end user
entering data, the Unanswered() attribute is set to false. Unanswered() is false
by default, but the user may call SetUnanswered() to make changes. Calling
SetUnanswered(true) will clear the contents of the text object and its String-
Data().

ZafText 531

ViewOnly bool ViewOnly(void) const;

virtual bool SetViewOnly(bool viewOnly);

A ViewOnly() ZafText object may not be edited, but it may be the current
object of a window, may be copied into the clipboard, and the arrow keys may
be used to navigate it. ViewOnly() is false by default, but the user may call
SetViewOnly() to change it.

WordWrap bool WordWrap(void) const;

virtual bool SetWordWrap(bool wrappedData);

A WordWrap() ZafText object automatically wraps its data at the end of each
line. If WordWrap() is false, the end user must type a carriage return to go to
the next line. WordWrap() is true by default, but the user may call SetWord-
Wrap() to change it.

532 Zinc Application Framework 5

ZafTime

Inheritance ZafTime : ZafString : ZafWindowObject : ZafElement

Declaration #include <z_time1.hpp>

Description ZafTime is a single-line time object that allows user input through the key-
board. ZafTime is fully internationalized to display and input using any for-
mat. See ZafString::AllowInvalid() and ZafString::ReportInvalid() for
information on these attributes and how they affect validation for this class.

All ZafTime objects refer to data contained in a ZafTimeData object (refer to
this class for additional essential information).

Formats ZafString and derived classes parse input and display output based on default
or programmer-defined input and output formats. Programmers may use the
SetInputFormat() and SetOutputFormat() families of functions to change the
default format. The functions are documented in the ZafString reference.

Each class derived from ZafFormatData handles a different set of formatting
arguments, in addition to those supported by its base classes. ZafTimeData
(and therefore ZafTime) handles the following “time” subset of the arguments
supported by ZafUTimeData (the parent class to ZafTimeData):

Event TimeData

Format Argument Substitution

%% '%' character

%h Same as %H

%H Hour (24-hour clock) as a decimal number [00, 23]

%i Same as %I; can be one or two digits

%I Hour (12-hour clock) as a decimal number [01, 12]

%J Seconds in tenths (.1)

%k Seconds in hundredths (.01)

%K Seconds in thousandths (.001)

%p Locale equivalent of either a.m. or p.m.

%r Time in a.m. or p.m. notation; in the POSIX locale this
is equivalent to: %I:%M:%S %p

%R Time in 24-hour notation (%H:%M)

%s Same as %S; can be one or two digits

%S Seconds as a decimal number [00, 59]

ZafTime 533

Constructors All ZafTime constructors initialize the member variables associated with an
instantiated ZafTime object. The default values set by the ZafTime and its
base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafTime. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

ZafTime(int left, int top, int width, int hour, int
minute, int second, int milliSecond = 0);

This constructor is useful in straight-code situations, particularly if the Zaf-
Time object is to create, maintain and destroy its own ZafTimeData object
automatically. left, top, and width are the position and size of the object on its
parent. All values are specified in cell coordinates by default, but may be spec-
ified using another coordinate system if desired. hour, minute, second, and
milliSecond specify the time values that initially appear in the new ZafTime
object.

%T Time (%H:%M:%S)

%X Locale-specific time representation

%Z Timezone name or abbreviation

Format Argument Substitution

Member Initializations

ZafTime
TimeData() null

ZafString
LowerCase() false†

Password() false†

StringData() null†

UpperCase() false†

VariableName() false†

ZafElement
ClassID() ID_ZAF_TIME

ClassName() "ZafTime"

534 Zinc Application Framework 5

ZafTime(int left, int top, int width, ZafTimeData
*timeData = ZAF_NULLP(ZafTimeData));

This constructor is useful in straight-code situations where a ZafTimeData
object has already been created. This constructor could be used when manu-
ally maintaining a ZafTimeData object, rather than having the ZafTime class
create and maintain the data object automatically. For more information on
using ZafTimeData objects, see ZafTimeData. See the previous constructor for
a description of left, top, and width parameters.

ZafTime(const ZafTime ©);

The copy constructor calls the overloaded Duplicate() to create a new ZafTime
object and initialize its data from copy. If the original data objects are Static-
Data() then the new ZafTime object simply points to the original data, other-
wise StaticData() copies are made.

ZafTime(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Sample ZafTime creation techniques follow:

// Create a sample window with time objects.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);

// Create time objects and pass in the values directly.
window1->Add(new ZafTime(0, 1, 25, 8, 0, 0));
window1->Add(new ZafTime(0, 2, 25, 17, 59, 59));
...
// Create a sample window with time objects.
ZafWindow *window2 = new ZafWindow(10, 10, 40, 10);

// Create time data objects.
ZafTimeData *timeData1 = new ZafTimeData(8, 0, 0);
ZafTimeData *timeData2 = new ZafTimeData(17, 59, 59);

// Create times that use the data previously created.
window2->Add(new ZafTime(0, 1, 25, timeData1));
window2->Add(new ZafTime(0, 2, 25, timeData2));

Destructor virtual ~ZafTime(void);

ZafTime 535

The destructor is used to free the memory associated with a ZafTime object,
including all the data objects that are Destroyable(). It chains to the ZafString,
ZafWindowObject, and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafTime object, since it
is automatically destroyed when its parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members virtual ZafEventType Event(const ZafEventStruct &event);
Event This overloaded function receives all events that get sent to the ZafTime object

and either handles them or passes them to ZafString, its immediate base class.
See ZafWindowObject for more information.

ZafTime specifically handles the following events:

TimeData ZafTimeData *TimeData(void) const;

virtual ZafError SetTimeData(ZafTimeData *timeData);

*TimeData() contains the actual information used by ZafTime. The Time-
Data() object may be used by one or more ZafTime objects, or other objects. If
shared, all associated ZafTime objects will be notified when the TimeData()
changes. For more information on data sharing in ZAF, see ZafDataManager.
SetTimeData() will delete the previous TimeData() object if it is Destroyable()
and no other object uses it.

TimeData() returns a pointer to the TimeData() object associated with the Zaf-
Time object. The return value for SetTimeData() is normally
ZAF_ERROR_NONE. See the code snippet for an example using ZafTime-
Data objects with ZafTime.

Event Description

N_RESET_I18N causes the object to redisplay its data according to the
new internationalization values

S_COPY_DATA causes the object to copy event.windowObject’s Time-
Data() if event.windowObject is a ZafTime object

S_SET_DATA causes the object to create a new TimeData() object, then
copy into it event.windowObject’s TimeData() if
event.windowObject is non-null and is a ZafTime object

536 Zinc Application Framework 5

ZafTimeData

Inheritance ZafTimeData : ZafUTimeData : ZafFormatData : ZafData :
ZafElement, ZafNotification

Declaration #include <z_time.hpp>

Description ZafTimeData combines time encapsulation with data notification and object
notification from ZafData. It is most often used in conjunction with the Zaf-
Time user interface object but may be used as a stand-alone object if desired.
Refer to the ZafUTimeData documentation for a discussion of member meth-
ods, inherited by ZafTimeData, used to retrieve and set time-specific informa-
tion (e.g., hour, minute, second, etc.).

All ZafData objects may make use of printf-style formatting and parsing argu-
ments during string operations. In addition, all ZafUTimeData objects may
make use of strftime- and strptime-style formatting and parsing arguments dur-
ing string operations. Refer to standard library documentation for detailed
information on printf, strftime, and strptime functions as well as their corre-
sponding conversion characters.

Constructors ZafTimeData constructors initialize the member variables associated with a
new ZafTimeData object and allocate space to hold the time data. The default
values set by ZafTimeData follow, if they are overridden from those set by
base class constructors:

Clear FormattedText SetTime

Member Initializations

ZafUTimeData
Hour() (varies by constructor)

MilliSecond() (varies by constructor)

Minute() (varies by constructor)

Second() (varies by constructor)

Value() (varies by constructor)

ZoneOffset() (varies by constructor)

ZafElement
ClassID() ID_ZAF_time_DATA

ClassName() "ZafTimeData"

ZafTimeData 537

ZafTimeData(void);

The basic constructor allocates a ZafTimeData instance and initializes its value
to the current system time.

ZafTimeData(int hour, int minute, int second, int
milliSecond);

This constructor allocates a ZafTimeData instance and initializes its contents to
the time corresponding to hour, minute, second and milliSecond.

ZafTimeData(const ZafIChar *string, const ZafIChar
*format = ZAF_NULLP(ZafIChar));

This constructor allocates a ZafTimeData instance and initializes its contents to
the time equivalent of string. The conversion uses the strptime-style specifier
format to interpret the string. If format is null ZafTimeData uses its locale-spe-
cific default format.

ZafTimeData(const ZafTimeData ©);

ZafTimeData(const ZafUTimeData ©);

These constructors are the copy constructors. They each allocate a new Zaf-
TimeData instance and copy all member data from copy.

ZafTimeData(const ZafIChar *name, ZafDataPersistence
&persist);

This constructor is the persistent constructor. It allocates a new ZafTimeData
instance and reads most member data from the name directory of the persistent
data file referred to by persist. The StringID() of the new data is name.

// Sample ZafTimeData creation techniques
ZafTimeData time1(13, 34, 20, 0);
ZafTimeData copyTime = time1;
ZafTimeData time2("16 15 30", "%H %M %S");
ZafTimeData systemTime;

Destructor virtual ~ZafTimeData(void);

The destructor is used to free the memory associated with an instantiated Zaf-
TimeData object. Unless StaticData() is true a ZafTimeData object is usually
destroyed automatically when all ZafTime objects that refer to it are destroyed.

538 Zinc Application Framework 5

Members
Clear virtual void Clear(void);

Clear() sets the value of a ZafTimeData object to the current system time.

FormattedText virtual int FormattedText(ZafIChar *buffer, int
maxLength, const ZafIChar *format = 0) const;

FormattedText() fills buffer with a string representation of the ZafTimeData
using the strftime-style specifier format to build the string. A locale-specific
default format is used if format is not included. Buffer contents will be trun-
cated if they exceed maxLength characters. FormattedText() returns the inte-
ger value it receives from its call to strftime().

// Show various results of FormattedText().
ZafIChar buffer[256];

ZafTimeData time(18, 25, 30);
time.FormattedText(buffer, 256, "%I:%M:%S %p");
printf("time - %s\n", buffer);

time.FormattedText(buffer, 256, "%H:%M");
printf("time - %s\n", buffer);

==========
time - 06:25:30 p.m.
time - 18:25

SetTime virtual ZafError SetTime(int hour, int minute, int second,
int milliSecond);

virtual ZafError SetTime(const ZafIChar *buffer, const
ZafIChar *format);

virtual ZafError SetTime(const ZafTimeData &time);

SetTime() functions set the value of the ZafTimeData object from numeric
input, another time, or an interpreted string. Refer to FormattedText() for more
information on time/string conversions.

ZafTimer 539

ZafTimer

Inheritance ZafTimer : ZafDevice : ZafElement

Declaration #include <z_timer.hpp>

Description The ZafTimer device notifies a list of objects when a specified interval of time
has passed. Notification is made by sending a ZafEvent to each object in the
notification list. This message is N_TIMER by default, but may be specified
by the programmer.

Since ZafTimer is not interrupt-driven, it is not guaranteed that the objects will
receive a notification message within the exact interval specified. Although
native OS timers may queue timer events with relative accuracy, these events
do not interrupt applications and are therefore subject to limitations of event
polling. For maximum accuracy, ZafTimer uses native timers where available.

Constructors All ZafTimer constructors initialize the member variables associated with an
instantiated ZafTimer object. Default values set by the ZafTimer follow, as
well as base class values when overridden by ZafTimer.

Add NotifyMessage operator +
Event Poll operator -
Interval QueueEvents
NotifyCount Subtract

Member Initializations

ZafTimer
Interval() 0

NotifyMessage() N_TIMER

QueueEvents() false

ZafDevice
DeviceType() E_TIMER

ZafElement
ClassID() ID_ZAF_TIMER

ClassName() "ZafTimer"

NumberID() ID_ZAF_TIMER

StringID() "ZafTimer"

540 Zinc Application Framework 5

ZafTimer(ZafDeviceState state = D_ON, unsigned long
interval);

This constructor is used to instantiate a ZafTimer object to be added to the
ZafEventManager. state specifies the initial state of the device, and interval
specifies the time interval in milliseconds, that expires before a message is sent
to the list of notification objects (see ZafDevice for valid states).

ZafTimer(const ZafTimer ©);

The copy constructor accepts another ZafTimer object and copies the object’s
information. The list of notification objects is not copied, since two timers
should not send notifications to the same objects. An example of how to create
a ZafTimer object follows:

// Create a timer.
ZafTimer *timer = new ZafTimer(D_ON, 1000);
// Add the field to be notified.
timer->Add(myObject);
// Add the timer to the event manager, which also activates the

timer.
zafEventManager->Add(timer);

Destructor virtual ~ZafTimer(void);

The destructor is used to free the memory associated with a ZafTimer object.
It chains to the ZafDevice and ZafElement destructors.

The programmer may delete a ZafTimer object when it is no longer needed;
otherwise it is automatically destroyed when the event manager is destroyed.
For more information on device object deletion, see ZafEventManager::~ZafE-
ventManager().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Add ZafWindowObject *Add(ZafWindowObject *object,
ZafEventType newNotifyMessage, ZafWindowObject
*position = ZAF_NULLP(ZafWindowObject));

ZafTimer 541

ZafWindowObject *Add(ZafWindowObject *object,
ZafWindowObject *position =
ZAF_NULLP(ZafWindowObject));

operator + ZafTimer &operator+(ZafWindowObject *object);

These functions and operator add object to the timer’s notification list. When
the time interval expires, the timer sends either newNotifyMessage (unique to
the object) or the default notify message to each objects on the notification list.

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events sent to the ZafTimer object. The
following events are handled:

Interval unsigned long Interval(void) const;

virtual unsigned long SetInterval(unsigned long
interval);

Interval() returns the notification time interval in milliseconds. SetInterval
may be used to change the timer delay after a ZafTimer has been created

NotifyCount int NotifyCount(void) const;

NotifyCount() returns the number of objects in the timer’s notification list.
This function is useful if the programmer wishes to delete a ZafTimer when it
is no longer used by any objects.

ZafEventType Description

D_DEINITIALIZE causes the timer to deinitialize its notification
mechanism

D_INITIALIZE causes the timer to initialize its notification
mechanism

D_OFF causes the timer to stop sending notification
messages

D_ON causes the timer to begin sending notification
messages

D_STATE causes the timer to return its device state

S_ADD_OBJECT causes event.windowObject to be added to the
notification list

S_SUBTRACT_OBJECT causes event.windowObject to be removed
from the notification list

542 Zinc Application Framework 5

NotifyMessage ZafEventType NotifyMessage(void) const;

ZafEventType SetNotifyMessage(ZafEventType
notifyMessage);

When Interval() expires, the timer sends an event of type NotifyMessage() to
all the objects on the notification list that don’t have their own specific event
type assigned via Add(). NotifyMessage() defaults to N_TIMER, but the pro-
grammer may pass a different event type into the constructor or SetNotifyMes-
sage().

Poll virtual void Poll(void);

In some environments, the Poll() function checks the timer device to see if the
Interval() has expired, if the ZafTimer’s state is not D_OFF. In other environ-
ments where timer events are handled automatically by the native environ-
ment, Poll() may simply block timer events from coming through ZAF’s event
manager queue if the ZafTimer’s state is D_OFF.

QueueEvents bool QueueEvents(void) const;

virtual bool SetQueueEvents(bool queueEvents);

QueueEvents() causes the timer to put an event of type NotifyMessage() on
ZAF’s event manager queue after all objects in the notification list have been
notified directly

Using this option, a ZafTimer may "notify" the Zaf system generally rather
than directly calling the event function for individual objects. QueueEvents()
defaults to false, but may be changed with SetQueueEvents().

Subtract ZafWindowObject *Subtract(ZafWindowObject *object);
operator - ZafTimer &operator-(ZafWindowObject *object);

This function and operator subtract object from the timer’s notification list, so
that the object is no longer sent notification messages.

ZafTitle 543

ZafTitle
Inheritance ZafTitle : ZafButton : ZafWindowObject : ZafElement

Declaration #include <z_title.hpp>

Description ZafTitle is the title bar decoration on a ZafWindow, and is generally drawn by
the environment. A ZafTitle object may only be added to a ZafWindow, and
allows a user to move the parent window with a ZafMouse device.

ZafTitle can be automatically added to a window along with other window
“decorations” by using ZafWindow::AddGenericObjects().

Constructors All ZafTitle constructors initialize the member variables associated with an
instantiated ZafTitle object. The default values set by the ZafTitle and its base
class constructors follow, if they differ from those set by the base class con-
structor, or if a blocking function is implemented in ZafTitle. “†” Indicates a
blocking function that prevents changes to the attribute in this class.

Member Initializations

ZafButton
AllowDefault() false†

AllowToggling() false†

AutoRepeatSelection() false†

AutoSize() true†

BitmapData() null†

ButtonType() ZAF_FLAT_BUTTON†

Depressed() false†

Depth() 0†

HotKeyChar() 0†

HotKeyIndex() -1†

HzJustify() ZAF_HZ_CENTER†

SelectOnDoubleClick() true†

SelectOnDownClick() true†

SendMessageText() null†

SendMessageWhenSelected() true†

Value() Used internally by ZAF†

VtJustify() ZAF_VT_CENTER†

ZafWindowObject
AcceptDrop() false†

Bordered() false†

544 Zinc Application Framework 5

ZafTitle(const ZafIChar *text);

This constructor is useful in straight-code situations, particularly if you wish
the ZafTitle object to create, maintain and destroy its own ZafStringData object
automatically. Simply pass the text to appear in the title bar into the text
parameter.

ZafTitle(ZafStringData *textData);

This constructor is also useful in straight-code situations, particularly if you
have already created a ZafStringData object to be associated with the title bar.
This constructor could be used to maintain string data pieces manually, rather
than having the ZafTitle class create and maintain the string data pieces auto-
matically. For more information see ZafStringData. textData specifies the
string data object to be associated with the title bar.

CopyDraggable() false†

Disabled() false†

Focus() false†

HelpContext() null†

HelpObjectTip() null†

LinkDraggable() false†

MoveDraggable() false†

Noncurrent() true†

ParentDrawBorder() false†

ParentDrawFocus() false†

ParentPalette() false†

QuickTip() null†

RegionType() ZAF_AVAILABLE_REGION†

Selected() false†

SupportObject() true†

SystemObject() false

UserFunction() null†

ZafElement
ClassID() ID_ZAF_TITLE

ClassName() "ZafTitle"

NumberID() ZAF_NUMID_TITLE

StringID() "ZAF_NUMID_TITLE"

Member Initializations

ZafTitle 545

ZafTitle(const ZafTitle ©);

The copy constructor creates a new ZafTitle object and initializes its data from
copy.

ZafTitle(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a title bar follows:

// Create a sample window.
ZafWindow *window = new ZafWindow(0, 0, 40, 10);
ZafTitle *title = new ZafTitle("Test Window");
window->Add(title);

Destructor virtual ~ZafTitle(void);

The destructor is used to free the memory associated with a ZafTitle object. It
chains to the ZafButton, ZafWindowObject, and ZafElement destructors. Gen-
erally, the programmer will not directly destroy a ZafTitle object, since it is
automatically destroyed when its parent window is destroyed. For more infor-
mation on child object deletion, see ZafWindow::~ZafWindow().

546 Zinc Application Framework 5

ZafToolBar

Inheritance ZafToolBar : ZafWindow : (ZafWindowObject : ZafElement),
ZafList

Declaration #include <z_tbar.hpp>

Description The ZafToolBar object may be placed along any of the four edges of a window,
and generally contains groups of buttons. However, the ZafToolBar object
may contain any of ZAF’s input objects. ZafToolBar is Noncurrent() by
default, meaning that it does not receive focus, but it allows the option of
receiving focus if desired.

Constructors All ZafToolBar constructors initialize the member variables associated with an
instantiated ZafToolBar object. The default values set by the ZafToolBar and
its base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafToolBar. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

DockType WrapChildren

Member Initializations

ZafToolBar
DockType() ZAF_DOCK_TOP

WrapChildren() true

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() false†

Sizeable() false†

Temporary() false†

ZafWindowObject
AcceptDrop() false†

Bordered() true

Noncurrent() true

RegionType() ZAF_AVAILABLE_REGION†

ZafToolBar 547

ZafToolBar(int left, int top, int width, int height);

This constructor is useful in straight-code situations. left and top specify the
left and top of the object, while width and height specify the width and height
of the object. All values are specified in cell coordinates by default, but may
be specified using another coordinate system if desired. Currently, left and top
are ignored since the tool bar is automatically placed on the edge of its parent
window’s client region, but they may be used in the future. width and height
are ignored if the tool bar is WrapChildren().

ZafToolBar(const ZafToolBar ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafToolBar object and copies the object’s infor-
mation.

ZafToolBar(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

An example of how to create a tool bar with buttons follows:

// Create a sample window with a tool bar and buttons.
ZafWindow *window1 = new ZafWindow(0, 0, 50, 10);
// Create a wrapping tool bar.
ZafToolBar *toolBar = new ZafToolBar(0, 0, 80, 1);
// Add two groups of buttons separated by a spacer.
// They are automatically positioned by the tool bar.
toolBar->Add(new ZafButton(0, 0, 10, 1, "Button 1",

ZAF_NULLP(ZafBitmapData)));
toolBar->Add(new ZafButton(0, 0, 10, 1, "Button 2",

ZAF_NULLP(ZafBitmapData)));
ZafButton *spacer = new ZafButton(0, 0, 1, 1,

ZAF_NULLP(ZafIChar), ZAF_NULLP(ZafBitmapData));

SupportObject() true

ZafElement
ClassID() ID_ZAF_TOOL_BAR

ClassName() "ZafToolBar"

Member Initializations

548 Zinc Application Framework 5

toolBar->Add(spacer);
toolBar->Add(new ZafButton(0, 0, 10, 1, "Button 3",

ZAF_NULLP(ZafBitmapData)));
toolBar->Add(new ZafButton(0, 0, 10, 1, "Button 4",

ZAF_NULLP(ZafBitmapData)));
// Add the tool bar to the window.
window1->Add(toolBar);

Destructor virtual ~ZafToolBar(void);

The destructor is used to free the memory associated with a ZafToolBar object.
It chains to the ZafWindow, ZafList, ZafWindowObject and ZafElement
destructors.

Generally, the programmer will not directly destroy a ZafToolBar object, since
it is automatically destroyed when its parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

DockType ZafDockType DockType(void) const;

virtual ZafDockType SetDockType(ZafDockType dockType);

A ZafToolBar object may be “docked” on any of the four sides of its parent
window, according to the DockType() attribute. The default value of this
attribute is ZAF_DOCK_TOP, but the user may call SetDockType() to change
it. The possible values of this attribute are:

• ZAF_DOCK_TOP

• ZAF_DOCK_BOTTOM

• ZAF_DOCK_LEFT

• ZAF_DOCK_RIGHT

WrapChildren bool WrapChildren(void) const;

virtual bool SetWrapChildren(bool wrapChildren);

If WrapChildren() is true, the ZafToolBar object automatically positions its
children based on the available space on the tool bar, and the tool bar adjusts its
size on its parent window to accommodate the children. A WrapChildren()
tool bar, therefore, ignores the width and height specified in the constructor. If
WrapChildren() is false, the tool bar reflects the width and height specified in

ZafToolBar 549

the constructor, and respects its children’s positioning. WrapChildren() is true
by default, but the user may call SetWrapChildren() to change it.

550 Zinc Application Framework 5

ZafTreeItem

Inheritance ZafTreeItem : ZafWindow : (ZafWindowObject : ZafElement),
ZafList

Declaration #include <z_tree.hpp>

Description ZafTreeItems are contained in ZafTreeLists. Each ZafTreeItem may or may not
contain other ZafTreeItems. Those that contain children may be expandable to
expose or hide their children. Like ZafHzList and ZafVtList items, tree items
may not be Noncurrent(). Since the ZafTreeList and ZafTreeItem classes were
specially designed to work together, only other ZafTreeItem objects may be
added to a ZafTreeItem object. See ZafTreeList for a more detailed descrip-
tion.

Constructors All ZafTreeItem constructors allocate memory for an object instance and ini-
tialize member variables. The default values set by the ZafTreeItem and its
base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafTreeItem. “†”
Indicates a blocking function that prevents changes to the attribute in this class.

AutoSortData Expanded TreeList
DepthCurrent NormalBitmap ViewCurrent
DepthFirst SelectedBitmap ViewFirst
DepthLast SetSelectionType ViewLast
DepthNext StringData ViewLevel
DepthPrevious Text ViewNext
Expandable ToggleExpanded ViewPrevious

Member Initializations

ZafTreeItem
AutoSortData() false

Expandable() false

Expanded() false

NormalBitmap() null

SelectedBitmap() null

StringData() null

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

ZafTreeItem 551

ZafTreeItem(ZafBitmapData *normalBitmap, ZafBitmapData
*selectedBitmap, const ZafIChar *text);

This constructor is useful in straight-code situations, particularly if the
ZafTreeItem object is to create, maintain, and destroy its own ZafStringData
object automatically. text specifies the textual information displayed by the
ZafTreeItem object. The normalBitmap and selectedBitmap parameters spec-
ify the bitmaps displayed by the ZafTreeItem object in its normal and
expanded states, respectively.

ZafTreeItem(ZafBitmapData *normalBitmap, ZafBitmapData
*selectedBitmap, ZafStringData *stringData);

This constructor is also useful in straight-code situations, particularly when a
ZafStringData object, stringData, has already been created to be associated
with the ZafTreeItem object. For more information see ZafStringData.

ZafTreeItem(const ZafTreeItem ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It allocates a new ZafTreeItem object and initializes its data from
copy. If the original ZafTreeItem’s internal data objects are StaticData() then
the new ZafTreeItem object points to the originals, otherwise copies are made.

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() false†

Sizeable() false†

Temporary() false†

ZafWindowObject
AcceptDrop() false†

Bordered() false†

RegionType() ZAF_INSIDE_REGION†

SystemObject() false

ZafElement
ClassID() ID_ZAF_TREE_ITEM

ClassName() "ZafTreeItem"

Member Initializations

552 Zinc Application Framework 5

ZafTreeItem(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level. The fol-
lowing example demonstrates how to create ZafTreeItem objects:

// Create a sample window with a tree list.
ZafWindow *window1 = new ZafWindow(0, 0, 50, 10);

// Create the tree list object.
extern ZafBitmapData *nBitmap, *sBitmap;
ZafTreeList *tree = new ZafTreeList(1, 1, 20, 5);

// Create the tree items and add them to the tree.
ZafTreeItem *item1 = new ZafTreeItem(normalBitmap,

selectedBitmap, "Item 1");
item1->SetExpandable(true);
item1->Add(new ZafTreeItem(nBitmap, sBitmap, "Item 1.1"));
item1->Add(new ZafTreeItem(nBitmap, sBitmap, "Item 1.2"));
item1->Add(new ZafTreeItem(nBitmap, sBitmap, "Item 1.3"));
tree->Add(item1);
ZafTreeItem *item2 = new ZafTreeItem(nBitmap, sBitmap, "Item

2");
item2->SetExpandable(true);
item2->Add(new ZafTreeItem(nBitmap, sBitmap, "Item 2.1"));
item2->Add(new ZafTreeItem(nBitmap, sBitmap, "Item 2.2"));
item2->Add(new ZafTreeItem(nBitmap, sBitmap, "Item 2.3"));
tree->Add(item2);

// Add a vertical scroll bar to the tree list.
tree->Add(new ZafScrollBar(0, 0, 0, 0));

// Add the list to the window.
window1->Add(tree);

Destructor virtual ~ZafTreeItem(void);

The destructor is used to free the memory associated with a ZafTreeItem
object, including all the data object pieces—such as StringData()—that are
Destroyable(). It chains to the ZafWindow, ZafList, ZafWindowObject and
ZafElement destructors.

Generally, the programmer will not directly destroy a ZafTreeItem object,
since it is automatically destroyed when its parent ZafTreeList is destroyed.

ZafTreeItem 553

For more information on child object deletion, see ZafWindow::~ZafWin-
dow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

AutoSortData bool AutoSortData(void) const;

virtual bool SetAutoSortData(bool autoSortData);

AutoSortData() is provided at this level only for the purpose of checking the
attribute, since this attribute applies for the entire hierarchy of the ZafTreeList
object. SetAutoSortData() has no effect for ZafTreeItem. See
ZafTreeList::AutoSortData() for more information.

DepthCurrent ZafTreeItem *DepthCurrent(void);

DepthCurrent() returns the current leaf ZafTreeItem object in the current
branch of the tree—beginning with this ZafTreeItem object and traversing
down the current branch of the hierarchy. The current leaf item will not neces-
sarily be viewable.

DepthFirst ZafTreeItem *DepthFirst(void);

DepthFirst() returns the first ZafTreeItem object in the current sub-tree, which
is always this ZafTreeItem object. This function may be used together with
ZafTreeItem::DepthNext() to perform a depth traversal of the entire hierarchy
of the sub-tree (beginning with this ZafTreeItem object). This traversal will
find every ZafTreeItem in the sub-tree, whether in an expanded branch or not.
This is a depth traversal, as opposed to a depth-first traversal. See
ZafTreeList::DepthFirst() for more information. The following code shows
how to do this traversal:

// Traverse every item of the entire sub-tree hierarchy.
for (ZafTreeItem *item = this; item; item = item->DepthNext())
if (item == matchItem)
break;

554 Zinc Application Framework 5

For the following sub-tree, the traversal would find the nodes in this order: A,
A1, A2.

A
|__A1
|__A2

DepthLast ZafTreeItem *DepthLast(void);

DepthLast() returns the last leaf ZafTreeItem object in the sub-tree, traversing
down the last branch of the sub-tree hierarchy. The last leaf item will not nec-
essarily be visible. This function may be used together with ZafTree-
Item::DepthPrevious() to perform a reverse depth traversal of the entire
hierarchy of the sub-tree. This traversal will find every ZafTreeItem in the
sub-tree, whether in an expanded branch or not. This is a depth traversal, as
opposed to a depth-first traversal. See DepthFirst() for example code.

DepthNext ZafTreeItem *DepthNext(void);

DepthNext() returns the next item in a depth traversal of the sub-tree. See
DepthFirst() for more information.

DepthPrevious ZafTreeItem *DepthPrevious(void);

DepthPrevious() returns the previous item in a depth traversal of the sub-tree.
See DepthFirst() and DepthLast() for more information.

Expandable bool Expandable(void) const;

virtual bool SetExpandable(bool expandable);

An Expandable() ZafTreeItem object is considered a sub-tree of the parent
ZafTreeList object and may have ZafTreeItem objects within itself. The end
user will not be able to access sub-items unless the parent item is Expand-
able(). Expandable() is false by default.

Expanded bool Expanded(void) const;

virtual bool SetExpanded(bool expanded);
ToggleExpanded virtual bool ToggleExpanded(void);

The children of an Expanded() ZafTreeItem object are viewable. If
Expanded() is false, the ZafTreeItem object is collapsed, and its children are
not visible to the end user. This attribute is false by default, but the end user
may modify it at any time, and SetExpanded() may be called to change it. Tog-

ZafTreeItem 555

gleExpanded() will toggle the value of this attribute, collapsing an Expanded()
ZafTreeItem object, and expanding a collapsed ZafTreeItem object.

NormalBitmap ZafBitmapData *NormalBitmap(void) const;
SelectedBitmap ZafBitmapData *SelectedBitmap(void) const;

virtual ZafError SetNormalBitmap(ZafBitmapData
*normalBitmap);

virtual ZafError SetSelectedBitmap(ZafBitmapData
*selectedBitmap);

The NormalBitmap() and SelectedBitmap() objects point to the actual bitmap
data. NormalBitmap() is the bitmap displayed by the ZafTreeItem object in its
normal (non-selected) state, and SelectedBitmap() is the bitmap displayed by
the ZafTreeItem object in its selected state.

The NormalBitmap() and SelectedBitmap() objects may be shared among sev-
eral ZafTreeItem objects (to save memory, for example), or they may belong to
a single ZafTreeItem object. If shared among several ZafTreeItem objects, all
the associated ZafTreeItem objects will be updated when the NormalBitmap()
or SelectedBitmap() objects change. For more information on data sharing in
ZAF, see ZafDataManager. SetNormalBitmap() will delete the previous Nor-
malBitmap() object if it is Destroyable() and no other object uses it. SetSelect-
edBitmap() will delete the previous SelectedBitmap() object if it is
Destroyable() and no other object uses it.

The return value for SetNormalBitmap() and SetSelectedBitmap() is normally
ZAF_ERROR_NONE.

// Set the bitmaps on a tree item if not already present.
extern ZafBitmapData *normalBitmap, *selectedBitmap;
if (!item->NormalBitmap())
item->SetNormalBitmap(normalBitmap);

if (!item->SelectedBitmap())
item->SetSelectedBitmap(selectedBitmap);

SetSelectionType virtual ZafSelectionType
SetSelectionType(ZafSelectionType selectionType);

This overloaded function is provided so that the entire hierarchy of ZafTree-
Item objects will reflect the SelectionType() of the ZafTreeList object. The
programmer should normally not call this function at this level, but at the
ZafTreeList level. See ZafTreeList::SelectionType() for complete information.

StringData ZafStringData *StringData(void) const;

556 Zinc Application Framework 5

virtual ZafError SetStringData(ZafStringData
*stringData);

ZafTreeItems contain ZafStringData objects where their text is stored. The
StringData() object may be shared among several ZafTreeItem objects (to save
memory, for example), or it may belong to a single ZafTreeItem object. If
shared, all the associated ZafTreeItem objects will be updated when the String-
Data() object changes. For more information on data sharing in ZAF, see Zaf-
DataManager. SetStringData() will delete the previous StringData() object if it
is Destroyable() and no other object uses it.

The return value for SetStringData() is normally ZAF_ERROR_NONE.

Refer to Set*Bitmap() for more information.

Text virtual const ZafIChar *Text(void);

virtual ZafError SetText(const ZafIChar *text);

The textual data of a ZafTreeItem object may be returned or set with Text() and
SetText(). These functions provide simple accessibility to the StringData() of a
ZafTreeItem object, and may be used if the programmer does not wish to inter-
act with the data portion of the object.

ToggleExpanded virtual bool ToggleExpanded(void);

See Expanded().

TreeList ZafTreeList *TreeList(void) const;

TreeList() returns a pointer to this ZafTreeItem object’s parent ZafTreeList
object. It returns null if this ZafTreeItem is not yet attached (directly or indi-
rectly) to a ZafTreeList object.

ViewCurrent ZafTreeItem *ViewCurrent(void);

The ViewCurrent() item in the sub-tree is the current item for the entire hierar-
chy of the sub-tree, beginning with this ZafTreeItem object.

ViewFirst ZafTreeItem *ViewFirst(void);

ViewFirst() returns a pointer to the first viewable item in the sub-tree, begin-
ning with this ZafTreeItem object, which is always this ZafTreeItem object. In
the context of ZafTreeItem, a viewable item may be seen by the end user by
scrolling through the list without expanding any additional ZafTreeItem

ZafTreeItem 557

objects. The following code shows how to search through the viewable items
in the sub-tree:

// Find a visible item in the sub-tree.
for (ZafTreeItem *item = ViewFirst(); item; item = item->

ViewNext())
if (item->NumberID() == matchID)
break;

ViewLast ZafTreeItem *ViewLast(void);

ViewLast() returns a pointer to the last viewable item in the sub-tree, beginning
with this ZafTreeItem object. If this ZafTreeItem object is not Expanded(), or
if there are not ZafTreeItem objects within this ZafTreeItem object, this
ZafTreeItem object is returned. In the context of ZafTreeItem, a viewable item
may be seen by the end user by scrolling through the list without expanding
any additional ZafTreeItem objects. See ViewFirst() for example code.

ViewLevel int ViewLevel(void);

ViewLevel() returns the zero-based level at which the ZafTreeItem object is
found. ZafTreeItem objects that are direct children of the parent ZafTreeList
object are considered to be at level 0, and their children are at level 1, etc.
ViewLevel() is used internally by the ZAF libraries for properly indenting
ZafTreeItem objects within the parent ZafTreeList object.

ViewNext ZafTreeItem *ViewNext(void);

ViewNext() returns the next viewable item in the sub-tree, beginning with this
ZafTreeItem object. See ViewFirst() for more information.

ViewPrevious ZafTreeItem *ViewPrevious(void);

ViewPrevious() returns the previous viewable item in the sub-tree, beginning
with this ZafTreeItem object. See ViewFirst() for more information.

558 Zinc Application Framework 5

ZafTreeList

Inheritance ZafTreeList : ZafWindow : (ZafWindowObject : ZafElement),
ZafList

Declaration #include <z_tree.hpp>

Description ZafTreeList is a scrollable hierarchical list object that intuitively presents a
“tree” of list items. Each object contained in a ZafTreeList may or may not
contain other objects. Objects that contain children may be expanded and col-
lapsed to expose or hide contents. Since the ZafTreeList and ZafTreeItem
classes were specially designed to work together, only ZafTreeItem objects
may be added to a ZafTreeList. The ZafTreeList class utilizes the native OS
tree list API if available, or is closely modeled after popular tree controls on
each platform.

Constructors All ZafTreeList constructors allocate memory for an object instance and ini-
tialize member variables. The default values set by the ZafTreeList and its
base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafTreeList. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

AddDepthItem DrawLines ViewCurrent
AutoSortData SelectionType ViewFirst
DepthCurrent SetBackgroundColor ViewLast
DepthFirst SetTextColor
DepthLast ViewCount

Member Initializations

ZafTreeList
AutoSortData() false

DrawLines() true

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() false†

Sizeable() false†

ZafTreeList 559

ZafTreeList(int left, int top, int width, int height);

This constructor is useful in straight-code situations. left and top specify the
position where the left and top of the object will be placed on its parent, while
width and height specify the width and height of the object.

All values are specified in cell coordinates by default, but may be specified
using another coordinate system if desired. See ZafWindowObject::SetCoor-
dinateType() for more information.

ZafTreeList(const ZafTreeList ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It allocates a new ZafTreeList object and initializes its data from
copy.

ZafTreeList(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Sample ZafTreeList creation techniques:

// Create a sample window with a tree list
ZafWindow *window1 = new ZafWindow(0, 0, 50, 10);

// Create the tree list object
extern ZafBitmapData *nBitmap, *sBitmap;
ZafTreeList *tree = new ZafTreeList(1, 1, 20, 5);

// Create children and add to the tree list

Temporary() false†

ZafWindowObject
Bordered() true

ZafElement
ClassID() ID_ZAF_TREE_LIST

ClassName() "ZafTreeList"

Member Initializations

560 Zinc Application Framework 5

ZafTreeItem *item1 = new ZafTreeItem(nBitmap, sBitmap, "Item
1");

item1->SetExpandable(true);
item1->Add(new ZafTreeItem(nBitmap, sBitmap, "Item 1.1"));
item1->Add(new ZafTreeItem(nBitmap, sBitmap, "Item 1.2"));
item1->Add(new ZafTreeItem(nBitmap, sBitmap, "Item 1.3"));
tree->Add(item1);
ZafTreeItem *item2 = new ZafTreeItem(nBitmap, sBitmap, "Item

2");
item2->SetExpandable(true);
item2->Add(new ZafTreeItem(nBitmap, sBitmap, "Item 2.1"));
item2->Add(new ZafTreeItem(nBitmap, sBitmap, "Item 2.2"));
item2->Add(new ZafTreeItem(nBitmap, sBitmap, "Item 2.3"));
tree->Add(item2);

// Add a vertical scroll bar to the tree list.
tree->Add(new ZafScrollBar(0, 0, 0, 0));

// Add the list to the window.
window1->Add(tree);

Destructor virtual ~ZafTreeList(void);

The destructor is used to free the memory associated with a ZafTreeList object.
It chains to the ZafWindow, ZafList, ZafWindowObject and ZafElement
destructors.

All ZafTreeItem children of a ZafTreeList are automatically destroyed when
the ZafTreeList is destroyed.

Generally, the programmer will not directly destroy a ZafTreeList since it is
automatically destroyed when its parent window is destroyed. For more infor-
mation on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

AddDepthItem ZafWindowObject *AddDepthItem(const ZafIChar *pathName,
ZafWindowObject *object);

AddDepthItem() adds the ZafTreeItem object to the ZafTreeList hierarchy,
using pathName as the parent. pathName is specified by stringIDs separated
by the tilde (’~’) character, starting with the stringID of the ZafTreeList object
as the root and ending with the ZafTreeItem that will contain the new object (if

ZafTreeList 561

any). AddDepthItem() returns a pointer to the item added, if successful, other-
wise it returns null.

// Add Item 1.4 to the tree. "TreeList" is the StringID()
// of the tree, and "Item1" is the StringID() of the tree
// item that will contain the newly added object.
ZafTreeItem *newItem = new ZafTreeItem(normalBitmap,

selectedBitmap, "Item 1.4");
tree->AddDepthItem("TreeList~Item1", newItem);

AutoSortData bool AutoSortData(void) const;

virtual bool SetAutoSortData(bool autoSortData);

If AutoSortData() is set to true, the tree list will automatically sort its children
as they are added to the list. AutoSortData() affects the entire hierarchy of tree
items, therefore each sub-tree will be independently sorted. AutoSortData()
defaults to false.

The function returned by CompareFunction() is used to sort the children. By
default, sorting is done in alphabetical order, but SetCompareFunction() may
be called to provide a custom sorting function. See ZafList::CompareFunc-
tion() for more information about sorting list children.

DepthCurrent ZafTreeItem *DepthCurrent(void);

DepthCurrent() returns the current leaf ZafTreeItem object in the current
branch of the hierarchy. The current leaf item is the item in the tree list that has
focus when the tree list has focus and all its ancestors (higher level or enclos-
ing tree items) are expanded. The current leaf item will not necessarily be
viewable, meaning that not all its ancestors may be expanded.

DepthFirst ZafTreeItem *DepthFirst(void);

DepthFirst() returns the first top-level ZafTreeItem object in the tree. If there
are no tree items, null is returned. This function may be used together with
ZafTreeItem::DepthNext() to perform a depth traversal of the entire hierarchy
of the tree list. This traversal will find every ZafTreeItem in the list, whether in
an expanded branch or not. This is a depth traversal, as opposed to a depth-
first traversal. The following code shows how to do this traversal:

// Traverse all the tree items in the entire hierarchy.
for (ZafTreeItem *item = treeList->DepthFirst(); item; item =

item->DepthNext())
if (item == matchItem)

562 Zinc Application Framework 5

break;

For the following tree, the traversal would find the nodes in this order: A, A1,
A2, B, B1, B2.

A
|__A1
|__A2

B
|__B1
|__B2

DepthLast ZafTreeItem *DepthLast(void);

DepthLast() returns the last leaf ZafTreeItem object in the last branch of the
hierarchy. If there are no tree items, null is returned. The last leaf item will not
necessarily be viewable, since it may be in a non-expanded branch. This func-
tion may be used together with ZafTreeItem::DepthPrevious() to perform a
reverse depth traversal of the entire hierarchy of the tree list. This traversal
will find every ZafTreeItem in the list, whether in an expanded branch or not.
This is a depth traversal, as opposed to a depth-first traversal. See DepthFirst()
for sample code. See also ZafTreeItem::DepthNext().

DrawLines bool DrawLines(void) const;

virtual bool SetDrawLines(bool drawLines);

If DrawLines() is true, the tree list will automatically display lines between the
bitmaps of its children. These lines help to visually define the hierarchical
nature of the list and may differ slightly between environments as appropriate.
DrawLines() is set true by default.

SelectionType ZafSelectionType SelectionType(void) const;

virtual ZafSelectionType
SetSelectionType(ZafSelectionType selectionType);

ZafTreeLists may allow different types of selection behavior. SetSelection-
Type() allows this behavior to be changed from the single-selection default.
Valid values are listed.

SelectionType() Description

ZAF_SINGLE_SELECTION Allows only one ZafTreeItem to be selected.
If another item is selected any previously
selected item is deselected.

ZafTreeList 563

SetBackground-
Color

virtual ZafLogicalColor
SetBackgroundColor(ZafLogicalColor color,
ZafLogicalColor mono = ZAF_MONO_NULL);

SetBackgroundColor() specifies the background color of the ZafTreeList and
the background color of all ZafTreeItems. The default color is obtained from
ZafWindow.

SetTextColor virtual ZafLogicalColor SetTextColor(ZafLogicalColor
color, ZafLogicalColor mono = ZAF_MONO_NULL);

To provide consistency in the appearance of tree list children, this overloaded
function provides functionality for setting the text color for the entire tree list
hierarchy.

ViewCount int ViewCount(void);

ViewCount() returns the number of tree items that may be seen by scrolling
through the list. These include top-level children of the tree list as well as
viewable items in expanded branches. Internally, ZAF uses ViewCount() when
calculating scroll bar values.

ViewCurrent ZafTreeItem *ViewCurrent(void);

ZafTreeItem *SetViewCurrent(ZafTreeItem *item);

The ViewCurrent() item is the current viewable ZafTreeItem (none of its
ancestor tree items is not expanded) in the current branch of the tree list. The
ViewCurrent() item has focus when the tree list has focus. ZafTreeList objects

ZAF_MULTIPLE_SELECTION Allows multiple ZafTreeItems to be selected.
“Selection actions,” including mouse clicks,
cause the selection state of an item to be tog-
gled. The state of other tree items is
unchanged.

ZAF_EXTENDED_SELECTION Allows multiple ZafTreeItems to be selected,
and does this using native multiple- and
extended-selection techniques. For example,
a single click might act as single-select, shift-
click might select a range of items, and ctrl-
click might act as multiple-select.

SelectionType() Description

564 Zinc Application Framework 5

call SetViewCurrent() internally, and the programmer should normally not call
SetViewCurrent().

ViewFirst ZafTreeItem *ViewFirst(void);

ViewFirst() returns a pointer to the first viewable item in the tree list, which is
always the first top-level child of the tree list. If there are no items in the tree
list, null is returned. In the context of ZafTreeList, the “viewable” items may
be seen by scrolling through the list without expanding any additional ZafTree-
Item objects. The following code shows how to search through the viewable
items in the ZafTreeList object:

// Find an item in the tree.
for (ZafTreeItem *item = ViewFirst(); item; item = item->

ViewNext())
if (item->NumberID() == matchID)
break;

ViewLast ZafTreeItem *ViewLast(void);

ViewLast() returns a pointer to the last viewable item in the tree list. If there
are no items in the tree list, null is returned. See ViewFirst() for more informa-
tion. See also ZafTreeItem::ViewNext().

ZafUTime 565

ZafUTime

Inheritance ZafUTime : ZafString : ZafWindowObject : ZafElement

Declaration #include <z_utime1.hpp>

Description ZafUTime is a single-line date and time object that allows user input through
the keyboard. ZafUTime is fully internationalized to display and input using
any format. See ZafString::AllowInvalid() and ZafString::ReportInvalid() for
information on these attributes and how they affect validation for this class.

All ZafUTime objects refer to data contained in a ZafUTimeData object (refer
to this class for additional essential information). ZafUTime includes “year
2000 compliance,” meaning that through the underlying ZafUTimeData object,
a ZafUTime object keeps track of the exact year, rather than just the last two
digits.

Formats ZafString and derived classes parse input and display output based on default
or programmer-defined input and output formats. Programmers may use the
SetInputFormat() and SetOutputFormat() families of functions to change the
default format. The functions are documented in the ZafString reference.

Each class derived from ZafFormatData handles a different set of formatting
arguments, in addition to those supported by its base classes. ZafUTimeData
(and therefore ZafUTime) handles the following arguments:

Event UTimeData

Format Argument Substitution

%% '%' character

%a Locale-specific abbreviated weekday name

%A Locale-specific full weekday name

%b Locale-specific abbreviated month name

%B Locale-specific full month name

%c Locale-specific date and time representation

%C Century number (the year divided by 100 and trun-
cated to an integer) as a decimal number [00-99]

%d Day of month as a decimal number [01, 31]

%D Same as %m/%d/%Y

%e Day of the month as a decimal number [1, 31]; a single
digit is preceded by a space

566 Zinc Application Framework 5

%EC Number of the base year (period) in the locale’s alter-
native representation

%Ey The offset from %EC (year only) in the locale’s alter-
native representation

%EY The full alternative year representation

%g Month as an abbreviated month name

%G Day as an abbreviated day name

%h Same as %H

%H Hour (24-hour clock) as a decimal number [00, 23]

%i Same as %I; may be one or two digits

%I Hour (12-hour clock) as a decimal number [01, 12]

%j Day of the year as a decimal number [01, 366]

%J Seconds in tenths (.1)

%k Seconds in hundredths (.01)

%K Seconds in thousandths (.001)

%m Month as a decimal number [01, 12]

%M Minute as a decimal number [00, 59]

%p Locale equivalent of either a.m. or p.m.

%r Time in a.m. or p.m. notation; in the POSIX locale this
is equivalent to: %I:%M:%S %p

%R Time in 24-hour notation (%H:%M)

%s Same as %@; may be one or two digits

%S Seconds as a decimal number [00, 59]

%T Time (%H:%M:%S)

%u Weekday as a decimal number [1, 7], with 1 represent-
ing Monday

%U Week number of the year (Sunday as the first day of
the week) as a decimal number [00, 53]

%v Month number as a decimal [1, 12]

%V Week number of the year (Monday as the first day of
the week) as a decimal number [01, 53]; if the week
containing 1 January has four or more days in the new
year then it is considered week 1; otherwise, it is week
53 of the previous year, and the next week is week 1

%w Replaced by the weekday as a decimal number [0, 6],
with 0 representing Sunday

Format Argument Substitution

ZafUTime 567

Constructors All ZafUTime constructors initialize the member variables associated with an
instantiated ZafUTime object. The default values set by the ZafUTime and its
base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafUTime. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

ZafUTime(int left, int top, int width, int year, int
month, int day, int hour, int minute, int second, int
milliSecond = 0);

This constructor is useful in straight-code situations, particularly if the ZafU-
Time object is to create, maintain and destroy its own ZafUTimeData object
automatically. left, top, and width specify the position and size of the object on
its parent. All values are specified in cell coordinates by default, but may be

%W Week number of the year (Monday as the first day of
the week) as a decimal number [00, 53]; all days in a
new year preceding the first Sunday are considered to
be in week 0

%x Locale-specific date representation

%X Locale-specific time representation

%y Year without century as a decimal number [00, 99]

%Y Year with century as a decimal number

%Z Timezone name or abbreviation

Format Argument Substitution

Member Initializations

ZafUTime
UTimeData() null

ZafString
LowerCase() false†

Password() false†

StringData() null†

UpperCase() false†

VariableName() false†

ZafElement
ClassID() ID_ZAF_UTIME

ClassName() "ZafUTime"

568 Zinc Application Framework 5

specified using another coordinate system if desired. year, month, day, hour,
minute, second, and milliSecond specify the date and time values that initially
appear in the new ZafUTime object.

ZafUTime(int left, int top, int width, ZafUTimeData
*utimeData = ZAF_NULLP(ZafUTimeData));

This constructor is useful in straight-code situations where a ZafUTimeData
object has already been created. This constructor could be used when manu-
ally maintaining a ZafUTimeData object, rather than having the ZafUTime
class create and maintain the data object automatically. For more information
on using ZafUTimeData objects, see ZafUTimeData. See the previous con-
structor for a description of left, top, and width parameters.

ZafUTime(const ZafUTime ©);

The copy constructor calls the overloaded Duplicate() to create a new ZafU-
Time object and initialize its data from copy. If the original data objects are
StaticData() then the new ZafUTime object simply points to the original data,
otherwise StaticData() copies are made.

ZafUTime(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Sample ZafUTime creation techniques follow:

// Create a sample window with utime objects.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);
// Create utime objects and pass in the values directly.
window1->Add(new ZafUTime(0, 1, 25, 1984, 1, 22, 8, 0, 0));
window1->Add(new ZafUTime(0, 2, 25, 1999, 12, 31, 23, 59, 59));
...
// Create a sample window with utime objects.
ZafWindow *window2 = new ZafWindow(10, 10, 40, 10);
// Create utime data objects.
ZafUTimeData *utimeData1 = new ZafUTimeData(1984, 1, 22, 8, 0,

0);
ZafUTimeData *utimeData2 = new ZafUTimeData(1999, 12, 31, 23,

59, 59);
// Create utimes that use the data previously created.
window2->Add(new ZafUTime(0, 1, 25, utimeData1));
window2->Add(new ZafUTime(0, 2, 25, utimeData2));

ZafUTime 569

Destructor virtual ~ZafUTime(void);

The destructor is used to free the memory associated with a ZafUTime object,
including all data object pieces that are Destroyable(). It chains to the Zaf-
String, ZafWindowObject, and ZafElement destructors.

Generally, the programmer will not directly destroy a ZafUTime object, since
it is automatically destroyed when its parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members
Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function receives all events that get sent to the ZafUTime
object and either handles them or passes them to ZafString, its immediate base
class. See ZafWindowObject for more information.

ZafUTime specifically handles the following events:

UTimeData ZafUTimeData *UTimeData(void) const;

virtual ZafError SetUTimeData(ZafUTimeData *utime);

*UTimeData() contains the actual information used by ZafUTime. The
UTimeData() object may be used by one or more ZafUTime objects, or other
objects. If shared, all associated ZafUTime objects will be notified when the
UTimeData() changes. For more information on data sharing in ZAF, see Zaf-
DataManager. SetUTimeData() will delete the previous UTimeData() object if
it is Destroyable() and no other object uses it.

UTimeData() returns a pointer to the UTimeData() object associated with the
ZafUTime object. The return value for SetUTimeData() is normally
ZAF_ERROR_NONE. See the Constructors code snippet for an example
using ZafUTimeData objects with ZafUTime.

Event Description

N_RESET_I18N Causes the object to redisplay its data according to the
new internationalization values (as a result of calling
ZafI18nData::ResetI18n())

S_COPY_DATA Causes the object to copy into its existing UTimeData()
object event.windowObject’s UTimeData(), but only if
event.windowObject is a ZafUTime object

S_SET_DATA Causes the object to create for itself a new UTimeData()
object, then copy into it event.windowObject’s UTime-
Data(), but only if event.windowObject is a ZafUTime
object

570 Zinc Application Framework 5

ZafUTimeData

Inheritance ZafUTimeData : ZafFormatData : ZafData : ZafElement,
ZafNotification

Declaration #include <z_utime.hpp>

Description ZafUTimeData combines date and time encapsulation with data notification
and object notification from ZafData. It is most often used in conjunction with
the ZafUTime user interface object but may be used as a stand-alone object if
desired. ZafUTimeData serves as the base class for the ZafDateData and Zaf-
TimeData classes.

All ZafData objects may make use of printf-style formatting and parsing argu-
ments during string operations. All ZafUTimeData objects may make use of
strftime- and strptime-style formatting and parsing arguments during string
operations. In addition to printf arguments normally used by string data types,
ZafUTimeData adds additional custom arguments (conversion characters) to
those normally available to the printf family of functions:

Refer to standard library documentation for detailed information on printf, str-
ftime, and strptime functions as well as their corresponding conversion charac-
ters.

BasisYear MilliSecond operator -
Clear Minute operator --
Day Month operator =
DayName MonthName operator +=
DayOfWeek Second operator -=
DayOfYear SetUTime operator <
DaysInMonth TimeName operator <=
DaysInYear Value operator >
FormattedText Year operator >=
Hour ZoneOffset operator ==
LeapYear operator + operator !=
long operator ++

Format conversion char Description

"U" Formats the printf() argument as an
utime.

Parse conversion char

"U" Parses a scanf() stream component as
an utime and stores the value in the
supplied utime argument.

ZafUTimeData 571

 Constructors ZafUTimeData constructors initialize the member variables associated with a
new ZafUTimeData object and allocate space to hold the date and time data.

The default values set by ZafUTimeData follow, if they are overridden from
those set by base class constructors:

ZafUTimeData(void);

The basic constructor allocates a ZafUTimeData instance and initializes its
value to the current system date and time.

ZafUTimeData(ZafUInt32 seconds);

This constructor allocates a ZafUTimeData instance and initializes its contents
to seconds. The data is converted to an offset based on the number of seconds
elapsed since the year 1970 and stored in an internal buffer.

ZafUTimeData(int year, int month, int day, int hour, int
minute, int second, int milliSecond);

This constructor allocates a ZafUTimeData instance and initializes its contents
to the date and time values corresponding to year, month, day, hour, minute,

Member Initializations

ZafUTimeData
BasisYear() ZAF_BASIS_YEAR (in z_utime.hpp)

Day() (varies by constructor)

DayOfWeek() (varies by constructor)

Hour() (varies by constructor)

JulianDay() (varies by constructor)

MilliSecond() (varies by constructor)

Minute() (varies by constructor)

Month() (varies by constructor)

Second() (varies by constructor)

Value() (varies by constructor)

Year() (varies by constructor)

ZoneOffset() (varies by constructor)

ZafElement
ClassID() ID_ZAF_UTIME_DATA

ClassName() "ZafUTimeData"

572 Zinc Application Framework 5

second and milliSecond. The hour value is assumed to be in 24-hour format
(i.e., 22 means 10 p.m.).

ZafUTimeData(const ZafIChar *string, const ZafIChar
*format = ZAF_NULLP(ZafIChar));

This constructor allocates a ZafUTimeData instance and initializes its contents
to the date and time equivalent of string. The conversion uses the strptime-
style specifier format to interpret the string. If format is null ZafUTimeData
uses its locale-specific default format.

ZafUTimeData(const ZafUTimeData ©);

This constructor is the copy constructor. It allocates a new ZafUTimeData
instance and copies all member data from copy.

ZafUTimeData(const ZafIChar *name, ZafDataPersistence
&persist);

This constructor is the persistent constructor. It allocates a new ZafUTimeData
instance and reads most member data from the name directory of the persistent
data file referred to by persist. The StringID() of the new data is name.

// Sample ZafUTimeData creation techniques.
ZafUTimeData uTime1(1997, 3, 20, 10, 25);
ZafUTimeData copyUTime = uTime1;
ZafUTimeData uTime2("1997 2 14 14 25", "%Y %m %d %H %M");
ZafUTimeData systemUTime;

Destructor virtual ~ZafUTimeData(void);

The destructor is used to free the memory associated with an instantiated
ZafUTimeData object. Unless StaticData() is true a ZafUTimeData object is
usually destroyed automatically when all ZafUTime objects that refer to it are
destroyed.

ZafUTimeData 573

Members
BasisYear int BasisYear(void) const;

virtual ZafError SetBasisYear(int basisYear);

BasisYear() returns the basis year value of the ZafUTimeData object. By
default, the basis year is set to ZAF_BASIS_YEAR, defined in z_utime.hpp.
ZAF_BASIS_YEAR is set to 1950 in the shipping ZAF header file, but may be
modified by the programmer before rebuilding the libraries for the new value
to take effect. SetBasisYear() sets the basis year used by the ZafUTimeData
object to interpret 2-digit year values.

Clear virtual void Clear(void);

Clear() sets the value of the ZafUTimeData object to the current system date
and time.

Day int Day(void) const;

Day() returns the day in the month (1..31) for the ZafUTimeData object.

DayName static ZafIChar ZAF_FARDATA *DayName(void);

DayName() returns the name string of the day of the week (e.g., Tuesday) for
the ZafUTimeData object. This name string will be the language-specific
string set up by the application’s language initialization.

DayOfWeek int DayOfWeek(void) const;

DayOfWeek() returns the numerical value of the day of the week (Sunday = 1,
Monday = 2, ... Saturday = 7) for the ZafUTimeData object.

DayOfYear int DayOfYear(void) const;

DayOfYear() returns the numerical value of the day of the year (1..366) for the
ZafUTimeData object.

DaysInMonth int DaysInMonth(int month = 0) const;

DaysInMonth() returns the number of days in the month corresponding to
month. If month is missing, the number of days in the month represented by
the ZafUTimeData object is returned.

574 Zinc Application Framework 5

DaysInYear int DaysInYear(void) const;

DaysInYear() returns the number of days in the year represented by the ZafU-
TimeData object.

FormattedText virtual int FormattedText(ZafIChar *buffer, int
maxLength, const ZafIChar *format = 0) const;

FormattedText() fills buffer with a string representation of the ZafUTImeData
using the strftime-style specifier format to build the string. A locale-specific
default format is used if format is not included. Buffer contents will be trun-
cated if they exceed maxLength characters. FormattedText() returns the inte-
ger value it receives from its call to strftime().

Hour int Hour(void) const;

Hour() returns the hour value (0..23) of the ZafUTimeData object.

JulianDay long JulianDay(void) const;

virtual ZafError SetJulianDay(long jDay);

JulianDay() returns the Julian day value of the ZafUTimeData object. SetJuli-
anDay() may be called to set the Julian day of the ZafUTimeData object.

LeapYear bool LeapYear(void) const;

LeapYear() returns true if the current year value of the ZafUTimeData object is
a leap year. Otherwise, this function returns false.

long operator long();

See Value().

MilliSecond int MilliSecond(void) const;

MilliSecond() returns the time value, in milliseconds (0..999), of the ZafU-
TimeData object.

Minute int Minute(void) const;

Minute() returns the time value, in minutes (0..59), of the ZafUTimeData
object.

ZafUTimeData 575

Month int Month(void) const;

Month() returns the numerical month value (January = 1, February = 2, ...
December = 12) of the ZafUTimeData object.

MonthName static ZafIChar ZAF_FARDATA *MonthName(void);

MonthName() returns the name string for the month value of the ZafUTime-
Data object. This name string will be the language-specific string set up by the
application’s language initialization.

Second int Second(void) const;

Second() returns the time value, in seconds (0..59), of the ZafUTimeData
object.

TimeName static ZafIChar ZAF_FARDATA *TimeName(void);

TimeName() returns the name string (e.g., a.m.) for the time value of a ZafU-
TimeData object. This name string will be the language-specific string set up
by the application’s language initialization.

SetUTime virtual ZafError SetUTime(ZafUInt32 seconds);

virtual ZafError SetUTime(int year, int month, int day,
int hour, int minute, int second, int milliSecond);

virtual ZafError SetUTime(const ZafIChar *buffer, const
ZafIChar *format);

virtual ZafError SetUTime(const ZafUTimeData &number);

SetUTime() functions set the value of the ZafUTimeData object from numeric
input, another utime, or an interpreted string. Refer to FormattedText() for
more information on utime/string conversions.

Value long Value(void) const;
long operator long();

Value() returns the difference in time between the ZafUTimeData object’s
value and the year 1900. If the time period is at least a day, the return value is
measured in Julian days; otherwise the return value is measured in millisec-
onds. The convenience operator long(), which returns Value(), is more com-
monly used.

576 Zinc Application Framework 5

Year int Year(void) const;

Year() returns the year value of the ZafUTimeData object.

ZoneOffset int ZoneOffset(void) const;

virtual ZafError SetZoneOffset(int zoneOffset);

ZoneOffset() returns the timezone offset used by the ZafUTimeData object to
interpret time values. SetZoneOffset() sets the timezone offset used by the
ZafUTimeData object to interpret time values.

operator - ZafUTimeData operator-(const ZafUTimeData &utime);

ZafUTimeData operator-(long seconds);

These operators allow simple subtraction operations involving ZafUTimeData
objects and longs.

operator -- ZafUTimeData operator--(void);

ZafUTimeData operator--(int);

These pre- and post-operators decrement the ZafUTimeData object’s date and
time values by 1.

operator + ZafUTimeData operator+(const ZafUTimeData &utime2);

ZafUTimeData operator+(long seconds);

These operators allow simple addition operations involving ZafUTimeData
objects and longs.

operator ++ ZafUTimeData operator++(void);

ZafUTimeData operator++(int);

These pre- and post-operators increment the ZafUTimeData object’s date and
time values by 1.

operator = ZafUTimeData &operator=(const ZafUTimeData &utime);

ZafUTimeData &operator=(long seconds);

These operators assign the ZafUTimeData object’s value to the input value
which may be a long or another ZafUTimeData.

ZafUTimeData 577

operator -= ZafUTimeData &operator-=(const ZafUTimeData &utime);

ZafUTimeData &operator-=(long seconds);

These operators decrement the ZafUTimeData object’s value by the input
value.

operator += ZafUTimeData &operator+=(const ZafUTimeData &utime);

ZafUTimeData &operator+=(long seconds);

These operators increment the ZafUTimeData object’s value by the input
value.

578 Zinc Application Framework 5

operator < bool operator<(const ZafUTimeData &utime2);

This operator returns true if utime2 is earlier than this ZafUTimeData object.

operator <= bool operator<=(const ZafUTimeData &utime2);

This operator returns true if utime2 is earlier than or the same as this ZafU-
TimeData object.

operator > bool operator>(const ZafUTimeData &utime2);

This operator returns true if utime2 is later than this ZafUTimeData object.

operator >= bool operator>=(const ZafUTimeData &utime2);

This operator returns true if utime2 is later than or the same as this ZafUTime-
Data object.

operator == bool operator==(const ZafUTimeData &utime2);

This operator returns true if utime2 is the same as this ZafUTimeData object.

operator != bool operator!=(const ZafUTimeData &utime2);

This operator returns true if utime2 is not the same as this ZafUTimeData
object.

ZafVtList 579

ZafVtList

Inheritance ZafVtList : ZafWindow : (ZafWindowObject : ZafElement),
ZafList

Declaration #include <z_vlist.hpp>

Description The ZafVtList object is a single-column list object that arranges list items ver-
tically. A ZafVtList object may have a vertical scroll bar associated with it.
Like ZafHzList it supports single, multiple and extended selection methods,
and list children may not be Noncurrent().

Constructors All ZafVtList constructors initialize the member variables associated with an
instantiated ZafVtList object. The default values set by the ZafVtList and its
base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafVtList. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

AutoSortData SetBackgroundColor SetTextColor
SelectionType SetFont

Member Initializations

ZafVtList
AutoSortData() false

ZafWindow
Destroyable() false†

Locked() false†

Maximized() false†

Minimized() false†

Modal() false†

Moveable() false†

NormalHotKeys() false†

Sizeable() false†

ZafWindowObject
Bordered() true

ZafElement
ClassID() ID_ZAF_VT_LIST

ClassName() “ZafVtList”

580 Zinc Application Framework 5

ZafVtList(int left, int top, int width, int height);

This constructor is useful in straight-code situations. left and top specify the
position where the left and top of the object will be placed on its parent. width
and height specify the width and height of the object. All values are specified
in cell coordinates by default, but may be specified using another coordinate
system if desired.

ZafVtList(const ZafVtList ©);

The copy constructor is used in conjunction with the overloaded Duplicate()
function. It accepts another ZafVtList object and copies the object’s informa-
tion.

ZafVtList(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. Refer to ZafWindow for more
information, since most persistence is done at the ZafWindow level.

Sample ZafVtList creation techniques follow:

// Create a sample window with a vertical list of strings.
ZafWindow *window1 = new ZafWindow(0, 0, 50, 10);
// Create the vertical list object.
ZafVtList *vList1 = new ZafVtList(1, 1, 20, 5);
// Add a scroll bar and the strings to the vertical list.
vList1->Add(new ZafScrollBar(0, 0, 0, 0));
vList1->Add(new ZafString(0, 0, 20, "String 1", -1));
vList1->Add(new ZafString(0, 0, 20, "String 2", -1));
vList1->Add(new ZafString(0, 0, 20, "String 3", -1));
vList1->Add(new ZafString(0, 0, 20, "String 4", -1));
vList1->Add(new ZafString(0, 0, 20, "String 5", -1));
vList1->Add(new ZafString(0, 0, 20, "String 6", -1));
// Add the list to the window.
window1->Add(vList1);
...
// Create a sample window with a vertical list of buttons.
ZafWindow *window2 = new ZafWindow(10, 10, 50, 10);
// Create the vertical list object and its children.
ZafVtList *vList2 = new ZafVtList(1, 1, 20, 5);
// Allow the list children to draw bitmap information.
vList2->SetOSDraw(false);
extern ZafBitmapData *bitmap1, *bitmap2, *bitmap3, *bitmap4;
vList2->Add(new ZafButton(0, 0, 20, 1, ZAF_NULLP(ZafIChar),

bitmap1));

ZafVtList 581

vList2->Add(new ZafButton(0, 0, 20, 1, ZAF_NULLP(ZafIChar),
bitmap2));

vList2->Add(new ZafButton(0, 0, 20, 1, ZAF_NULLP(ZafIChar),
bitmap3));

vList2->Add(new ZafButton(0, 0, 20, 1, ZAF_NULLP(ZafIChar),
bitmap4));

// Add the list to the window.
window2->Add(vList2);

Destructor virtual ~ZafVtList(void);

The destructor is used to free the memory associated with a ZafVtList object.
It chains to the ZafWindow, ZafList, ZafWindowObject and ZafElement
destructors.

Generally, the programmer will not directly destroy a ZafVtList object, since it
is automatically destroyed when its parent window is destroyed. For more
information on child object deletion, see ZafWindow::~ZafWindow().

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. If the Set*() function
does not successfully change the state as requested, however, it will instead
return the current state.

AutoSortData bool AutoSortData(void) const;

virtual bool SetAutoSortData(bool autoSortData);

If AutoSortData() is true, the list will automatically sort its children as they are
added to the list. The function returned by CompareFunction() is used to sort
the children. By default, sorting is done in alphabetical order, but SetCom-
pareFunction() may be called to provide a custom sorting function. See
ZafList::CompareFunction() for more information about sorting list children.
The default value of this attribute is false, but the user may call SetAutoSort-
Data() to change it.

SetBackground-
Color

virtual ZafLogicalColor
SetBackgroundColor(ZafLogicalColor color,
ZafLogicalColor mono = ZAF_MONO_NULL);

To provide consistency in the appearance of list children, the ZafVtList object
sets the ParentPalette() attribute on each of its children (see ZafWindowOb-
ject::ParentPalette()). In conjunction with this attribute, this overloaded func-
tion provides functionality for setting the background color for all the children
in the list.

582 Zinc Application Framework 5

SelectionType ZafSelectionType SelectionType(void) const;

virtual ZafSelectionType
SetSelectionType(ZafSelectionType selectionType);

ZafVtLists may allow different types of selection behavior. SetSelection-
Type() allows this behavior to be changed from the single-selection default.
Valid values are listed.

SetFont virtual ZafLogicalFont SetFont(ZafLogicalFont font);

To provide consistency in the appearance of list children, the ZafVtList object
sets the ParentPalette() attribute on each of its children (see ZafWindowOb-
ject::ParentPalette()). In conjunction with this attribute, this overloaded func-
tion provides functionality for setting the font for all the children in the list.

SetTextColor virtual ZafLogicalColor SetTextColor(ZafLogicalColor
color, ZafLogicalColor mono = ZAF_MONO_NULL);

To provide consistency in the appearance of list children, the ZafVtList object
sets the ParentPalette() attribute on each of its children (see ZafWindowOb-
ject::ParentPalette()). In conjunction with this attribute, this overloaded func-
tion provides functionality for setting the text color for all the children in the
list.

SelectionType() Description

ZAF_SINGLE_SELECTION Allows only one item to be selected. If
another item is selected any previously
selected item is deselected.

ZAF_MULTIPLE_SELECTION Allows multiple items to be selected. “Selec-
tion actions,” including mouse clicks, cause
the selection state of an item to be toggled.
The state of other list items is unchanged.

ZAF_EXTENDED_SELECTION Allows multiple items to be selected, and
does this using native multiple- and extended-
selection techniques. For example, a single
click might act as single-select, shift-click
might select a range of items, and ctrl-click
might act as multiple-select.

ZafWindow 583

ZafWindow

Inheritance ZafWindow : (ZafWindowObject : ZafElement), ZafList

Declaration #include <z_win.hpp>

Description ZafWindow defines the basic functionality necessary to display groups of
objects on the screen. As with all other ZAF classes, the ZafWindow class uti-
lizes the native window API if available, so the look-and-feel is exactly what
the end user expects. In fact, ZAF ties into the native API so closely that sys-
tem-wide modifications made by the end user are reflected in ZAF windows
(such as color and font schemes), unless a user-defined palette has been speci-
fied. See ZafWindowObject::UserPaletteData() for more information.

Windows provided by the native environment generally have automatic sup-
port for decorations such as borders, title bars, system buttons, minimize but-
tons, and maximize buttons. These decorations may be added to a ZafWindow
object with the following classes: ZafBorder, ZafTitle, ZafSystemButton,
ZafMinimizeButton, and ZafMaximizeButton. However, a ZafWindow object
with any of these decorations may not be a proper child window (in other
words, a non-MDI child window). Only top-level windows added to the Zaf-
WindowManager object may have decorations, with the exception of the
ZafMDIWindow class. See ZafMDIWindow for more information.

ZafWindow is a convenient base class for other classes that maintain child
objects. Therefore, many of the classes in ZAF such as ZafGroup,
ZafTreeList, and ZafVtList derive from ZafWindow. ZAF also provides many
variations of window classes based upon ZafWindow, such as ZafDialogWin-
dow, ZafMDIWindow, and ZafScrolledWindow.

Add GeometryManager Subtract
AddGenericObjects HorizontalScrollBar support
AutomaticUpdate Locked SupportCurrent
Border MaximizeButton SupportDestroy
BroadcastEvent Maximized SupportFirst
Changed MinimizedButton SupportLast
ClientRegion Minimized SystemButton
CompareAscending MinimizeIcon SystemButtonMenu
CompareDescending Modal Temporary
CornerScrollBar Moveable Text
DefaultButton NormalHotKeys Title
Destroy Owner VerticalScrollBar
Destroyable PullDownMenu operator +
Event SelectionType operator -
FocusObject Sizeable operator ()

584 Zinc Application Framework 5

Refer to this section of this manual to answer questions regarding the general
operation of window classes.

Constructors All ZafWindow constructors initialize the member variables associated with an
instantiated ZafWindow object. The default values set by the ZafWindow and
its base class constructors follow, if they differ from those set by the base class
constructor, or if a blocking function is implemented in ZafWindow. “†” Indi-
cates a blocking function that prevents changes to the attribute in this class.

Member Initializations

ZafWindow

DefaultButton() null

Destroyable() true

Locked() false

Maximized() false

Minimized() false

Modal() false

Moveable() true

NormalHotKeys() false

Owner() null

SelectionType() ZAF_SINGLE_SELECTION

Sizeable() true

Temporary() false

ZafWindowObject

CopyDraggable() false†

LinkDraggable() false†

MoveDraggable() false†

ParentDrawBorder() false†

ParentDrawFocus() false†

Region() ZAF_CELL, left, top, left + width
- 1, top + height - 1

Selected() false†

ZafElement

ClassID() ID_ZAF_WINDOW

ClassName() "ZafWindow"

ZafWindow 585

ZafWindow(int left, int top, int width, int height);

The first constructor is useful in straight-code situations. The four parameters
left, top, width, and height define the absolute size and position of the window.
All values are specified in cell coordinates by default, but may be specified
using another coordinate system if desired. A root window (one added to the
ZafWindowManager object) positions itself on the screen such that the left and
top parameters specify the left and top coordinates of its client region, respec-
tively. A child window’s position is relative to the top-left corner of its par-
ent’s client region.

ZafWindow(const ZafWindowObject ©);

This is the copy constructor which accepts another ZafWindow, copy, and cop-
ies the object’s information. This constructor is used in conjunction with the
overloaded Duplicate() function.

ZafWindow(const ZafIChar *name, ZafObjectPersistence
&persist);

The final constructor is used for persistence. name specifies the name of the
window to be read from a persistent file. persist contains persistent informa-
tion such as a pointer to the file-system and object constructors—both neces-
sary for object creation. The following examples demonstrate how to create a
window in code and how to use persistence in general window creation:

// Create a sample window.
ZafWindow *window1 = new ZafWindow(0, 0, 40, 10);
// Add the decorations to the window.
window1->Add(new ZafBorder);
window1->Add(new ZafMaximizeButton);
window1->Add(new ZafMinimizeButton);
window1->Add(new ZafSystemButton);
window1->Add(new ZafTitle("Sample Window");
// Add a button to the window.
window1->Add(new ZafButton(2, 4, 15, 1, "Button",

ZAF_NULLP(ZafBitmapData)));
// Put the window on the screen.
windowManager->Add(window1);

// Open the data file.
ZafStorage *storage = new ZafStorage("myfile.dat");
// Create the persistence object.
ZafObjectPersistence persist(storage,

zafDefaultDataConstructor, zafDefaultObjectConstructor);

586 Zinc Application Framework 5

// Load the persistent window "MyWindow".
windowManager->Add(new ZafWindow("MyWindow", persist));

Destructor virtual ~ZafWindow(void);

The destructor is used to free the memory associated with a ZafWindow object,
including all the attached child objects and all the data object pieces that are
Destroyable(). It chains to the ZafWindowObject, ZafElement, and ZafList
destructors.

Since this destructor chains to the ZafList destructor, all the attached child
objects are also subtracted from the window and destroyed. This is convenient
for the programmer, since child objects need not be individually destroyed.
See Subtract() for more information.

Generally, the programmer will not directly destroy a ZafWindow object, since
it is automatically destroyed when it is removed from the window manager, or
when the parent window is destroyed. The following code provides an exam-
ple:

// Create a sample window.
ZafWindow *window1 = new ZafWindow(2, 2, 40, 10);
// Add the decorations to the window.
window1->Add(new ZafBorder);
window1->Add(new ZafMaximizeButton);
window1->Add(new ZafMinimizeButton);
window1->Add(new ZafSystemButton);
window1->Add(new ZafTitle("Sample Window");
// Add a button to the window.
window1->Add(new ZafButton(2, 4, 15, 1, "Button",

ZAF_NULLP(ZafBitmapData)));
...
// Destroy the window and all its children.
delete window1;

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

Add virtual ZafWindowObject *Add(ZafWindowObject *object,
ZafWindowObject *position =
ZAF_NULLP(ZafWindowObject));

operator + ZafWindow &operator+(ZafWindowObject *object);

ZafWindow 587

This function and operator overload base ZafList::Add() functionality to han-
dle advanced addition operations typical of derived ZafWindow classes. For
instance, ZafVtList has widely different implementations on the Microsoft
Windows and Motif platforms. On Windows, the objects are represented inter-
nally by the OS and the only interface is accomplished through LB_* mes-
sages. On Motif, there is no widget representation at all! Thus the exact
handling, insertion and updating of an object is performed uniquely by each
overloaded Add() function.

For objects added to ZafWindow, these three operations are performed:

• they are added to the list of support or non-support children (either the support
member or the base ZafList part of the class, respectively)

• their parent pointer is set to point to the ZafWindow object

• they are updated on the screen if the parent window is already visible to the user

This overloaded function and operator return a typesafe ZafWindowObject
pointer, which is generally the object that was passed to the Add() function, but
can be null if the object either currently resides within another window or is an
invalid type of Add() operation. An invalid add operation would be adding a
ZafTable object to a ZafPullDownMenu.

The following code demonstrates correct use of this function and operator:

// Add support children to a window.
ZafWindow *window1 = new ZafWindow(2, 2, 50, 10);
window1->Add(new ZafBorder);
window1->Add(new ZafMaximizeButton);
window1->Add(new ZafMinimizeButton);
window1->Add(new ZafSystemButton);
window1->Add(new ZafTitle("String Window"));

// Do the same thing with the + operator.
ZafWindow *window2 = new ZafWindow(3, 3, 50, 10);
*window2
+ new ZafBorder
+ new ZafMaximizeButton
+ new ZafMinimizeButton
+ new ZafSystemButton
+ new ZafTitle("String Window");

AddGenericObjects ZafWindow *AddGenericObjects(ZafIChar *title,
ZafWindowObject *minObject =
ZAF_NULLP(ZafWindowObject));

588 Zinc Application Framework 5

ZafWindow *AddGenericObjects(ZafStringData *title,
ZafWindowObject *minObject =
ZAF_NULLP(ZafWindowObject));

AddGenericObjects() may be called on a ZafWindow to add all the common
decorations to it before it has been added to the window manager. The decora-
tions included on a window created with AddGenericObjects() are (added to
the window in this order) ZafBorder, ZafMaximizeButton, ZafMinimizeBut-
ton, ZafSystemButton, ZafTitle, and optionally a minimize icon (ZafIcon). If
AddGenericObjects() is not called to add these objects to a window, the desired
objects must be added by the programmer in the proper order (as shown
above); if these objects are not added in this order, the window will not appear
as expected since they each in turn pare down the client region of the window.
title specifies the text to be placed in the title bar. minObject, if non-null, spec-
ifies the ZafIcon object to be used when the window is minimized. A pointer
to the window is returned. The following code shows the proper use of this
function:

// Create a window with all the normal decorations on it.
ZafWindow *window = new ZafWindow(2, 2, 40, 10);
window->AddGenericObjects(new ZafStringData("Test Window"));
// Add the window to the window manager.
windowManager->Add(window);

AutomaticUpdate virtual bool AutomaticUpdate(void) const;

virtual bool SetAutomaticUpdate(bool automaticUpdate);

This function inherits all the functionality of the base ZafWindowObject::Set-
AutomaticUpdate() function and adds functionality that optimizes the addition
and subtraction of child objects. Frequently, when either adding or subtracting
numerous child objects, it is desirable to have only a single visible update to
the screen. For example, a ZafVtList that contains the names of all files in the
current directory, when moving up a directory should present the new files in
one clean refresh. This is done by calling SetAutomaticUpdate(false), making
the list changes, then resetting the automatic update to true. The following
code shows how this can be done:

// Refresh the list with new files.
void MyFileList::RedoList(void)
{
// Destroy the old elements in the list.
SetAutomaticUpdate(false);
Destroy();

// Add new list elements

ZafWindow 589

for (FileElement *element = fileSystem->FindFirst("*");
element;
element = fileSystem->FindNext());
Add(new ZafString(0, 0, 20, element->Text(), -1);

// Update the list’s presentation.
SetAutomaticUpdate(true);

}

Border ZafBorder *Border(void);

This function returns a pointer to a ZafBorder child object, if the instantiated
object exists in the window’s list of support children (refer to the support sec-
tion of this chapter for more information about support children). A ZafBorder
object will exist only if one of the following conditions have been met:

• it has previously been added with the ZafWindow::Add() function

• it has been added by sending an S_ADD_OBJECT message with event.win-
dowObject pointing to an instantiated ZafBorder object

• it has been added by the AddGenericObjects() function

• the window was constructed using the persistent constructor and a ZafBorder
object was loaded as a child object

Otherwise, this function returns a null pointer.

BroadcastEvent virtual void BroadcastEvent(const ZafEventStruct &event,
int levels = 0);

This is a convenience function that dispatches an event to all the window’s nor-
mal and support children. Typically, this function is used to propagate a partic-
ular event to all of the children associated with a derived window. For
instance, the following code shows how an event can be passed to a ZafWin-
dow object’s children:

ZafEventType MyWindow::Event(const ZafEventStruct &event)
{
ZafEventType ccode = event.type;
if (ccode == MY_EVENT)
BroadcastEvent(event);

ccode = ZafWindowObject::Event(event);
return (ccode);

}

levels specifies the number of hierarchical levels of children BroadcastEvent()
traverses. If levels is 0, BroadcastEvent() does not traverse children other than

590 Zinc Application Framework 5

the window’s immediate children. If levels is -1, BroadcastEvent() traverses
all levels of children in a window’s hierarchy.

The return values from the children’s Event() functions are ignored. Thus, to
assess the current state of a given operation, rather than calling Broad-
castEvent(), dispatch the events directly to the objects. The following example
shows how this may be accomplished:

ZafEventType MyWindow::Broadcast(const ZAF_EVENT_STRUCT &event)
{
// Broadcast the event to all normal children.
ZafEventType ccode = event.type;
for (ZafWindowObject *object = First(); object; object =
object->Next())

{
ccode = object->Event(event);
if (ccode != event.type)
break; // an error occurred.

}
return (ccode);

}

Changed virtual bool Changed(void) const;

virtual bool SetChanged(bool changed);

These functions inherit all the features of ZafWindowObject::Changed() and
ZafWindowObject::SetChanged(), but also add a search mechanism on the
window’s children. In particular, the Changed() function traverses all it’s nor-
mal children to determine if any has the “Changed() == true” setting. If any
child’s setting is true, the function returns true.

SetChanged() overrides the base functionality by not only resetting the win-
dow’s changed status, but also by clearing the children’s Changed() values if
the argument passed is false. This in effect is a “Change All” command, but
only acts as such if the argument passed is false. If the argument is true, the
window resets its internal value, but does not propagate that change to all of its
children. The following example demonstrates correct use of these functions:

// Check for a changed window.
if (window->Changed())
{
WriteInfoToDisk(window);
window->SetChanged(false); // clears all the children.

}

ZafWindow 591

ClientRegion ZafRegionStruct ClientRegion(void) const;

The client region of a window is the area inside all the decorations and support
objects. For example, after a border, a title bar, a tool bar, and a status bar are
added to a window, the remaining region in the window is referred to as the
window’s ClientRegion(). Any normal child added to the window, such as a
string field, is placed relative to the top-left of the window’s ClientRegion().
In other words, the ClientRegion() of the window is made smaller by each sup-
port object added to the window.

Note that ClientRegion() returns the region defined by the native environment
as the window’s client region, and thus may only be used portably for deter-
mining the size of the window’s client region. This is an advanced function
used internally by the ZAF libraries, and should normally not be called by the
programmer. Child objects are automatically placed relative to the client
region when added to the window, so the programmer should never be con-
cerned with the position of the ClientRegion().

CompareAscending static int CompareAscending(ZafWindowObject *object1,
ZafWindowObject *object2);

Compare-
Descending

static int CompareDescending(ZafWindowObject *object1,
ZafWindowObject *object2);

These two functions provide sort methods for derived ZafWindow classes such
as ZafVtList and ZafHzList to allow the insertion of list items in ascending or
descending collation sequences. The functions are bound directly to
ZafList::CompareFunction() whenever the SetAutoSort(true) function is called
for these derived classes. In general, these functions should not be used with
ZafWindow, but they are available for classes derived from ZafWindow that
require sorting functionality. The following sample code shows how to set the
list pointer to these functions:

void MyWindow::DoTheSort(bool sortAscending)
{
// Reset the sort function.
if (sortAscending)
SetCompareFunction((ZafCompareFunction)CompareAscending);

else
SetCompareFunction((ZafCompareFunction)CompareDescending);

// Sort the children.
Sort();

}

CornerScrollBar ZafScrollBar *CornerScrollBar(void);

592 Zinc Application Framework 5

This function returns a pointer to a corner ZafScrollBar child object, if the
instantiated object exists in the window’s list of support children (refer to the
support section of this chapter for more information about support children). A
corner ZafScrollBar object will exist only if one of the following conditions
have been met:

• it has previously been added with the ZafWindow::Add() function

• it has been added by sending an S_ADD_OBJECT message with event.win-
dowObject pointing to an instantiated corner ZafScrollBar object

• the window was constructed using the persistent constructor and a corner Zaf-
ScrollBar object was loaded as a child object

Otherwise, this function returns a null pointer.

DefaultButton ZafButton *DefaultButton(void) const;

ZafButton *SetDefaultButton(ZafButton *object);

A default button is the button that will be selected when the user types <Enter>
or <Return>. The default value of this attribute is null, but the user may call
SetDefaultButton() to set a default button for a window. SetDefaultButton()
tells the parent window which button is to function as the default button, but
does not set the ZafButton::AllowDefault() attribute on the button, which
causes the button to be visually indicated as the default button. DefaultBut-
ton() affects which button functions as the default button on the window, and
the ZafButton::AllowDefault() attribute affects the visual aspect of a button.
Refer to ZafButton::AllowDefault() for more information.

The following code provides a brief example:

// Create the OK button as the default button.
ZafButton *button1 = new ZafButton(1, 4, 12, 1, "OK",

ZAF_NULLP(ZafBitmapData));
button1->SetAllowDefault(true);
window->Add(button1);
window->SetDefaultButton(button1);

Destroy virtual void Destroy(void);

This function inherits features of the base ZafList::Destroy() function and adds
functionality to redisplay the window, if visible on the screen, and to delete OS
specific references to the children if they exist. This is a destructive call that
not only removes children from the window’s list, but also deletes them.

Note, this function does not remove any of the window’s support children. See
SupportDestroy() for more information.

ZafWindow 593

Destroyable bool Destroyable(void) const;

virtual bool SetDestroyable(bool destroyable);

If Destroyable() is true, the window is considered non-static and is maintained
by ZAF. In other words, when the window is closed (either by the end user, or
by the programmer), it is destroyed with the delete operator, causing its
destructor to be called. On the other hand, if Destroyable() is false, ZAF will
not destroy the window, and the programmer assumes responsibility for it. The
default value of this attribute is true, but it may be changed by calling SetDe-
stroyable().

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events that are sent to the ZafWindow
object, either by processing the events itself, or by passing the event down for
base class processing. Refer to ZafWindowObject::Event() for complete
details. In addition to events handled by its base classes, the following are han-
dled by ZafWindow:

FocusObject virtual ZafWindowObject *FocusObject(void);

FocusObject() returns the leaf object that has focus, the object that receives
keyboard events. If there is no object with focus, such as when all the objects
on a window are either Disabled() or Noncurrent(), FocusObject() returns null.

GeometryManager ZafGeometryManager *GeometryManager(void);

Event type Description

S_ADD_OBJECT Causes event.windowObject to be added as a
child

S_MAXIMIZE Causes the window to be maximized

S_MINIMIZE Causes the window to be minimized

S_RESTORE Causes a maximized or minimized window to
be restored

S_SUBTRACT_OBJECT Causes event.windowObject to be subtracted
as a child

N_CLOSE Notifies that the window is about to be closed

L_NEXT Causes the next child to receive focus

L_PREVIOUS Causes the previous child to receive focus

594 Zinc Application Framework 5

This function returns a pointer to a ZafGeometryManager child object, if the
instantiated object exists in the window’s list of support children (refer to the
support section of this chapter for more information about support children). A
ZafGeometryManager object will exist only if one of the following conditions
have been met:

• it has previously been added with the ZafWindow::Add() function

• it has been added by sending an S_ADD_OBJECT message with event.win-
dowObject pointing to an instantiated ZafGeometryManager object

• the window was constructed using the persistent constructor and a ZafGeome-
tryManager object was loaded as a child object

Otherwise, this function returns a null pointer.

HorizontalScrollBar ZafScrollBar *HorizontalScrollBar(void);

This function returns a pointer to a horizontal ZafScrollBar child object, if the
instantiated object exists in the window’s list of support children (refer to the
support section of this chapter for more information about support children). A
horizontal ZafScrollBar object will exist only if one of the following condi-
tions have been met:

• it has previously been added with the ZafWindow::Add() function

• it has been added by sending an S_ADD_OBJECT message with event.win-
dowObject pointing to an instantiated horizontal ZafScrollBar object

• the window was constructed using the persistent constructor and a horizontal Zaf-
ScrollBar object was loaded as a child object

Otherwise, this function returns a null pointer.

Locked bool Locked(void) const;

virtual bool SetLocked(bool locked);

If Locked() is true, the window may not be closed, but is to remain on the
screen. A Locked() window’s system button will reflect the fact that the end
user may not close the window by disabling the appropriate menu item, if it
exists. However, in some environments the window may be closed down
unexpectedly by the environment. If Locked() is false, the window may be
closed normally. The default value of this attribute is false, but it may be
changed by calling SetLocked().

MaximizeButton ZafMaximizeButton *MaximizeButton(void);

ZafWindow 595

This function returns a pointer to a ZafMaximizeButton child object, if the
instantiated object exists in the window’s list of support children (refer to the
support section of this chapter for more information about support children). A
ZafMaximizeButton object will exist only if one of the following conditions
have been met:

• it has previously been added with the ZafWindow::Add() function

• it has been added by sending an S_ADD_OBJECT message with event.win-
dowObject pointing to an instantiated ZafMaximizeButton object

• it has been added by the AddGenericObjects() function

• the window was constructed using the persistent constructor and a ZafMaximize-
Button object was loaded as a child object

Otherwise, this function returns a null pointer.

Maximized bool Maximized(void) const;

virtual bool SetMaximized(bool maximized);

If Maximized() is true, the window is presented on the screen as maximimized,
otherwise the window’s position and size are specified by Region(). The
default value of this attribute is false, but it may be changed at any time by call-
ing SetMaximized().

To make the window appear maximized when it first shows up on the screen,
call SetMaximized(true) before adding the window to the window manager.
Later calling SetMaximized(false) restores the window to its normal position
and size. Both Maximized() and Minimized() should never be set to true at the
same time, as the result is undefined.

MinimizedButton ZafMinimizeButton *MinimizeButton(void);

This function returns a pointer to a ZafMinimizeButton child object, if the
instantiated object exists in the window’s list of support children (refer to the
support section of this chapter for more information about support children). A
ZafMinimizeButton object will exist only if one of the following conditions
have been met:

• it has previously been added with the ZafWindow::Add() function

• it has been added by sending an S_ADD_OBJECT message with event.win-
dowObject pointing to an instantiated ZafMinimizeButton object

• it has been added by the AddGenericObjects() function

• the window was constructed using the persistent constructor and a ZafMinimize-
Button object was loaded as a child object

Otherwise, this function returns a null pointer.

596 Zinc Application Framework 5

Minimized bool Minimized(void) const;

virtual bool SetMinimized(bool minimized);

If Minimized() is true, the window is presented on the screen as minimimized,
represented on the screen only by a minimize icon (or something similar), oth-
erwise the window’s position and size specified by Region(). The default
value of this attribute is false, but it may be changed at any time by calling Set-
Minimized().

To make the window appear minimized when it first shows up on the screen,
call SetMinimized(true) before adding the window to the window manager.
Later calling SetMinimized(false) restores the window to its normal position
and size. Both Maximized() and Minimized() should never be set to true at the
same time, as the result is undefined.

MinimizeIcon ZafIcon *MinimizeIcon(void);

This function returns a pointer to a minimize ZafIcon child object, if the instan-
tiated object exists in the window’s list of support children (refer to the support
section of this chapter for more information about support children). A mini-
mize ZafIcon object will exist only if one of the following conditions have
been met:

• it has previously been added with the ZafWindow::Add() function

• it has been added by sending an S_ADD_OBJECT message with event.win-
dowObject pointing to an instantiated minimize ZafIcon object

• it has been added by the AddGenericObjects() function, and a minimize ZafIcon
object was specified

• the window was constructed using the persistent constructor and a minimize ZafI-
con object was loaded as a child object

Otherwise, this function returns a null pointer.

Modal bool Modal(void) const;

virtual bool SetModal(bool modal);

Modal() is most commonly used with ZafDialogWindow objects, since users
are generally only accustomed to modal dialogs. But in special circumstances,
a normal ZafWindow may be set to be Modal().

If Modal() is true, the window will stay in front of all other windows while it is
open. Otherwise, the window may be sent to the background by the end user.
Commonly, Modal() dialogs are used when information must be specified by
the end user before the program may continue. This attribute defaults to false,

ZafWindow 597

but it may be changed before the window appears on screen by calling Set-
Modal().

Moveable bool Moveable(void) const;

virtual bool SetMoveable(bool moveable);

If Moveable() is true, the window may be moved around on the screen by the
end user. A non-Moveable() window’s system button will reflect the fact that
the end user may not move the window by disabling the appropriate menu
item, if it exists. The default value of this attribute is true, but it may be
changed by calling SetMoveable().

NormalHotKeys bool NormalHotKeys(void) const;

virtual bool SetNormalHotKeys(bool normalHotKeys);

If NormalHotKeys() is true, keystrokes are interpretted as hot keys without an
accompanying modifier key (such as <Alt> or <Command>). For example, a
NormalHotKeys() calculator window that has child buttons with hot keys may
recognize a ’1’ keystroke without a modifier key to activate the ’1’ button.
The default value of this attribute is false, but it may be changed by calling Set-
NormalHotKeys().

Owner ZafWindow *Owner(void) const;

virtual ZafWindow *SetOwner(ZafWindow *owner);

If Owner() is non-null, Owner() is a pointer to the owner of this window. A
window with an Owner() always appears on top of its Owner(), and “follows”
its Owner(). For example, when the Owner() is minimized, restored, or killed,
this window is also minimized, restored, or killed, respectively. And a window
with an Owner() does not appear in the Microsoft Windows task list. The
default value of this attribute is null, but it may be changed by calling Set-
Owner(). Some environments may not support this attribute.

PullDownMenu ZafPullDownMenu *PullDownMenu(void);

This function returns a pointer to a ZafPullDownMenu child object, if the
instantiated object exists in the window’s list of support children (refer to the
support section of this chapter for more information about support children). A
ZafPullDownMenu object will exist only if one of the following conditions
have been met:

• it has previously been added with the ZafWindow::Add() function

598 Zinc Application Framework 5

• it has been added by sending an S_ADD_OBJECT message with event.win-
dowObject pointing to an instantiated ZafPullDownMenu object

• the window was constructed using the persistent constructor and a ZafPullDown-
Menu object was loaded as a child object

Otherwise, this function returns a null pointer.

SelectionType ZafSelectionType SelectionType(void) const;

virtual ZafSelectionType
SetSelectionType(ZafSelectionType selectionType);

These functions set the selection parameters for a window’s children as they
operate in the context of their parent. There are three types of selection opera-
tions permitted with windows:

The following code shows the proper use of these functions:

// Get the attribute
if (window->SelectionType() == ZAF_SINGLE_SELECTION)
break;

// Set the attribute for a new vertical list.
ZafVtList *vtList = new ZafVtList(0, 0, 50, 10);
vtList->SetSelectionType(ZAF_MULTIPLE_SELECTION);

Sizeable bool Sizeable(void) const;

virtual bool SetSizeable(bool sizeable);

If Sizeable() is true, the window may be sized by the end user. A non-Size-
able() window’s system button will reflect the fact that the end user may not
size the window by disabling the appropriate menu item, if it exists. The
default value of this attribute is true, but it may be changed by calling SetSize-
able().

Selection type Description

ZAF_SINGLE_SELECTION Allows just one child object to be selected at
a time

ZAF_MULTIPLE_SELECTION Allows zero or more child objects to be
selected at a time

ZAF_EXTENDED_SELECTION Allows zero or more child objects to be
selected at a time, with extended environ-
ment-specific selection rules

ZafWindow 599

Subtract virtual ZafWindowObject *Subtract(ZafWindowObject
*object);

operator - ZafWindow &operator-(ZafWindowObject *object);

This function and operator overload base ZafList::Subtract() functionality to
handle advanced subtraction operations typical of derived ZafWindow classes.
For example, ZafVtList has widely different implementations on the Microsoft
Windows and Motif platforms. On Windows, the objects are represented inter-
nally by the OS and the only interface is accomplished through LB_* mes-
sages. On Motif, there is no widget representation at all! Thus the exact
handling, deletion and updating of an object is performed uniquely by each
overloaded Subtract() function.

For objects subtracted from ZafWindow, these three operations are performed:

• they are subtracted from the list of support or non-support children (either the sup-
port member or the base ZafList part of the class, respectively)

• their parent pointer is cleared

• they are removed from the screen if the parent window is already visible to the
user

This overloaded function and operator return a typesafe ZafWindowObject
pointer. This is generally the object that was passed to the Subtract() function,
but can be null if the object isn’t a child of the window.

The following code demonstrates correct use of this function and operator:

// Subtract children from a window.
window1->Subtract(string1);
window1->Subtract(string2);
window1->Subtract(button1);
window1->Subtract(button2);

// Do the same thing with the - operator.
*window2
- string1
- string2
- button1
- button2;

support ZafList support;
SupportCurrent ZafWindowObject *SupportCurrent(void) const;
SupportDestroy void SupportDestroy(void);
SupportFirst ZafWindowObject *SupportFirst(void) const;
SupportLast ZafWindowObject *SupportLast(void) const;

600 Zinc Application Framework 5

The support list of a ZafWindow object maintains a list of support children
whose purposes are simply to support the ZafWindow object. Some support
objects commonly used on a ZafWindow object are ZafBorder, ZafTitle, and
ZafScrollBar. Typical decorations of a ZafWindow object reside in its support
list. Operations on support objects are redirected to the parent ZafWindow
object. For example, dragging a ZafTitle object has the effect of moving the
parent window.

Just as Current(), Destroy(), First(), and Last() operate on the normal children
of a window, SupportCurrent(), SupportDestroy(), SupportFirst(), and Support-
Last() operate on the support children of a window. SupportCurrent() returns
the current support child, SupportDestroy() destroys all the children in the sup-
port list, SupportFirst() returns the first child in the support list, and Support-
Last() returns the last child in the support list. The following examples
demonstrate correct use of some of these functions:

// Search for the title bar in the support list.
for (ZafWindowObject *object = SupportFirst(); object; object =

object->Next())
if (object->IsA(ID_ZAF_TITLE))
break;

...
SupportDestroy();

SystemButton ZafSystemButton *SystemButton(void);

This function returns a pointer to a ZafSystemButton child object, if the instan-
tiated object exists in the window’s list of support children (refer to the support
section of this chapter for more information about support children). A Zaf-
SystemButton object will exist only if one of the following conditions have
been met:

• it has previously been added with the ZafWindow::Add() function

• it has been added by sending an S_ADD_OBJECT message with event.win-
dowObject pointing to an instantiated ZafSystemButton object

• it has been added by the AddGenericObjects() function

• the window was constructed using the persistent constructor and a ZafSystemBut-
ton object was loaded as a child object

Otherwise, this function returns a null pointer.

SystemButtonMenu ZafPopUpMenu *SystemButtonMenu(void);

This function returns a pointer to a ZafSystemButton child object’s menu
member, if the instantiated object exists in the window’s list of support chil-

ZafWindow 601

dren (refer to the support section of this chapter for more information about
support children). A ZafSystemButton object will exist only if one of the fol-
lowing conditions have been met:

• it has previously been added with the ZafWindow::Add() function

• it has been added by sending an S_ADD_OBJECT message with event.win-
dowObject pointing to an instantiated ZafSystemButton object

• it has been added by the AddGenericObjects() function

• the window was constructed using the persistent constructor and a ZafSystemBut-
ton object was loaded as a child object

Otherwise, this function returns a null pointer.

Temporary bool Temporary(void) const;

virtual bool SetTemporary(bool temporary);

A Temporary() window will be removed from the screen under any of the fol-
lowing circumstances:

• An S_CLOSE_TEMPORARY is received by the window manager

• The end user clicks the mouse on another window

• The <Escape> key is pressed, if the window is a pop-up menu

• A menu item is selected, if the window is a pop-up menu

An example of a temporary window is a pop-up menu, which closes when the
end user makes a selection. If Temporary() is false, the window behaves as a
normal window. The default value of this attribute is false, but it may be
changed by calling SetTemporary().

Text virtual const ZafIChar *Text(void);

virtual ZafError SetText(const ZafIChar *text);

These functions overload the base ZafWindowObject::Text() and ZafWin-
dowObject::SetText() functions by returning or changing the window’s title
bar, if there is one. If the ZafWindow object contains a child ZafTitle object,
the text parameter of SetText() is passed to this child object, reflecting changes
to the title bar portion of the window, and Text() returns the textual information
from the title bar. If no ZafTitle object exists, these functions return null.

Title ZafTitle *Title(void);

This function returns a pointer to a ZafTitle child object, if the instantiated
object exists in the window’s list of support children (refer to the support sec-

602 Zinc Application Framework 5

tion of this chapter for more information about support children). A ZafTitle
object will exist only if one of the following conditions have been met:

• it has previously been added with the ZafWindow::Add() function

• it has been added by sending an S_ADD_OBJECT message with event.win-
dowObject pointing to an instantiated ZafTitle object

• it has been added by the AddGenericObjects() function

• the window was constructed using the persistent constructor and a ZafTitle object
was loaded as a child object

Otherwise, this function returns a null pointer.

VerticalScrollBar ZafScrollBar *VerticalScrollBar(void);

This function returns a pointer to a vertical ZafScrollBar child object, if the
instantiated object exists in the window’s list of support children (refer to the
support section of this chapter for more information about support children). A
vertical ZafScrollBar object will exist only if one of the following conditions
have been met:

• it has previously been added with the ZafWindow::Add() function

• it has been added by sending an S_ADD_OBJECT message with event.win-
dowObject pointing to an instantiated vertical ZafScrollBar object

• the window was constructed using the persistent constructor and a vertical Zaf-
ScrollBar object was loaded as a child object

Otherwise, this function returns a null pointer.

operator + ZafWindow &operator+(ZafWindowObject *object);

See Add().

operator - ZafWindow &operator-(ZafWindowObject *object);

See Subtract().

operator () ZafWindowObject *operator()(int index);

This operator returns the child object corresponding to the zero-based index
specified.

ZafWindowManager 603

ZafWindowManager

Inheritance ZafWindowManager : ZafWindow : (ZafWindowObject :
ZafElement), ZafList

Declaration #include <z_win.hpp>

Description ZafWindowManager is the top-level class used to manage all the windows on
the screen. To cause the window manager to manage a window, simply add the
window to the window manager’s list with the Add() function. The window
will then appear on the screen (unless the window’s Visible() attribute is false).
The window manager allows no interaction with the user, but transparently
manages the windows on the screen.

Constructor The ZafWindowManager constructor initializes the member variables associ-
ated with an instantiated ZafWindowManager object. The default values set by
the ZafWindowManager and its base class constructors follow, if they differ
from those set by the base class constructor, or if a blocking function is imple-
mented in ZafWindowManager. “†” Indicates a blocking function that pre-
vents changes to the attribute in this class.

CaptureMouse Event MouseEventRoute
Center ExitFunction mouseObject
DefaultEventRoute focusObject oldFocusObject
dragObject helpObject

Member Initializations

ZafWindowManager

DefaultEventRoute() null

dragObject null

exitFunction null

focusObject null

helpObject null

MouseEventRoute() null

mouseObject null

oldFocusObject null

ZafWindow

NormalHotKeys() false†

SelectionType() ZAF_SINGLE_SELECTION†

604 Zinc Application Framework 5

ZafWindowManager(ZafExitFunction exitFunction =
ZAF_NULLF(ZafExitFunction));

This constructor should normally not be called by the programmer, since it is
called by the ZafApplication constructor. exitFunction specifies the function
to be called when the application is about to close down (see ExitFunction() for
more information). Static members of ZafWindowObject, including display,
eventManager and windowManager, are initialized in this constructor. The
mouse cursor is also initialized to DM_VIEW in this constructor (the default
pointer).

Destructor virtual ~ZafWindowManager(void);

This destructor is used to free the memory associated with a ZafWindowMan-
ager object. It chains to the ZafWindow, ZafList, ZafWindowObject and
ZafElement destructors, first removing all windows from the screen and then
deleting them, if they are Destroyable().

Generally, the programmer will not directly destroy a ZafWindowManager
object, since it is automatically destroyed when the ZafApplication object is
destroyed.

Temporary() false†

ZafWindowObject

AcceptDrop() false†

AutomaticUpdate() true†

Bordered() false†

OSDraw() true†

ParentDrawBorder() false†

ParentDrawFocus() false†

ParentPalette() false†

Region() ZAF_PIXEL, 0, 0, Display()->columns
- 1, Display()->lines - 1

RegionType() ZAF_AVAILABLE_REGION†

ZafElement

ClassID() ID_ZAF_WINDOW_MANAGER

ClassName() "ZafWindowManager"

Member Initializations

ZafWindowManager 605

Members Unless otherwise noted, member functions that set or get class attributes will
return the final or current value of the attribute. Under normal circumstances,
this will be the value passed into the Set*() function. However, if the Set*()
function does not successfully change the state as requested, it will instead
return the current state.

CaptureMouse ZafWindowObject *CaptureMouse(ZafWindowObject
*mouseEventRoute);

MouseEventRoute ZafWindowObject *MouseEventRoute(void) const;

ZafWindowObject *SetMouseEventRoute(ZafWindowObject
*mouseEventRoute);

If MouseEventRoute() is not null, mouse events are routed to the object it
returns. This member defaults to null, but may be changed by calling SetMou-
seEventRoute() or CaptureMouse(). This advanced member is used internally
by ZAF, and should not be modified by the programmer.

Center void Center(ZafWindowObject *object);

The Center() function centers the window passed into the object parameter on
the screen. This function may be used before adding the window to the win-
dow manager, as well as after it has appeared on the screen. Consider the fol-
lowing example:

// Create a window centered on the screen.
ZafWindow *window = new ZafWindow(5, 5, 50, 10);
window->AddGenericObjects(new ZafStringData("Main Window"));
windowManager->Center(window);
// Add the window to the screen.
windowManager->Add(window);

DefaultEventRoute ZafWindowObject *DefaultEventRoute(void) const;

ZafWindowObject *SetDefaultEventRoute(ZafWindowObject
*defaultEventRoute);

If DefaultEventRoute() is not null, events not handled by the window manager
are routed to the object it returns. This member defaults to null, but may be
changed by calling SetDefaultEventRoute(). This advanced member is used
internally by ZAF, and should not be modified by the programmer.

dragObject ZafWindowObject *dragObject;

606 Zinc Application Framework 5

The dragObject member is used during drag and drop and points to the object
being dragged. This advanced member is used internally by ZAF, and should
not be modified by the programmer.

Event virtual ZafEventType Event(const ZafEventStruct &event);

This overloaded function handles all events sent to the ZafWindowManager
object, whether by processing the events itself, or by passing them to a base
class for processing. See ZafWindowObject for more information.

In addition to events handled by its base classes, ZafWindowManager handles
the following events:

ExitFunction ZafExitFunction ExitFunction(void) const;

Event Description

A_CHANGE_LANG_LOC causes the application to change its language
and locale bases specified in event.text (the
object handling the event deletes event.text)

A_CLOSE_WINDOW causes the application to close the window
whose stringID matches event.text (if the win-
dow is Destroyable() it is deleted, and the
object handling the event deletes event.text)

A_MINIMIZE_WINDOWS causes the window manager to minimize all the
windows on the display

A_OPEN_WINDOW causes the application to open the persistent
window whose storage pathname is in
event.text (the object handling the event deletes
event.text)

A_RESTORE_WINDOWS causes the window manager to restore all the
minimized windows on the display

S_CLOSE causes all the temporary windows on the dis-
play and the top-most window to be closed (and
deleted if it is Destroyable()) if event.win-
dowObject is non-null; otherwise event.win-
dowObject is closed

S_CLOSE_TEMPORARY causes all the temporary windows on the dis-
play to be closed

S_EXIT causes the application to exit (if there is an
ExitFunction(), it is called first)

S_NEXT_WINDOW causes the next window to become the top-most

ZafWindowManager 607

ZafExitFunction SetExitFunction(ZafExitFunction
exitFunction);

If ExitFunction() is not null, it is called before the application may close down.
The application may be requested to close down programmatically, by the end
user, or by the native environment. Note that there are some cases that the
native environment will close an application without giving it a chance to call
its exit function.

Programmatically, an S_EXIT message may be posted on the event manager’s
queue. The end-user may request the application to close down by attempting
to close the main window. (The main window is specified by setting the win-
dow manager’s screenID to be the same as the window’s screenID.) Either of
these two methods will cause the ExitFunction() to be called.

If the ExitFunction() returns zero, the application is allowed to close down,
otherwise the message is ignored. The default value of this attribute is null, but
the user may call SetExitFunction() to change it. An example of specifying an
exit function follows:

// Create the main window.
ZafWindow *window = new ZafWindow(5, 5, 50, 10);
window->AddGenericObjects(new ZafStringData("Main Window"));
// Add the window to the screen. This gives it a screenID.
windowManager->Add(window);
// Specify the window as the main window.
windowManager->screenID = window->screenID;
// Set up the exit function.
extern ZafExitFunction MyExitFunction;
windowManager->SetExitFunction(MyExitFunction);

focusObject ZafWindowObject *focusObject;

The focusObject member is used during focus changes and points to the object
trying to gain focus. This advanced member is used internally by ZAF, and
should not be modified by the programmer.

helpObject ZafWindowObject *helpObject;

The helpObject member is used by ZafHelpTips and points to the object used
to display help messages. This advanced member is used internally by ZAF,
and should not be modified by the programmer.

mouseObject ZafWindowObject *mouseObject;

608 Zinc Application Framework 5

The mouseObject member is used by ZafHelpTips and points to the object
under the mouse. This advanced member is used internally by ZAF, and
should not be modified by the programmer.

oldFocusObject ZafWindowObject *oldFocusObject;

The helpObject member is used during focus changes and points to the object
losing focus. This advanced member is used internally by ZAF, and should not
be modified by the programmer.

ZafWindowObject 609

ZafWindowObject

Inheritance ZafWindowObject : ZafElement

Declaration #include <z_win.hpp>

Description ZafWindowObject defines the basic functionality necessary to display objects
on the screen. All ZAF displayable objects including windows, strings, but-
tons, prompts, borders, etc., derive from this class.

ZAF displayable classes share certain characteristics. For example, all dis-
playable objects occupy a certain region on the screen. Many objects display
text in a variety of font types and sizes. Some objects display borders and
other visual characteristic in a multitude of foreground and background colors.
Frequently, displayable objects handle events such as gaining or losing focus.

AcceptDrop DrawShadow ParentDrawFocus
AutomaticUpdate Duplicate ParentPalette
BackgroundColor EndDraw Previous
BeginDraw Error QuickTip
Bordered Event Read
Changed eventManager Redisplay
ClassID Focus RedisplayData
ClassName FocusObject Region
ConvertCoordinates Font RegionType
ConvertRegion GetObject RepeatDelay
ConvertToDrawRegion HelpContext RootObject
ConvertToObjectPosition HelpObjectTip screenID
ConvertToScreenPosition InitialDelay ScrollEvent
ConvertToOSPosition IsA Selected
ConvertToZafPosition LinkDraggable SupportObject
ConvertToOSRegion LogicalEvent SystemObject
ConvertToZafRegion LogicalPalette ToggleSelected
ConvertToZafEvent MemberUserFunction Text
CoordinateType MoveDraggable TextColor
CopyDraggable MoveEvent userFlags
DefaultUserFunction Next UserFunction
Disabled Noncurrent UserInformation
Display NotifyFocus userObject
DragDropEvent NotifySelection UserPaletteData
Draggable OSDraw userStatus
Draw OSScreenID Visible
DrawBackground PaletteState windowManager
DrawBorder Parent Write
DrawFocus ParentDrawBorder zafRegion

610 Zinc Application Framework 5

Finally, displayable objects sometimes allow drag and drop functionality to
other displayable objects.

ZafWindowObject is important as a base class because it defines the basic
functionality that provides the underlying definition of a graphical user inter-
face system. Although this class cannot be instantiated directly, other classes
can be derived from ZafWindowObject.

Since this is the core class for all user interface objects, the descriptions in this
chapter are more comprehensive and descriptive. In each case, examples apply
to ZafWindowObject, but also may apply to the creation and use of all user
interface objects. Refer to this and the ZafWindow section of this manual
when questions arise regarding the general operation of user interface objects.

Constructors All ZafWindowObject constructors initialize the member variables associated
with an instantiated ZafWindowObject object. Default values set by the Zaf-
WindowObject and its base class constructors are listed below.

Member Initializations

ZafWindowObject
AcceptDrop() false

AutomaticUpdate() true

Bordered() false

Changed false

CoordinateType() ZAF_CELL

CopyDraggable false

Disabled() false

EditMode() false

Error() ZAF_ERROR_NONE

Focus() false

HelpContext() NO_HELP_CONTEXT

HelpObjectTip() null

LinkDraggable() false

MoveDraggable() false

memberUserFunction ZafWindowObject::
DefaultUserFunction

Noncurrent() false

OSDraw() true

parent null

ParentDrawBorder() false

ParentDrawFocus false

ParentPalette() false

QuickTip() null

ZafWindowObject 611

Since the constructors for ZafWindowObject are protected, you cannot instan-
tiate a ZafWindowObject directly—it must be initialized through a derived
class such as ZafButton, ZafWindow, or ZafText. The arguments and types of
constructors for this class represent the basic construction techniques available
to all derived window objects.

ZafWindowObject(int left, int top, int width, int height);

The first constructor is useful in straight-code situations. left, top, width, and
height define the absolute size and position of the window object (relative to
the top-left corner of its parent’s “client” region). By default, these values are
given in cell coordinates, but minicell, pixel, point, or twip coordinates can be
used if you set the CoordinateType() attribute immediately after the constructor
as follows:

ZafWindowObject *object = new ZafWindow(50, 30, 200, 95);
object->SetCoordinateType(ZAF_PIXEL);

The following examples demonstrate how derived objects call the base Zaf-
WindowObject constructor:

Region() ZAF_CELL, left, top,
left + width - 1, top + height - 1

RegionType() ZAF_INSIDE_REGION

screenID() null

Selected() false

SupportObject() false

SystemObject() true

userObject null

userFlags 0

userStatus 0

userText null

UserFunction() null

UserPaletteData() null

Visible() true

ZafElement
ClassID() ID_ZAF_WINDOW_OBJECT

ClassName() "ZafWindowObject"

Member Initializations

612 Zinc Application Framework 5

ZafButton::ZafButton(int left, int top, int width, int height,
const ZafIChar *text, ZafBitmapData *zBitmapData,
ZafButtonType tButtonType) : ZafWindowObject(left, top,
width, height)

...

ZafWindow::ZafWindow(int left, int top, int width, int height) :
ZafWindowObject(left, top, width, height)
...

ZafString::ZafString(int left, int top, int width, const
ZafIChar *text,

int maxLength) :
ZafWindowObject(left, top, width, 1)
...

// Show actual object creation using the constructors above.
ZafButton *button = new ZafButton(0, 0, 10, 1, "button");
ZafWindow *window = new ZafWindow(0, 0, 50, 10);
ZafString *string = new ZafString(2, 2, 20, "message1", 100);

ZafWindowObject(const ZafWindowObject ©);

The copy constructor calls the overload Duplicate() to create a new ZafWin-
dowObject and initialize its data from copy. Note that the copy constructor
“copies” all field information including attributes, sizes, and text information,
so variables such as QuickHelpText(), UserPaletteData() and derived object’s
data components that do not have the “StaticData() == true,” will depth copy
their information, not just repoint the internal variables to the original object’s
values.

The following examples show how derived objects use the base ZafWin-
dowObject copy constructor to duplicate base class information Also included
is a code sample that shows how to duplicate another window object.

ZafButton::ZafButton(const ZafButton ©) :
ZafWindowObject(copy)
...

ZafWindow::ZafWindow(const ZafWindow ©) :
ZafWindowObject(copy)
...

ZafString::ZafString(const ZafString ©) :
ZafWindowObject(copy)
...

ZafWindowObject 613

// Example 1: Create, then copy a string object.
ZafString *string1 = new ZafString(2, 2, 20, "message1", 100);
string1->SetBordered(false);
string1->SetTextColor(ZAF_CLR_BLUE);
string1->SetAutoClear(true);

ZafString *string2 = new ZafString(*string1); // A lot easier
than the code above.

string2->SetText("message2");

ZafWindowObject(const ZafIChar *name,
ZafObjectPersistence &persist);

The final constructor is used for persistence. name specifies the name of the
window or window object to be read from a persistent file. persist contains
persistent information such as a pointer to the file-system and object construc-
tors, both necessary for object creation.

Below are several code snippets that show how derived objects use the base
ZafWindowObject persistent constructor to read base class information Also
included is a code sample that shows how to use persistence in general window
creation.

ZafButton::ZafButton(const ZafIChar *name, ZafObjectPersistence
&persist) :

ZafWindowObject(name, persist.PushLevel(className, classID,
ZAF_PERSIST_DIRECTORY))

...

ZafWindow::ZafWindow(const ZafIChar *name, ZafObjectPersistence
&persist) :

ZafWindowObject(name, persist.PushLevel(className, classID,
ZAF_PERSIST_ROOT_DIRECTORY)),

...

ZafString::ZafString(const ZafIChar *name, ZafObjectPersistence
&persist) :

ZafWindowObject(name, persist.PushLevel(className, classID,
ZAF_PERSIST_DIRECTORY)),

...

// Load a persistent window.
ZafStorage *storage = new ZafStorage("myfile.dat");
ZafObjectPersistence persist(storage,

zafDefaultDataConstructor, zafDefaultObjectConstructor);
windowManager->Add(new ZafWindow("MyWindow", persist));

614 Zinc Application Framework 5

Destructor virtual ~ZafWindowObject(void);

This destructor is used to free the memory associated with a ZafWindowObject
object. The ZafWindowObject portion of the destructor deletes the object’s
QuickTip(), HelpObjectTip(), and UserPalette() members if memory has been
allocated. It then chains to the ZafElement destructor.

Generally, the programmer will not directly destroy a ZafWindowObject object
since it is automatically destroyed when its parent window is destroyed. For
more information on child object deletion see ZafWindow::~ZafWindow().

Below is an example of object deletion that chains the destruction sequence to
the ZafWindowObject class.

// Create a simple window.
ZafWindow *window = new ZafWindow(0, 0, 40, 10);
window->Add(new ZafBorder);
window->Add(new ZafMaximizeButton);
window->Add(new ZafMinimizeButton);
window->Add(new ZafSystemButton(ZAF_NATIVE_SYSTEM_BUTTON));
window->Add(new ZafTitle(new ZafStringData("Text Window")));
...
ZafWindowObject *object = new ZafText(2, 1, 35, 6, "text",

1000);
window->Add(object);
...
// This call selectively deletes a child object.
window->Subtract(object);
delete object;
...
// This call deletes the whole window with all its children.
delete window;

Members
AcceptDrop bool AcceptDrop(void) const;

bool SetAcceptDrop(bool acceptDrop);

These functions are part of a suite of drag/drop functions and attributes that
allow the user to move, copy, or link application specific data from one object
to another. Although different in actual presentation, all environments provide
visual queues to the user when they permit drag and drop operations from one
object to another. For example, the Windows environment shows a copy or
move folder when a draggable object is picked-up in a dragging operation, then
interactively shows either the continued copy/move image when positioned
over a dropable object, or a cancel image if the mouse is positioned over an
object that does not allow drop operations.

ZafWindowObject 615

Calling SetAcceptDrop(true) tells ZAF that in your application the specified
object allows dropping operations. When this is done, ZAF first communi-
cates with the native environment, then with your application, by sending drop
messages to your object’s virtual Event() function.

ZafWindowObject provides simple handling of the copy and move drag/drop
operations, but does not have any special handling for link drag/drop. Simple
copying or moving of the object’s Text() information for objects derived from
ZafWindowObject is accomplished as follows:

// Perform the specified drop operation.
object = windowManager->dragObject;
const ZafIChar *text = object->Text();
if (ccode == S_DROP_COPY)
SetText(text);

else if (ccode == S_DROP_MOVE)
{
SetText(text);
object->SetText(ZafLanguageManager::blankString);

}

Most ZAF objects add additional native drag/drop capabilities into their run-
time operation. Below is a partial list of drag/drop operations that are automat-
ically handled when the AcceptDrop() is set to “true.”

Operations Description

ZafString Accepts the Text() portion of the drag object.

ZafDate Converts the Text() portion of the drag object to a date
value if the value is in a format recognized by the Zaf-
Date object.

ZafVtList Duplicates the drag object by calling the virtual Dupli-
cate() function when the S_DROP_COPY is sent, or
moves the actual object (by sending the message
S_SUBTRACT_OBJECT to the drag object’s parent and
then S_ADD_OBJECT to itself) when the
S_DROP_MOVE message is sent.

616 Zinc Application Framework 5

Normally, programmers will not intercept drop messages since most Zinc
objects have drag and drop capabilities built into their native operation. If you
wish to intercept drop messages, however, these are the messages to look for:

Message Description

S_DROP_MOVE Sent to the destination object’s Event() function when
the user initiates a drag-move operation from one object
to another. If this message is received the programmer
should perform a move operation from the windowMan-
ager->dragObject to the destination. Thus, when the
drag contents are moved, they should be removed from
the drag object.

S_DROP_COPY Sent to the destination object’s Event() function when
the user initiates a drag-copy operation from one object
to another. If this message is received the programmer
should perform a copy operation from the windowMan-
ager->dragObject to the destination. Thus, when the
drag contents are copied, they should not be removed
from the drag object.

S_DROP_LINK Sent to the destination object’s Event() function when
the user initiates a drag-link operation from one object to
another. This is the least common mode of dragging and
dropping, but is useful when you want to access data
from a particular drag source, but do not want to copy
the drag object’s data. If this message is received the
programmer should not copy or replace the data contents
of windowManager->dragObject but should instead take
application-specific action.

S_DROP_DEFAULT This message should only be intercepted when needing
to change the default sequence of drag/drop messages.
ZafWindowObject provides an algorithm for
S_DROP_DEFAULT that sends messages in the follow-
ing order:

• S_DROP_COPY if the CopyDraggable() attribute is true

• S_DROP_MOVE if S_DROP_COPY fails (returns an
S_ERROR) or if the CopyDraggable() attribute is false
and if the MoveDraggable() attribute is true

• S_DROP_LINK if conditions in steps (1) or (2) are not
met and if the LinkDraggable() attribute is true.

The order of drop messages can be modified by overrid-
ing the S_DROP_DEFAULT functionality in a derived
object’s Event() function.

ZafWindowObject 617

The original drag object pointer is contained in windowManager->dragObject.
The following code demonstrates how to copy the text associated with a
dragged object when a custom target object has been marked with the accept
drop capability.

void MyFunction(void)
{
MyDropObject *target = new MyDropObject;
target->SetAcceptDrop(true);

}

ZafEventStruct MyDropObject::Event(const ZafEventStruct &event)
{
switch (event.type)
{
case S_DROP_DEFAULT:
case S_DROP_COPY_OBJECT:
// Copy the source text information.
SetText(windowManager->dragObject->Text());
break;

case S_DROP_MOVE_OBJECT:
case S_DROP_LINK_OBJECT:

// Don’t handle these cases.
return (S_ERROR);

The return value for AcceptDrop() and SetAcceptDrop() is the final, or current
drop attribute associated with the object (true or false). Under normal circum-
stances, this value will be passed into the SetAcceptDrop() function. The fol-
lowing example demonstrates proper use of these functions and argument:

// Get the attribute.
if (object->AcceptDrop())

break;

// Set the object as "drop capable."
ZafString *string = new ZafString(0, 0, 10, "string", 100);
string->SetAcceptDrop(true);

AutomaticUpdate bool AutomaticUpdate(bool traverse = true) const;

virtual bool SetAutomaticUpdate(bool automaticUpdate);

618 Zinc Application Framework 5

SetAutomaticUpdate() turns on or off an object’s ability to immediately draw
itself on the screen. The following function calls are affected by the state of
AutomaticUpdate():

• Add() - for ZafWindow objects

• Subtract() - for ZafWindow objects

• SetBackgroundColor()

• SetFont()

• SetTextColor()

• SetUserPaletteData()

SetAutomaticUpdate() should be set to false to change several color or font
attributes at once without causing screen flashes to the object with each
attribute change. The following example shows how to efficiently change
these attributes on a window object.

// Change an object’s text and background color.
object->SetAutomaticUpdate(false);
object->SetBackgroundColor(ZAF_CLR_RED);
object->SetTextColor(ZAF_CLR_WHITE);
object->SetAutomaticUpdate(true);

AutomaticUpdate() is a temporary setting. When an object’s automatic update
is set to “false,” immediately make necessary color and font changes, then set
the value back to “true.” Delayed restoration of this attribute may cause
unwanted screen updates, if other attributes, not defined above, are changed
while the object’s automatic update status is “false.”

Setting this attribute back to true does three things:

• Matches the object’s internal attributes with the particular environment values.

• Causes the displayed object to show any changes made while the attribute was set
to false (by automatically redrawing the object where necessary).

• Ensures any future application activity which affects the appearance of the object
will occur immediately and automatically.

The derived ZafWindow class provides additional Add()/Subtract() optimiza-
tion to this function. For more information on these changes see the ZafWin-
dow section of this manual.

If traverse is true, AutomaticUpdate() ascends the parental tree up to the root
window until it finds a value of false (otherwise it returns true). If traverse is
false, the value of the object’s AutomaticUpdate() is returned.

The return value for AutomaticUpdate() and SetAutomaticUpdate() is the final
or current update status associated with the object (true or false). Under nor-

ZafWindowObject 619

mal circumstances this will be the update value passed into the SetAutomati-
cUpdate() function but may be different if the object does not allow changes to
automatic updating (e.g. ZafMessageWindow always sets the value to true).

BackgroundColor ZafLogicalColor BackgroundColor(ZafLogicalColor *color = ZAF_NULLP(ZafLogicalColor),
ZafLogicalColor *mono = ZAF_NULLP(ZafLogicalColor));

ZafLogicalColor SetBackgroundColor(ZafLogicalColor color,
ZafLogicalColor mono = CLR_DEFAULT);

Background color is the visual presentation area that encompasses the region
behind an object’s text or image information, excluding the object’s border and
shadow.

SetBackgroundColor() changes the background color associated with the nor-
mal presentation of an instantiated object. Two types of colors can be passed
to SetBackgroundColor(): a color value and a monochrome value. The first
parameter specifies the color for normal operation, the second specifies the
black/white value for monochrome or black/white modes of operation. Here is
a list of predefined ZAF color values:

Color Values Monochrome Values

ZAF_CLR_PARENT ZAF_MONO_PARENT

ZAF_CLR_DEFAULT ZAF_MONO_DEFAULT

ZAF_CLR_NULL ZAF_MONO_NULL

ZAF_CLR_BACKGROUND ZAF_MONO_BACKGROUND

ZAF_CLR_BLACK ZAF_MONO_BLACK

ZAF_CLR_BLUE ZAF_MONO_DIM

ZAF_CLR_GREEN ZAF_MONO_NORMAL

ZAF_CLR_CYAN ZAF_MONO_WHITE

ZAF_CLR_RED ZAF_MONO_HIGH

ZAF_CLR_MAGENTA

ZAF_CLR_BROWN

ZAF_CLR_LIGHTGRAY

ZAF_CLR_DARKGRAY

ZAF_CLR_LIGHTBLUE

ZAF_CLR_LIGHTGREEN

ZAF_CLR_LIGHTCYAN

ZAF_CLR_LIGHTRED

ZAF_CLR_LIGHTMAGENTA

ZAF_CLR_YELLOW

620 Zinc Application Framework 5

In addition to the pre-defined colors described above, users can define and use
their own logical colors. For more information on these color specifications,
and for more details on derived color entries, see the ZafPaletteStruct and
ZafDisplay sections of this manual or ZafWindowObject::UserPaletteData().

This example demonstrates the correct use of SetBackgroundColor().

// Change the background color of the object.
object->SetBackgroundColor(ZAF_CLR_WHITE, ZAF_MONO_WHITE);

// Check the current color of an object, and change where
necessary.

if (object->BackgroundColor() == ZAF_CLR_NULL)
object->SetBackgroundColor(object->parent-
>BackgroundColor());

// Change an object’s text and background color.
object->SetAutomaticUpdate(false);
object->SetBackgroundColor(ZAF_CLR_RED);
object->SetTextColor(ZAF_CLR_WHITE);
object->SetAutomaticUpdate(true);

The return value for BackgroundColor() and SetBackgroundColor() is the final
or current color value associated with the object. Under normal circumstances,
this will be the color value passed into the SetBackgroundColor(), but may be
different if the object does not allow for a particular type of color specification
or if the system is running in black/white mode.

BeginDraw ZafRegionStruct BeginDraw(void);
EndDraw void EndDraw(void);

ZAF enables you to customize the appearance of an object by deriving from
ZafWindowObject or some other displayable ZAF class and overriding the
Draw() function. Before a Draw() function calls any functions that affect the
appearance of a GUI object, such as DrawBorder(), DrawFocus(), or Draw-
Shadow(), it must first determine the available drawing region, and set up any
special environment values. This is done with calls to the object’s Begin-
Draw() function.

BeginDraw() returns a region structure that defines the available drawing
region of the object. The actual values in the region structure’s top, left, bot-
tom, and right fields will differ depending on the particular platform you are

ZAF_CLR_WHITE

Color Values Monochrome Values

ZafWindowObject 621

running under, so you should not make any assumptions about the nature of
these values. Here is an example that shows the proper method for finding the
horizontal center of a draw region:

ZafEventType MyObject::Draw(const ZafEventStruct &event,
ZafEventType ccode)

{
ZafRegionStruct region = BeginDraw();
int centerColumn = region.left + region.Width() / 2;
...
EndDraw();
return (ccode);

}

EndDraw() tells the system that you are finished with your drawing operation,
and frees up any operating system specific memory used as part of the drawing
operation.

Each call to BeginDraw() must be matched with a call to EndDraw(), and
BeginDraw()/EndDraw() pairs should not be nested. In other words, a call to
BeginDraw() should not be followed by another call to BeginDraw() before
calling EndDraw() first. Nested calls do not properly restore display character-
istics.

Bordered bool Bordered(void) const;

bool SetBordered(bool bordered);

SetBordered() is used to set the visual presentation of an instantiated object.
Setting this attribute to true causes a platform-specific border to be drawn
around the object. Typically, this is a 3-dimensional shadowed border that is
prevalent on newer versions of GUI environments (e.g. Windows 95 and
Motif), but may also be a one or two pixel black band that surrounds the object,
seen on other GUI systems. If not set, the object will not have any border that
frames the data portion of an object. Here is a picture of two ZafString objects,
the top calling SetBordered(true), the bottom SetBordered(false).

622 Zinc Application Framework 5

Note that the prompts shown to the left of the strings also also respond to Set-
Bordered() by aligning themselves differently, but do not actually draw bor-
ders. By setting the “Bordered” ZafPrompt to SetBordered(true) and the
“Non-bordered” ZafPrompt to SetBordered(false) the prompts’ text automati-
cally aligns with the text baseline of the ZafStrings to their right. Since the text
baseline of input fields is different on each environment, this is the preferred
method for aligning prompts with input fields.

The following code shows the proper use of these functions:

// Check the attribute for drawing.
if (object->Bordered())
object->DrawShadow(drawRegion, ZAF_BORDER_WIDTH, ccode);

// Turn the border off.
ZafString *string = new ZafString(0, 0, 10, "string", 100);
string->SetBordered(false);

The return value for Bordered() and SetBordered() is the final, or current bor-
der attribute associated with the object (true or false). Under normal circum-
stances, this will be the value passed to the SetBordered() function, but may be
different if the object does not allow changes to the Bordered() attribute, or if
the SetBordered() function is called after the object is visible on the screen.

Changed bool Changed(void) const;

bool SetChanged(bool changed);

These functions are used to set or evaluate the changed status of an object.
Many objects derived from ZafWindowObject set this attribute to true each
time a user modifies the object’s data. For example, ZafString sets this
attribute each time a user types a character into the string buffer. ZafVtList
sets the attribute each time a user adds, deletes, or selects an item from the list.

You can determine whether an end-user has changed the contents of an object
by calling the Changed() member. In addition, you can clear the changed sta-
tus by calling SetChanged(false). Note, ZAF only sets the changed attribute
with SetChanged(true) calls, it never clears the attribute with Set-
Changed(false) calls. This operation is left for the programmer’s discretion.
The following code shows the proper use of these functions:

// Check the changed attribute.
if (myString->Changed())
{
// Save the data.
SaveMyString(myString->Text());

ZafWindowObject 623

myString->SetChanged(false);
}

The return value for Changed() and SetChanged() is the final, or current
changed attribute associated with the object (true or false). Under normal cir-
cumstances, this will be the value passed into the SetChanged() function.

ClassID static ZafClassID classID;
ClassName static ZafClassNameChar ZAF_FARDATA className[];

ZafClassID ClassID(void) const;

ZafClassName ClassName(void) const;

These two member functions overload the ZafElement::ClassID() and ZafEle-
ment::ClassName() functions, by returning the added class identification
ID_ZAF_WINDOW_OBJECT and string “ZafWindowObject.”

The static members classID and className are used as internal place-holders
for the class’s name and identification. They should not be used or set by the
programmer.

Convert Functions

This group of advanced functions is used to convert ZAF information to OS
information, or vise-versa. Typically, you will not need to use these functions.
They are provided as convenience functions for derived window objects that
create and manipulate OS information directly. Nevertheless, their functional-
ity is described briefly here, to help you understand the relationship of events,
coordinates and regions from ZAF to environment specific GUIs.

ZAF provides a mid-layered product that insulates you from the specific
nuances of each operating environment. These differences are particularly
acute in the area of coordinates and keyboard translation. The convert routines
described in this section give Zinc the ability to “hide” most of the OS specific
mechanics to provide a consistent cross-platform application environment.
With this introduction, here are specific descriptions of the various convert
functions:

ConvertCoordinates virtual void ConvertCoordinates(ZafCoordinateType
coordinateType);

This function converts zafRegion using ConvertRegion() with the specified
coordinate type.

624 Zinc Application Framework 5

ConvertRegion virtual void ConvertRegion(ZafRegionStruct ®ion,
ZafCoordinateType newType);

This function encapsulates the conversion of all regions relevant to the window
object. This is not a ZAF to OS conversion, rather a current type (cell, mini-
cell, pixel, point, twips) to OS type (generally pixel based). This function is
generally used to encapsulate a zafRegion.ConvertCoordinates() call, but for
advanced or composite classes, such as scrolled window, it not only encapsu-
lates the zafRegion conversion, but also provides a mechanism to convert pri-
vate variables, such as scrollRegion.

ConvertToDraw-
Region

virtual ZafRegionStruct ConvertToDrawRegion(const
ZafWindowObject *object, const ZafRegionStruct
*zafRegion = ZAF_NULLP(ZafRegionStruct)) const;

This function converts the object’s zafRegion to a region compatible with the
environment’s display. This function is used in conjunction with BeginDraw()
to determine the actual coordinates you need to use when calling display func-
tions, such as: Text(), Rectangle(), Line(), etc. This return region can also be
used directly with the environment specific display APIs. For example, the
Windows API to draw a rectangle is Rectangle() or FillRect() depending on the
fill specification. The region passed back from ConvertToDrawRegion() can
be used directly with these native API calls, or with ZafDisplay calls.

ConvertToObject-
Position

virtual ZafPositionStruct ConvertToObjectPosition(const
ZafPositionStruct screenPosition) const;

ConvertToScreen-
Position

virtual ZafPositionStruct ConvertToScreenPosition(const
ZafPositionStruct objectPosition) const;

These functions convert a global screen display position (relative to the top left
corner of the screen) to a ZAF object position, and vice-versa. These functions
are particularly useful when a position must be used in a completely different
context. (Programmers may also find ConvertToScreenPosition useful when
preparing coordinates for a call to a native operating system API.)

For example, a programmer may trap a right-mouse click on a window and
desire to display a pop-up menu at the coordinates of the click. Because the
original event was trapped at the window level, LogicalEvent() will have
returned window-based coordinates. The popup menu must be attached to the
window manager using screen coordinates, however. ConvertToScreenPosi-
tion() is the solution. The reverse condition may exist if a position is obtained
at the ZafEventManager or ZafWindowManager level and requires conversion
to an object-relative coordinate for use by a window object.

ZafWindowObject 625

Finally, these functions may be used to convert between two window object
coordinate systems by using screen position as a temporary conversion. For
example, a group child receives a click which must be used by its parent
group’s parent window. ConvertToScreenPosition() followed by parent->par-
ent->ConvertToObjectPosition() will yield the correctly converted coordinate.

LogicalEvent() also converts mouse coordinates relative to the calling object.
In some cases this may provide a more straight-forward solution. See Logical-
Event() for more information.

ConvertToOS-
Position

virtual ZafPositionStruct ConvertToOSPosition(const
ZafWindowObject *object, const ZafPositionStruct
*zafPosition = ZAF_NULLP(ZafPositionStruct)) const;

ConvertToZaf-
Position

virtual ZafPositionStruct ConvertToZafPosition(const
ZafWindowObject *object, const ZafPositionStruct
*osPosition = ZAF_NULLP(ZafPositionStruct)) const;

These functions convert a ZAF position to an OS position, and vice-versa.
Other sections of this manual describe the ZAF coordinate system. It is a 0,0
left-top based system that places objects either in a “client” region (if it is a
normal window object), or in a “frame” region (if it is a support object).

Sometimes these ZAF positions match the OS, other times, they do not. These
functions allow Zinc to readjust the position based on potential coordinate
shifting needs, including: shadowing, bordering, native vs. non-native OS
objects, etc.

ConvertToOS-
Region

virtual ZafRegionStruct ConvertToOSRegion(const
ZafWindowObject *object, const ZafRegionStruct
*zafRegion = ZAF_NULLP(ZafRegionStruct)) const;

ConvertToZaf-
Region

virtual ZafRegionStruct ConvertToZafRegion(const
ZafWindowObject *object, const ZafRegionStruct
*osRegion = ZAF_NULLP(ZafRegionStruct)) const;

These functions are very similar to the position functions, except that they con-
vert full regions, not just a single point. Normally, this function simply makes
two calls to ConvertToOSPosition(), to compute the top-left and bottom-right
positions of the region, but occasionally, the region needs additional computa-
tions. For instance, Motif automatically sizes the region of toolbars to account
for a small border area around its children. This is done by computing the
actual OS region, based on zafRegion, then by adding a 2-pixel boundary to
the region. The overload of ConvertToOSRegion() allows for this modifica-
tion.

626 Zinc Application Framework 5

ConvertToZafEvent virtual bool ConvertToZafEvent(ZafEventStruct &event);

ConvertToZafEvent() is the most comprehensive of the convert functions. The
main aspects of this function are to convert OS specific keyboard and mouse
event data (such as KeyPress, WM_KEYPRESS, keyDown) to ZAF portable
key and position interpretations. The two parts of the event structure that may
be converted are event.key and event.position.

If the passed event is an OS specific keyboard event, ZAF determines the mod-
ifiers (S_SHIFT, S_CTRL, S_ALT) and key values. For instance, on Motif, a
keyboard’s shift state information is passed by xEvent.xkey.state and the
pressed key is represented by xEvent.xkey. To get ZAF equivalents, we must
look at each xkey.state and map to the ZAF equivalent, then call XLookup-
String() to get the ascii value of the key.

If the event is an OS specific mouse event, ZAF must not only determine the
keyboard’s shift state, but also convert the native OS position to a coordinate
understood and relevant to ZAF. This is done by looking at OS position, look-
ing at the intended target, and then converting the position based on our under-
standing of the environment specific coordinates, versus the coordinate
required by portable ZAF. In Windows, this means calling the Client-
ToScreen() API, then adjusting the coordinate to not be Windows “client”
based.

Most of these functions take object as a parameter. This can be a little confus-
ing since the functions are, themselves, member functions that have a this
pointer. The reason for this parameter is to give context to the requesting
object. You should always make a position or region request to your parent, or
to the window manager if there is no parent.

Here are some sample code snippets from ZAF’s library that show the correct
use of these convert functions.

void ZafWindowObject::OSSize(void)
{
// Convert to the os region.
ZafRegionStruct newRegion;
if (parent)
newRegion = parent->ConvertToOSRegion(this, &zafRegion);

else
newRegion = windowManager->ConvertToOSRegion(this,
&zafRegion);

...
}

void ZafScrolledWindow::ConvertCoordinates(ZafCoordinateType
newType)

{

ZafWindowObject 627

ConvertRegion(zafRegion, newType);
ConvertRegion(scrollRegion, newType);

}

// Check for a converted event.
if (event.converted != this)
ConvertToZafEvent(event);

CoordinateType ZafCoordinateType CoordinateType(void) const;

virtual ZafCoordinateType
SetCoordinateType(ZafCoordinateType coordinateType);

ZAF allows you to specify an object’s initial coordinates in terms of cells, min-
icells, pixels, points, or twips. Here is a description of what each enumerated
value means:

Type Description

ZAF_CELL A value based on the size of ZAF_DIALOG_FONT.
This value calculates the average height and width of a
character in the dialog font, and adds information such
as pre- and post-spacing, margin widths, border widths,
etc. to determine the optimal size of a cell on the partic-
ular environment.

The pixel conversion values for ZAF_CELL are con-
tained in two ZafDisplay members, cellHeight and cell-
Width which are determined at run-time by the
ZafDisplay constructor.

int ZafDisplay::cellHeight;
int ZafDisplay::cellWidth;

ZAF_MINICELL A fractional cell. ZAF defines mini-numerator and
denominator values in ZafDisplay. These values are
used to subdivide a cell into programmer-defined units.
Minicells provide a higher degree of positional control
than cells without compromising portability more than
necessary.

These ZafDisplay values are pre-defined to be the fol-
lowing values:

long ZafDisplay::miniNumeratorX = 1;
long ZafDisplay::miniDenominatorX = 10;
long ZafDisplay::miniNumeratorY = 1;
long ZafDisplay::miniDenominatorY = 10;

628 Zinc Application Framework 5

By default, all coordinates passed to an object’s constructor are considered to
be ZAF_CELL based. Thus, specifying a different coordinate type requires
you to pass initial coordinate values to the constructor and then to specify the
changed coordinate type through the SetCoordinateType() function. Here is
some sample code that show how this is accomplished.

// Set the window to pixel based.
ZafWindow *window = new ZafWindow(0, 0, 500, 100);
window->SetCoordinateType(ZAF_PIXEL);

// Set all children to be twip based coordinates.
for (ZafWindowObject *object = First(); object; object = object-

>Next())
object->SetCoordinateType(ZAF_TWIPS);

ZAF_PIXEL A pixel based value. Most systems run in “pixel-based”
coordinates which, if specified, means your object’s
region will not need conversion by the operating envi-
ronment. This allows the exact placement of objects in a
window, sometimes essential when presenting graphical
information to the display. The use of this type is dis-
couraged on text information objects, because the size of
font is environment dependent, thus causing size prob-
lems when the exact font size for a particular environ-
ment is unknown.

ZAF_POINTS A value based on the size of the default system font.
The relationship of this value to pixels is determined at
run-time, but is based on a general formula that 72
points equal a theoretical inch.

The pixel conversion values for ZAF_POINTS are con-
tained in two ZafDisplay members, pixelsPerInchX and
pixelsPerInchY and are determined at run-time by the
ZafDisplay constructor.

long ZafDisplay::pixelsPerInchX;
long ZafDisplay::pixelsPerInchY;

ZAF_TWIPS Defined to be 1/20 of a point. This value is computed at
run-time, based on the value of the ZafDisplay’s pixels-
PerInchX and pixelsPerInchY members.

Type Description

ZafWindowObject 629

Resetting the coordinate type is valid up to the point when the object is pre-
sented to the screen. Actual coordinate conversion takes place when the
S_INITIALIZE message is sent to the object (this message is sent when the
object is added to the screen), and thus changes after this conversion are mean-
ingless. Therefore, once the object’s coordinates have been converted to native
system values, calls to SetCoordinateType() are rejected.

Note, the original CoordinateType() value is preserved with the object, even
though the actual coordinates are changed at run-time. Thus, even though an
object may have converted its position and size to be pixel-based, the return
value of CoordinateType() will still be ZAF_CELL. To view the current run-
time coordinate of an object, you should evaluate the zafRegion.Coordinate-
Type() variable. Here is some code that shows these two usages.

// Create a point-based object.
ZafString *string = new ZafString(20, 20, 100, "string", 100);
string->SetCoordinateType(ZAF_POINTS);
...

// Evaluate the coordinates.
if (string->CoordinateType() != string-

>zafRegion.CoordinateType())
...
// string->CoordinateType() is ZAF_POINTS, but
// string->zafRegion.CoordinateType() will vary depending
// on the current state of the string object.

The return value for CoordinateType() and SetCoordinateType() is the initial,
or enumerated value associated with the object (cell, mini-cell, pixel, point, or
twips). Under normal circumstances, this will be the value passed into the Set-
CoordinateType() function, but may be a different value if one of the condi-
tions described above is met.

CopyDraggable bool CopyDraggable(void) const;

bool SetCopyDraggable(bool copyDraggable);

See ZafWindowObject::Draggable().

630 Zinc Application Framework 5

DefaultUser-
Function

ZafEventType DefaultUserFunction(const ZafEventStruct
&event, ZafEventType ccode);

DefaultUserFunction() provides a simple notification mechanism that chains to
a programmer specified user-function when the following events occur:

If you have not supplied a user-function with the object, this function has no
effect in the application. It simply provides a “hooking” mechanism for user
callbacks, rather than a more advanced concept known as derived pointers to
member functions. These advanced concepts are discussed more fully in
ZafWindowObject::memberUserFunction.

Event Description

N_NON_CURRENT When Focus() changes from “true” to “false.”
When this event occurs, the user has either
tabbed onto another field, or has moved the
focus to another object using the mouse. If you
have specified a user-function, it will be called
with this message.

N_CURRENT Focus() changes from “false” to “true.” When
this event occurs, the user has selected the
receiving object, moving the focus to the
object. If you have specified a user-function, it
will be called with this message.

L_SELECT (keyboard) User presses a selection key (usually the space
bar, or <Enter> key). When this occurs and if
you specify a user-function, the function is
called with this message, but the contents of the
event argument will be event.InputType() ==
E_KEY, signifying that a key event caused the
selection.

L_SELECT (mouse) User clicks the mouse button while being posi-
tioned over the object. When this occurs and if
you specify a user-function, the function is
called with this message, but the contents of the
event argument will contain an event.Input-
Type() of E_MOUSE, signifying that a mouse
event caused the user-function to be called.

L_DOUBLE_CLICK User double-clicks on the object. When this
occurs and if you specify a user-function, the
user-function is called with this message. The
contents of the event structure will be of type
E_MOUSE, signifying that a mouse event
caused the user-function to be called.

ZafWindowObject 631

A user function returns 0 if no error occurs; otherwise it returns a non-zero
value. Here are some sample code snippets that show how the Default-
UserFunction() is set, and used in an application.

// Reset an object’s member function.
object->memberUserFunction = DefaultUserFunction;

// Advanced ZafButton code that resets notification.
bool ZafButton::SetSendMessageWhenSelected(bool

setSendMessageWhenSelected)
{

// Make sure the attribute has changed.
if (sendMessageWhenSelected != setSendMessageWhenSelected &&

!screenID)
{

sendMessageWhenSelected = setSendMessageWhenSelected;
if (sendMessageWhenSelected)

memberUserFunction =
(ZafWindowObject::MemberUserFunction)
&ZafButton::SendMessage;

else
memberUserFunction = ZafWindowObject::DefaultUserFunction;

}

// Return the current attribute.
return (sendMessageWhenSelected);

}

Disabled bool Disabled(void) const;

bool SetDisabled(bool disabled);

When an object is “disabled” it is typically presented as a grayed out object
and does not allow any user interaction. It therefore cannot receive the input
focus, cannot be tabbed on, and cannot receive keyboard or mouse events. The
exact visual presentation depends on the operating environment, but is typi-
cally shown as a “dithered” text with shaded, rather than full-dark borders.
This immediately tells the user, the object is not available for user selection or
input.

Here is some sample code that shows the correct use of SetDisabled().

// Place two objects in the window setting one disabled.
ZafButton *button1 = new ZafButton(2, 2, 20, 1, "Save");
window->Add(button1);
ZafButton *button2 = new ZafButton(22, 2, 20, 1, "Delete");
button2->SetDisabled(true);

632 Zinc Application Framework 5

window->Add(button2);

// Check the status of an object.
if (!object->Disabled())
object->SetHelpContext("ObjectHelp");

// Disable a window, with all its children.
window->SetDisabled(true);

Note, setting the disabled attribute on a parent object causes all of the children
to become disabled, even though their individual disabled states may not be
“true.” SetDisabled() functionality is thus propagated to children, grandchil-
dren, etc., but only through inheritance, not by value replacement (i.e. the
child object’s disabled variable is not reset to be the same as the parent’s
value). Once the Disabled() state is set back to false, the visual and input set-
tings of children are restored.

The return value for Disabled() and SetDisabled() is the final, or current dis-
abled state of the object (true or false). Under normal circumstances, this will
be the value passed into the SetDisabled() function.

Display ZafDisplay *Display(void) const;
display static ZafDisplay *display;

Display() returns a pointer to the application’s current display, whether a Zaf-
ScreenDisplay or ZafPrinter. It is initialized when the ZafWindowManager
constructor is called and should not be modified. All derived window objects
use this method when drawing information to the screen. They do not use the
global zafDisplay or the static display member.

Here is a code snippet that shows how the Motif ZafButton::Draw() function
uses Display().

ZafEventType ZafButton::Draw(const ZafEventStruct &,
ZafEventType ccode)

{
ZafRegionStruct drawRegion = BeginDraw();
...

// Draw the border for flat buttons.
if (Bordered() && buttonType != ZAF_3D_BUTTON)
{
Display()->SetPalette(LogicalPalette(ZAF_PM_OUTLINE,
state));
Display()->Rectangle(drawRegion, 1, false);
drawRegion--;

ZafWindowObject 633

}
...

}

display, as well as the static ZafWindowObject::eventManager and ZafWin-
dowObject::windowManager members are duplicate copies of the global vari-
ables zafDisplay, zafEventManager, and zafWindowManager. They are
defined in the base ZafWindowObject class to allow advanced ZAF program-
mers the opportunity of removing the static definition, thus allowing particular
instance variables to be associated with each window object; a feature useful in
some multi-display and embedded system applications.

DragDropEvent virtual ZafEventType DragDropEvent(const ZafEventStruct
&event);

This function is used internally by ZAF as a dispatch function for system
defined drag/drop messages and should not normally be overloaded by the pro-
grammer. These messages include:

• S_DRAG_DEFAULT

• S_DRAG_MOVE

• S_DRAG_COPY

• S_DRAG_LINK

• S_DROP_DEFAULT

• S_DROP_COPY

• S_DROP_MOVE

• S_DROP_LINK

• S_BEGIN_DRAG

• S_END_DRAG

Whenever an object receives a drag/drop sequence of messages, the messages
are first intercepted in the object’s Event() function. To allow for more encap-
sulation and a more efficient handling of similar drag/drop functionality, ZAF
defines DragDropEvent() which may be called by the base ZafWindowObject
class whenever one of the aforementioned messages is generated.

The programmer should not call DragDropEvent(), but it is used internally by
ZAF. When deriving to intercept drag/drop events, the programmer should
always use the Event() function itself.

The return value for DragDropEvent() is normally event.type if processing is
successful. Otherwise, S_ERROR or S_UNKNOWN may be returned, indi-
cating the object either detected an error on the message, or that the function
did not recognize the specified message.

634 Zinc Application Framework 5

Draggable bool Draggable(void) const;
CopyDraggable bool CopyDraggable(void) const;

bool SetCopyDraggable(bool copyDraggable);
MoveDraggable bool MoveDraggable(void) const;

bool SetMoveDraggable(bool moveDraggable);
LinkDraggable bool LinkDraggable(void) const;

bool SetLinkDraggable(bool linkDraggable);

These functions are part of a suite of drag/drop functions and attributes that
allow the user to move, copy, or link application specific data from one object
to another. Although different in actual presentation, all environments provide
visual queues to the user when they permit drag and drop operations from one
object to another. For example, the Windows environment shows a copy or
move folder when a draggable object is picked-up in a dragging operation, then
interactively shows either the continued copy/move image when positioned
over a dropable object, or a cancel image if the mouse is positioned over an
object that does not allow drop operations.

Draggable() is a “read-only” function that indicates whether the MoveDragga-
ble(), CopyDraggable() or LinkDraggable() attributes are set for the object.
Generally, ZAF objects provide enough drag/drop functionality so that you
will not need to evaluate the drag capability of an object. But in cases where
you derive window objects, or where you are working on specific drag/drop
capabilities, you will want to determine whether an object can be dragged, but
will not be interested in exactly what type of drag operation can be performed.
This function provides an efficient method for determining this drag state with-
out calling each drag function separately. Its “read-only” status means you
must use the SetMoveDraggable(), SetCopyDraggable() and SetLinkDragga-
ble() functions to set the drag option on an object, there is no SetDraggable()
function.

The following code shows how you might use the Draggable() function in your
application.

// Example 1: Turn on the drag capability of run-time objects.
ZafEventType MyWindow::MemberCallback(ZafEventStruct &event,

ZafEventType ccode)
{
// Turn on the drag capabilities of all string objects.
if (ccode == L_SELECT && allowDragButton->Selected())
for (ZafWindowObject *object = First(); object; object =
object->Next())
if (object->IsA("ZafString") && !object->Draggable())
object->SetCopyDraggable(true);

return (0);

ZafWindowObject 635

}

// Example 2: A derived window object.
ZafEventType MyObject::Event(const ZafEventStruct &event)
{
switch (LogicalEvent(event))
{
case L_BEGIN_SELECT:
// Determine the drag capability of the object.
if ((event.rawCode & M_MIDDLE) && Draggable())
... // object can be dragged.

}
}

The return value for each of these Draggable() functions is the final, or current
drag state of the object (true or false). Under normal circumstances, this will
be the value passed into the Set*Draggable() functions.

Draw virtual ZafEventType Draw(const ZafEventStruct &event,
ZafEventType ccode);

DrawBackground virtual ZafEventType DrawBackground(ZafRegionStruct
®ion, ZafEventType ccode);

ZAF enables you to customize the appearance of an object by deriving from
ZafWindowObject or some other displayable ZAF class and overriding the
Draw() function. Draw() is called whenever the system needs the object to
update part, or all of its information to the screen. In overloaded Draw()
implementations, drawing should be encapsulated by BeginDraw() and End-
Draw() calls, and ZafDisplay::SetPalette() should be called before using
ZafDisplay’s drawing primitives. If the object is derived from ZafWindow,
Draw() only updates the client region of the window (DrawBorder() is called
automatically elsewhere in ZAF). Draw() returns S_ERROR if some error
occurs; otherwise it returns ccode.

DrawBackground() is called whenever the system needs the clear the area
behind an object. DrawBorder(), DrawFocus() and DrawShadow() are ZAF
defined functions that perform common drawing operations. They should only
be used within the context of a drawing operation.

DrawBorder virtual ZafEventType DrawBorder(ZafRegionStruct ®ion,
ZafEventType ccode);

DrawBorder() typically draws an OS specific border, generally a chiseled 3-D
shape; but also detects for other GUI environments that draw a 1 pixel rectan-
gle. Note, the region value passed to DrawBorder() is not a constant argument.

636 Zinc Application Framework 5

Thus, the value associated with this region is changed according to the border
width. For example, a 2-pixel border will adjust the specified region in, by 2
pixels. This allows you to automatically know what area of the object is still
available for drawing operations.

DrawFocus virtual ZafEventType DrawFocus(ZafRegionStruct ®ion,
ZafEventType ccode);

DrawFocus() draws an OS specific focus rectangle that surrounds the object.
This is typically a one- or two-pixel black rectangle that encompasses the
object, showing it as the “point-of-focus.” Note, as with DrawBorder(), the
specified region is not a constant argument. On most environments, whether
the focus rectangle is drawn, or not, the value of region is adjusted by the envi-
ronment’s natural focus rectangle size.

DrawShadow virtual ZafEventType DrawShadow(ZafRegionStruct ®ion,
int depth, ZafEventType ccode);

DrawShadow() differs from DrawBorder() because you specify the pixel depth
size of the shadow to be drawn, and also because the function always draws a
3-dimensional shadow, not just the type of shadow specified by the native
operating environment. The range of depth can be positive or negative. A
negative value represents an indented shadow, generally associated with an
object that has been “pushed-in” or that needs to be shown in a “depressed”
state. As with DrawBorder() and DrawFocus(), the value of region is adjusted
by the absolute depth of the shadow being drawn.

As you can see, most of the Draw*() functions described above, modify the
specified region. Thus, calls to these functions should be done in a systemized
manner, and should anticipate the adjustment of the region value. Here is some
code that shows how one implementation of the ZafButton::Draw() function
anticipates these region adjustments:

ZafEventType ZafButton::Draw(const ZafEventStruct &,
ZafEventType ccode)

{
// Compute the actual draw region.
ZafRegionStruct drawRegion = BeginDraw();

// Draw the focus.
DrawFocus(drawRegion, Focus() ? S_CURRENT : S_NON_CURRENT);

// Draw the shadow and fill the region.
if (ButtonType() != ZAF_RADIO_BUTTON && ButtonType() !=
ZAF_CHECK_BOX)

ZafWindowObject 637

DrawShadow(drawRegion, (Depressed() || Selected()) ? -depth
: depth, ccode);

...
EndDraw();
return (ccode);

}

Here are a few more important notes associated with the Draw() and related
functions:

• DrawBackground() should not be used within the Draw() function. All ZAF sup-
ported environments clear the background of an object with a method independent
of the Draw() function. Thus, this function is generally called immediately before
the Draw() function is called.

• The Draw() operation is called from the operating environment, and should not be
initiated by the programmer. The correct way to cause an object’s refresh is to call
Redisplay() or RedisplayData(). Calling these functions causes Draw() to be
called, but does it in coordination with the operating environment.

• Finally, the members BeginDraw() and EndDraw() must be called within your
Draw() function to ensure the proper initialization of drawing arguments. For
more information on these functions see ZafWindowObject::BeginDraw().

Here is some sample code that shows the correct use, and sequence of drawing
operations within the Draw() function.

class TicTacToeCell : public ZafButton

ZafEventType TicTacToeCell::Draw(const ZafEventStruct &,
ZafEventType ccode)

{
// Compute the actual draw region.
ZafRegionStruct drawRegion = BeginDraw();

// Draw the focus.
DrawFocus(drawRegion, Focus() ? S_CURRENT : S_NON_CURRENT);

// Draw the shadow.
DrawShadow(drawRegion, (Depressed() || Selected()) ? -depth :
depth, ccode);

// Draw the X or O.
ZafPaletteState state = PaletteState();
Display()->SetPalette(LogicalPalette(ZAF_PM_OUTLINE, state));
if (MarkedWithAnX())
{
Display()->Line(drawRegion.left, drawRegion.top,
drawRegion.right, drawRegion.bottom);

638 Zinc Application Framework 5

Display()->Line(drawRegion.left, drawRegion.bottom,
drawRegion.right, drawRegion.top);

}
else if (MarkedWithAnO())
Display()->Ellipse(drawRegion.left, drawRegion.top,
drawRegion.right, drawRegion.bottom, 0, 360);

// Return the control code.
EndDraw();
return (ccode);

}

Note, the Draw() function will not be called for derived ZafWindowObjects on
some environments unless “OSDraw() == false.” See ZafWindowOb-
ject::OSDraw() for more information on this function and its required use in
derived class Draw() functions.

The return value for all Draw*() functions should be the passed ccode if pro-
cessing is successful. Otherwise, the function should return the values
S_ERROR or S_UNKNOWN indicating the object either detected an error on
the message, or that the function did not recognize the specified message.

Duplicate virtual ZafWindowObject *Duplicate(void);

This function creates a full-depth copy of “this” and returns a pointer to the
copy. This function is declared virtual so derived objects can add their own
copy constructors. The actual definition of this function by each ZAF object is
a call to the object’s copy constructor:

virtual ZafWindowObject *Duplicate(void) { return (new
ZafWindowObject(*this)); }

virtual ZafWindowObject *Duplicate(void) { return (new
ZafWindow(*this)); }

virtual ZafWindowObject *Duplicate(void) { return (new
ZafVtList(*this)); }

There is no particular advantage to using Duplicate() if you know the type of
the object being copied. But if you are dealing with abstract lists of window
objects or multiple-layered windows, Duplicate() is the only effective method
of performing a depth copy on the object. Here is an example that shows this
functionality.

// Example 1: Create, then copy a string object.
ZafString *string1 = new ZafString(2, 2, 20, "message1", 100);
string1->SetBordered(false);

ZafWindowObject 639

string1->SetTextColor(ZAF_CLR_BLUE);
string1->SetAutoClear(true);

ZafString *string2 = new ZafString(*string1); // A lot easier
than the code above.

string2->SetText("message2");

ZafString *string3 = string2->Duplicate(); // Almost like
calling the copy constructor.

string3->SetText("message 3");

// Example 2: Depth-copy the children from one window to
another.

extern ZafWindow *srcWindow, *dstWindow;
for (ZafWindowObject *object = srcWindow->First(); object;

object = object->Next())
dstWindow->Add(object->Duplicate());

EditMode bool EditMode(void) const;

virtual bool SetEditMode(bool editMode);

If EditMode() is true, the object acts as if it were being editted by Zinc
Designer. The EditMode() object may be moved and sized on its parent, and it
receives various D_* events associated with Zinc Designer that are defined in
the header file z_dsnevt.hpp. The normal value of this attribute is false, but it
may be changed by calling SetEditMode().

The return value for EditMode() and SetEditMode() is the final, or current edit-
mode attribute associated with the object (true or false). Under normal circum-
stances, this will be the value passed into the SetEditMode() function, but may
be different if the object does not allow edit mode.

EndDraw void EndDraw(void);

See ZafWindowObject::BeginDraw().

Error ZafError Error(void) const;

ZafError SetError(ZafError error);

These functions get/set the error state of a window object. The types of errors
that can be set are defined in z_env.hpp. Generally, however, only the follow-
ing error values will be used by a ZafWindowObject object:

640 Zinc Application Framework 5

In addition to the error types described above, error values greater than or
equal to 10,000 are reserved for your use on user defined objects. The follow-
ing code fragments show how to define and use your own error value with a
derived data object.

// Define the class and constant.
const ZafError MY_APPLICATION_IS_DYING = 10000;
class AvailableMemory : public ZafInteger
...

// Create a new eject button.
AvailableMemory *memory = new AvailableMemory;

// Check for memory error.
if (memory->IntegerData()->Value() < someRandomValue)
memory->SetError(MY_APPLICATION_IS_DYING);

...

// Check the error status.
if (memory->Error())
exit(); // Die Hard!

Error Value Description

ZAF_ERROR_NONE No error exists.

ZAF_ERROR_INVALID The contents of the window object are
invalid, meaning the object’s value
can be shown on the screen, but that
the data is incorrect in the context of
the application. For instance, the
value 45 is a legitimate value for an
integer field, but is invalid when used
to describe the total number of days
permitted in the month of February.

ZAF_ERROR_OUT_OF_RANGE

ZAF_ERROR_LESS_THAN_RANGE

ZAF_ERROR_GREATER_THAN_RANGE

An error occurred while trying to con-
vert data from one type to another or
where the argument was too big for
the return value. For example, a value
of 10E+100 will not fit into a ZafInte-
ger type field.

ZafWindowObject 641

Event virtual ZafEventType Event(const ZafEventStruct &event);

This function provides the core connection between event driven environment
specific architectures and the object-oriented architecture supported by ZAF.
This function receives four general types of events:

• ZAF system events represented by S_* messages.

• ZAF notification events represented by N_* messages.

• ZAF logical interpreted events represented by L_* messages.

• Environment specific events where event.type is E_OSEVENT and the environ-
ment specific message is specified by event.osEvent.

Some types of events are dispatched to other functions. These functions are
DragDropEvent(), MoveEvent(), and ScrollEvent(). The programmer should
not call these specialized functions, but they are used internally by ZAF. When
deriving to intercept events, the programmer should always use the Event()
function itself.

Here is the specific handling of these types of messages within the ZafWin-
dowObject::Event() function. (See the Event Definitions Appendix for a com-
plete list of supported events and functionality.)

Message Handling

S_COMPUTE_SIZE Causes the object to recalculate its
zafRegion. The region is not modified
if RegionType() is
ZAF_INSIDE_REGION, but is
recomputed by the parent’s MaxRe-
gion() function if any other type is
specified.

S_CREATE Causes the object to be created by dis-
patching messages and calling rou-
tines in the following order:
S_INITIALIZE,
S_REGISTER_OBJECT,
S_COMPUTE_SIZE, OSSize(). This
event is received when the object is
added to its parent (or a window added
to the window manager).

S_CURRENT

S_NON_CURRENT

Causes the Focus() member to be reset
to “true” if S_CURRENT is sent, or
“false” if the message is
S_NON_CURRENT.

642 Zinc Application Framework 5

S_DEINITIALIZE Causes the object to clear the screenID
variable. This message updates the
ZAF environment to match the deleted
OS object.

S_DESTROY Destroys the OS part of the object.
This message dispatches an
S_DEINITIALIZE message and
causes the OS object to be destroyed
using environment specific API calls.

S_DRAG_DEFAULT

S_DRAG_MOVE

S_DRAG_COPY

S_DRAG_LINK

S_DROP_DEFAULT

S_DROP_MOVE

S_DROP_COPY

S_DROP_LINK

S_BEGIN_DRAG

S_END_DRAG

These messages are dispatched to
DragDropEvent(). For more informa-
tion, see the ZafWindowObject::Drag-
DropEvent() section of this chapter.

S_INITIALIZE Causes the object to (1) ensure the
zafRegion coordinates are converted
for the native environment and (2)
guarantee that the object’s StringID()
and NumberID() are valid. The algo-
rithm used to set these values is to
traverse to the root window, use the
window’s current number identifica-
tion, update the root identification,
then to set the StringID() according to
the contents of the NumberID() (e.g. a
NumberID() of 10 results in a default
StringID() of “FIELD_10”). The
NumberID() and StringID() variables
are not reset if you have already asso-
ciated a NumberID() and StringID()
value with the object.

S_REDISPLAY Causes the whole object to be
redrawn. This message ensures that
the background is cleared and all perti-
nent information updated on the dis-
play.

Message Handling

ZafWindowObject 643

S_REDISPLAY_DATA Causes only the data portion of the
object to be redrawn. Since ZafWin-
dowObject has no data portion, the
default operation of this message is to
request the redisplay of all the object
except the border and shadow area (if
any).

S_REDISPLAY_REGION Causes a particular area of the field to
be updated. The updated area is con-
tained in event.region and should be
relative to the object’s region (0,0 left-
top coordinate based on the interior
area of the object to be redisplayed).

S_REGISTER_OBJECT Causes the object to be registered with
the operating environment by calling
the virtual RegisterObject() function.

S_SIZE Causes the object to be re-positioned,
and the size to be modified according
to event.region.

S_HELP Causes the help system to be called
with a requested help context con-
tained in HelpContext().

S_VSCROLL

S_HSCROLL

S_VSCROLL_SET

S_HSCROLL_SET

S_VSCROLL_CHECK

S_HSCROLL_CHECK

S_VSCROLL_COMPUTE

S_HSCROLL_COMPUTE

N_VSCROLL

N_HSCROLL

These messages are dispatched to
ScrollEvent(). For more information,
see the ZafWindowObject::ScrollEv-
ent() section of this chapter.

N_NON_CURRENT Called just before the object loses
focus. Causes userFunction to be
called with N_NON_CURRENT as
the message type. If the object cannot
lose the input focus, the user-function
should return a non-zero value. A
zero indicates the object can lose the
input focus.

Message Handling

644 Zinc Application Framework 5

N_CURRENT Called just after the object gains focus.
Causes userFunction to be called with
N_CURRENT as the message type.

N_MOUSE_ENTER Causes the QuickTip() and HelpOb-
jectTip() information to be updated on
the screen, if you have attached a Zaf-
HelpTips device to the application’s
event manager.

N_MOUSE_LEAVE Causes the QuickTip() and HelpOb-
jectTip() information associated with
this object to be removed from the
screen, if you have attached a Zaf-
HelpTips device to the application’s
event manager.

L_HELP Causes the ZafHelpSystem object to
be called with the object’s HelpCon-
text().

E_KEY Ignored by the ZafWindowObject
class, but available for use with
derived objects. This value is typi-
cally returned by ZafEvent-
Struct::InputType() whenever the OS
generates a key-press or key-release
message. If interpreted, you should
only look at the event.key.value and
event.key.shiftState portion of the
event structure.

E_MOUSE Ignored by the ZafWindowObject
class, but available for use by derived
objects. Typically, this value is
returned by ZafEventStruct::Input-
Type(). If interpreted after a call to
LogicalEvent(), the event structure
contains portable ZAF coordinates and
shift-state information in event.posi-
tion, event.rawCode, and event.modi-
fiers. The specific contents of the
event structure are:

event.position Contains a ZAF “0,0,left-top” based
coordinate that identifies a position
within the receiving window object.

Message Handling

ZafWindowObject 645

Events that are tagged with “event.type == E_OSEVENT” are dispatched
directly to the underlying operating environment. For example, this code dis-
patches Windows events from within the Event() function:

CallWindowProc((WINDOWSPROC)GetClassLong(event.osEvent.hwnd,
GCL_WNDPROC), event.osEvent.hwnd, event.osEvent.message,
event.osEvent.wParam, event.osEvent.lParam));

All other events are considered “unknown” to the object and result in the
S_UNKNOWN message being returned from the Event() function. Here is
some sample code that shows how you could use, or override the default oper-
ation of ZafWindowObject::Event().

ZafEventType ZafString::Event(const ZafEventStruct &event)
{
...
default:
// Defer to the immediate base class.
ccode = ZafWindowObject::Event(event);
break;

}

ZafEventType ZafWindow::Event(const ZafEventStruct &event)
{
...
case S_REGISTER_OBJECT:
// Register the object.

event.rawCode Contains a combination of the ZAF
defined mouse states: M_LEFT,
M_LEFT_CHANGE, M_MIDDLE,
M_MIDDLE_CHANGE, M_RIGHT,
and/or M_RIGHT_CHANGE. These
states are converted into OS specific
parameters that describe the mouse on
the native environment.

event.modifiers Contains a combination of the ZAF
keyboard shift-states including:
S_SHIFT, S_RIGHT_SHIFT,
S_LEFT_SHIFT, S_CTRL, S_ALT,
S_CMD, S_SCROLL_LOCK,
S_NUM_LOCK, S_CAPS_LOCK,
S_INSERT, and S_OPT.

Message Handling

646 Zinc Application Framework 5

RegisterObject();

// Register all of the children.
BroadcastEvent(event);

}

ZafEventType ZafButton::Event(const ZafEventStruct &event)
{
...
case S_INITIALIZE:
// Override the base class functionality.
ccode = ZafWindowObject::Event(event);
if (ButtonType() == ZAF_RADIO_BUTTON && !bitmapData)
{
int size = Display()->cellHeight / 2;
bitmapData = radioBitmap;
bitmapData->SetBitmap(size, size, bitmapData->Array());

}
else if (ButtonType() == ZAF_CHECK_BOX && !bitmapData)
{
int size = Display()->cellHeight / 2 - Display()->cellHeight
/ 10; // motif algorithm.
bitmapData = checkBitmap;
bitmapData->SetBitmap(size, size, bitmapData->Array());

}
}

eventManager static ZafEventManager *eventManager;

This is a static pointer to the application’s event manager. It is initialized when
the ZafWindowManager constructor is called and should not be modified. All
derived window objects use this member when making requests to the event
manager. They do not use the global zafEventManager member.

Here is a code snippet that shows how a derived window object would use
eventManager to change the state of the mouse cursor:

MyDerivedWindowObject::MemberFunction(void)
{
// Change the mouse image.
eventManager->Event(DM_MOVE, E_MOUSE);

}

This member, as well as the static ZafWindowObject::display and ZafWin-
dowObject::windowManager members are duplicate copies of the global vari-
ables zafDisplay, zafEventManager, and zafWindowManager. They are
defined in the base ZafWindowObject class to allow advanced ZAF program-
mers the opportunity of removing the static definition, thus allowing particular

ZafWindowObject 647

instance variables to be associated with each window object; a feature useful in
some multi-display and embedded system applications.

Focus bool Focus(void) const;

bool SetFocus(bool focus);

The term “focus” has slightly different definitions, depending on the type of
environment you are running under. A good general description of getting
“focus” is simply specifying where keyboard and mouse events will be pro-
cessed and identifying where visual queues, such as highlights or blinking cur-
sors will be presented. When an object has focus, it can generally be
distinguished as being at the “center of attention”, whereas, objects that do not
have focus, are presented in a manner that does not distinguish them from other
objects on the screen.

If you pass “true” as the argument to SetFocus(), the object you specified will
become the new focal point on the screen. As mentioned earlier, this will
cause a visual and interactive change in your application, so that the specified
object is seen as both current, and as receiving all user interaction.

There are two proper ways to call SetFocus(). First, you can always call Set-
Focus() for the exact object you want to receive the focus.

// Give an object focus.
object->SetFocus(true);

Second, you can call a parent class instance to give focus to a composite class
such as a window or group, but allow the actual focus object to be determined
by the window or group that is receiving the focus.

// Attach a vertical list to the window.
ZafVerticalList *vtList = new ZafVerticalList(0, 0, 20, 5);
for (int i = 0; i < 10; i++)
vtList->Add(new ZafString(0, 0, 20, "item", -1));

window->Add(vtList);
...

// Give the vertical list focus.
vtList->SetFocus(true);

When such a call is made to any type of object that has children, the focus is
pushed down to the current child, or the last child that previously may have had
the focus. In this manner, you can programmatically specify a parent object,
but really have the focus be applied to a particular child. An extreme example

648 Zinc Application Framework 5

of this would be to give the focus to a particular window, that may have many
levels of children. The specification of the root window will ensure the win-
dow gets general focus (which may be distinguished by the user by a high-
lighted title bar), but will cause the focus to be progressively pushed down to
the window’s current child, grandchild, etc. until a specific focus change is
performed.

On most environments, you cannot pass “false” to an object that currently has
the focus. The reason is that nearly all environments force a point of focus
somewhere on the screen. For portability reasons, ZAF does not define the
results of a SetFocus(false) function call.

The window manager’s Focus() attribute is true when the application is in the
foreground, and false when the application is in the background.

The return value for Focus() and SetFocus() is the final, or current focus state
of the object. Under normal circumstances, this value will be the value passed
into the SetFocus() function, but may differ if the object is disabled, or does
not allow focus changes for a particular reason.

FocusObject virtual ZafWindowObject *FocusObject(void);

FocusObject() returns a pointer to the current object that has the keyboard
input focus. The algorithm to determine focus is a depth traversal function that
first determines if the focus is on, or within the specified object, then progres-
sively works its way through children, grandchildren, etc. to find the current
focus object. If the focus is on another object that is not in the specified
object’s inheritance tree, then the return value is null.

This function is useful when you want to determine exactly where the focus is
in a given application. In DOS, one of the windows attached to the window
manager will always have input focus. On other environments, such as Win-
dows, Motif, and Macintosh, the focus may actually be on another application,
thus rendering a return value of null.

Here are some simple code samples that shows how to determine the focus of
an application, a window, and of a particular window object.

// Determine the application’s focus.
if (zafWindowManager->FocusObject())

... // application has focus.

// Change the visual presentation of a window’s current object.
case N_CURRENT:

if (Current() && FocusObject() == Current())
Current()->SetBackgroundColor(ZAF_CLR_YELLOW);

...

ZafWindowObject 649

// Check the current object’s focus.
if (FocusObject() == this)

printf("Current focus is %s\n", Text());

Font ZafLogicalFont Font(void) const;

virtual ZafLogicalFont SetFont(ZafLogicalFont font);

Fonts affect the visual presentation of an object’s textual information. Each
logical font contains implied information about the font, such as the font fam-
ily, weight, slant, and point size.

SetFont() changes the logical font associated with the normal presentation of
an instantiated object. The following predefined ZAF fonts are supported:

• ZAF_FNT_PARENT

• ZAF_FNT_DEFAULT

• ZAF_FNT_NULL

• ZAF_FNT_SMALL

• ZAF_FNT_DIALOG

• ZAF_FNT_APPLICATION

• ZAF_FNT_SYSTEM

• ZAF_FNT_FIXED

In addition to the pre-defined fonts described above, users can define and use
their own logical fonts. For more information on these font specifications, and
for more details on derived font entries, see the ZafPaletteStruct and ZafDis-
play sections of this manual or ZafWindowObject::UserPaletteData().

Here is some sample code that shows the correct use of SetFont().

// Change the text font of the object.
object->SetFont(ZAF_FNT_SMALL);

// Check the current font of an object, and change where
necessary.

if (object->Font() == ZAF_FNT_NULL)
object->SetFont(object->parent->Font());

// Change an object’s text font.
object->SetAutomaticUpdate(false);
object->SetBackgroundColor(ZAF_CLR_RED);
object->SetTextColor(ZAF_CLR_WHITE);
object->SetFont(ZAF_FNT_FIXED);

650 Zinc Application Framework 5

object->SetAutomaticUpdate(true);

The return value for Font() and SetFont() is the final, or current font associated
with the object. Under normal circumstances, this will be the font passed into
SetFont(), but may be different if the object does not allow for a particular type
of font specification.

GetObject virtual ZafWindowObject *GetObject(ZafNumberID numberID);

virtual ZafWindowObject *GetObject(const ZafIChar
*stringID);

These overloaded functions get a child object using the object’s NumberID() or
StringID() as the matching data. The algorithm for these functions is a depth
first search of the children. For example, here is a partial listing of the ZafWin-
dow and ZafWindowObject code used in GetObject:

ZafWindowObject *ZafWindow::GetObject(ZafNumberID matchID)
{
// Try to match on the current object.
ZafWindowObject *match = ZafWindowObject::GetObject(matchID);

// All others are depth first searches.
ZafWindowObject *object;
for (object = SupportFirst(); object && !match; object =
object->Next())
match = object->GetObject(matchID);

for (object = First(); object && !match; object = object-
>Next())
match = object->GetObject(matchID);

// Return the matching item.
return (match);

}

ZafWindowObject *ZafWindowObject::GetObject(ZafNumberID
matchID)

{
return ((numberID == matchID) ? this :
ZAF_NULLP(ZafWindowObject));

}

Be careful not to associate the same NumberID() or StringID() with two chil-
dren in the window’s search hierarchy. Only the first matching object will be
returned.

ZafWindowObject 651

The following code shows the proper use of this overloaded function:

// See if an object exists.
if (window->GetObject("MyTable"))
break;

// Use the contents of a found class.
ZafWindowObject *object = window->GetObject(ID_NAME_FIELD);
if (object)
printf("Object found: %s\n", object->StringID());

// Check the condition of an object.
ZafButton *button = DynamicPtrCast(window-

>GetObject("OK_BUTTON"), ZafButton);
if (button && button->Selected())
windowManager->Add(new ZafWindow(0, 0, 40, 10));

HelpContext ZafIChar *HelpContext(void) const;

virtual ZafIChar *SetHelpContext(ZafIChar *helpContext);

SetHelpContext() allows you to specify a particular help context with an object
that will be shown in the ZafHelpSystem anytime a user moves to the object
and presses the help key (<F1> on most environments).

The help context string needs to be a pre-defined context defined by the Zaf-
HelpSystem. (For more information on creating help contexts see the Zaf-
HelpSystem section of this manual.)

The return value for HelpContext() and SetHelpContext() is the current help
context string associated with the object (null if no help context is associated
with the object). This will always be the value passed into the SetHelpCon-
text() function. The following code shows how to correctly use these func-
tions.

// Associate a help context with the window’s children.
window->Add(new ZafPrompt(2, 1, 8, "name:"));
ZafString *name = new ZafString(10, 1, 40, ZAF_NULLP(ZafIChar),

100);
name->SetHelpContext("NameHelp");
window->Add(name);

window->Add(new ZafPrompt(2, 2, 8, "address:"));
ZafString *address = new ZafString(10, 2, 40,

ZAF_NULLP(ZafIChar), 100);
address->SetHelpContext("AddressHelp");
window->Add(address);

652 Zinc Application Framework 5

HelpObjectTip const ZafIChar *HelpObjectTip(void) const;

virtual const ZafIChar *SetHelpObjectTip(const ZafIChar
*helpObjectTip);

SetHelpObjectTip(), along with SetQuickTip() allows you to associate help
messages with the run-time presentation of an object. HelpObjectTip() gener-
ally presents a “status-bar” update of the current window object and is gener-
ally more descriptive than a quick-tip. The HelpObjectTip may be displayed
on any object that provide Text() and SetText() functions. It is important to
note that a ZafHelpTips device must be added to the event manager for help
object tips to function (see ZafHelpTips for more information).

The initialization of HelpObjectTip() is slightly different than that of Set-
QuickTip() because a receiving object must be specified to present the help-tip
information. Here is some sample code the shows the initialization of both
HelpObjectTip() and QuickTip() for a button object.

// Stage 1-Create the help-tip device.
ZafHelpTips *helpTip = new ZafHelpTips(D_ON, ZAF_HELPTIPS_BOTH);
zafEventManager->Add(helpTip);

// Stage 2-Set up the help-object tip.
ZafWindow *window = new ZafWindow(0, 0, 50, 10);
window->AddGenericObjects(new ZafStringData("File Operation"));
ZafStatusBar *helpBar = new ZafStatusBar(0, 0, 0, 1);
ZafString *helpBarString = new ZafString(0, 0, 32, "", 64);
helpBar->Add(helpBarString);
window->Add(helpBar);

helpTip->SetHelpObject(helpBarString);

// Stage 3-Create two objects with quick- and help-tip
information.

ZafButton *save = new ZafButton(25, 0, 20, "Save",
ZAF_NULLP(ZafBitmapData));

save->SetQuickTip("Save the application.");
save->SetHelpObjectTip("Select this button to save the

application.");
window->Add(save);

ZafButton *cancel = new ZafButton(0, 0, 20, "Cancel",
ZAF_NULLP(ZafBitmapData));

cancel->SetQuickTip("Cancel the save operation.");
cancel->SetHelpObjectTip("Select this button to cancel the save

operation.");
window->Add(cancel);

ZafWindowObject 653

Note, the help-tip device created above (helpTip) received an associated help
object (helpBarString). This object is called with the help-tip information
(through the SetText() function) whenever an object needs to update the help-
tip information presented to the window.

The return value for HelpObjectTip() and SetHelpObjectTip() is the current
string associated with the object. Under normal circumstances, this will be the
value passed into the SetHelpObjectTip() function.

InitialDelay static int InitialDelay(void);

static int SetInitialDelay(int initialDelay);
RepeatDelay static int RepeatDelay(void);

static int SetRepeatDelay(int repeatDelay);

These environment specific functions set the initial and repeat time period, in
milliseconds, that a user must press a mouse button and wait, before a repeat
signal is sent to a particular object. The most common use of these values is in
advanced programming such as that found with the DOS and Motif implemen-
tations of ZafScrollBar and ZafSpinControl objects. Although these values are
not generally set or used by programmers, the information presented here will
help you understand the nuances of user interface.

When a user presses the mouse key over the down-arrow on a scrollbar, there
is an initial delay before the text or visual presentation of an associated object
begins a continuous scrolling motion. In a multi-line text field, the information
will scroll one line up, then, after a short delay will begin repeating the scroll
motion, as long as the mouse continues to be pressed over the down-arrow.
The initial period of time between the down-click, and the auto-repeated
motion is called the initial delay. Once the object begins scrolling, the initial
delay is replaced by a repeat delay. It may not seem like there is a difference
between these values, but when you analyze this interaction, you will notice
there is a slight difference. Repeat delays are typically shorter than initial
delays, giving the user time to end a clicking operation before the auto-repeat
operation takes effect.

Here is some advanced code that shows how Motif hooks initial and repeat
delays with the AutoRepeat() functionality of the ZafButton object.

ZafEventType ZafButton::Event(const ZafEventStruct &event)
{
case L_BEGIN_SELECT:
// Set the repeat process.
if (AutoRepeatSelection() && SystemObject())

{

654 Zinc Application Framework 5

lastMousePosition = event.position;
if (intervalID)
XtRemoveTimeOut(intervalID);

intervalID = XtAppAddTimeOut(Display()->xAppContext,
InitialDelay(),
(XtTimerCallbackProc)Repeat, (XtPointer)this);

}
break;

case L_CONTINUE_SELECT:
// Update the button information.
if (AutoRepeatSelection() && SystemObject() && Depressed())
{
// Continue the repeat process.
lastMousePosition = event.position;
if (intervalID)
XtRemoveTimeOut(intervalID);

intervalID = XtAppAddTimeOut(Display()->xAppContext,
RepeatDelay(),
(XtTimerCallbackProc)Repeat, (XtPointer)this);

}
break;

case L_END_SELECT:
// End the repeat process.
if (intervalID)
 XtRemoveTimeOut(intervalID);

intervalID = 0;
}

Note, the use of these variables is environment specific. On systems and
classes where default initial and repeat values are used (e.g. all of Windows,
ZafScrollBar support object on Motif, etc.) these values have no effect.

The return value for InitialDelay() and RepeatDelay() is the current time inter-
val, in milliseconds, of the delay. These values are static, so a call to SetIni-
tialDelay() and SetRepeat(delay), affect the time intervals on all objects that
use the variables.

IsA virtual bool IsA(ZafClassID compareID) const;

virtual bool IsA(ZafClassName compareName) const;

These overloaded functions add the const value
ID_ZAF_WINDOW_OBJECT and string “ZafWindowObject” to the hierar-
chical chain of inheritance relationships. Thus, a ZafWindowObject object
will not only match IsA() queries for ZafElement, but also for the added Zaf-
WindowObject identification.

ZafWindowObject 655

// Check for a window object.
if (object->IsA(ID_ZAF_WINDOW_OBJECT))
break;

The value returned is “true” if the object is an instantiation of the ZafWin-
dowObject class, or a derived window object class. Otherwise, the return
value is “false.”

LinkDraggable bool LinkDraggable(void) const;

See ZafWindowObject::Draggable().

LogicalEvent ZafLogicalEvent LogicalEvent(const ZafEventStruct
&event);

This function determines the “logical interpretation” of a native OS event, for
use in ZAF programming. It should not be confused with the event handling
functions of Event(), DragDropEvent(), MoveEvent(), and ScrollEvent().

In particular, this function looks at particular OS events, such as
WM_KEYDOWN and WM_KEYUP events on Windows, KeyPress and Key-
Release events on Motif, and keyDown and keyUp events on Macintosh to
determine their logical ZAF interpretation (E_KEY, L_SELECT, L_DOWN,
etc.) The type of interpretation depends on the receiving object (e.g. Zaf-
String, ZafButton) and the type of event being dispatched (e.g.,
WM_KEYDOWN, MotionNotify, mouseUp).

A partial list of the default event table associated with the ZafWindow and Zaf-
WindowObject classes follows:

ZafEventMap ZAF_FARDATA ZafWindow::defaultEventMap[] =
{
{ L_NEXT, E_KEY, TAB, S_KEYDOWN },
{ L_PREVIOUS, E_KEY, TAB, S_KEYDOWN | S_SHIFT },
{ L_NONE, 0, 0, 0 }

};
ZafEventMap ZAF_FARDATA ZafWindowObject::defaultEventMap[] =
{
{ L_BEGIN_SELECT, E_MOUSE, M_LEFT | M_LEFT_CHANGE, 0 },
{ L_CONTINUE_SELECT, E_MOUSE, M_LEFT, 0 },
{ L_DOUBLE_CLICK, E_MOUSE, M_LEFT | M_LEFT_CHANGE,
S_DOUBLE_CLICK },

{ L_END_SELECT, E_MOUSE, M_LEFT_CHANGE, 0 },
{ L_VIEW, E_MOUSE, 0, 0 },
{ L_NONE, 0, 0, 0 }

656 Zinc Application Framework 5

};

When a user presses a key, or moves the mouse, an OS specific event is gener-
ated. This event has definitions that only apply to the currently running operat-
ing environment, but are of little use to ZAF programmers. LogicalEvent()
matches these OS specific messages against class event tables, to produce a
logical event. For instance, the pressing of a <tab> key produces the following
information on Windows and Motif:

int ZafEventManager::Get(ZafEventStruct &event, ZafQFlags flags)
{
#if defined(ZAF_Windows)
MSG msg;
if ((Blocked(flags) && !queueBlock.First()) ||
(!queueBlock.Full() && PeekMessage(&msg, 0, 0, 0,
PM_NOREMOVE)))

{
// Get a Windows message and place it in the Zinc event
queue.
GetMessage(&msg, 0, 0, 0);
Put(ZafEventStruct(E_Windows, &msg));

}
#elif defined (ZAF_MOTIF)
if ((Blocked(flags) && !queueBlock.First()) ||
(!queueBlock.Full() && XtAppPending(ZafDevice::display-
>xAppContext)))

{
// Block if necessary and process one X event.
XEvent message;
XtAppNextEvent(ZafDevice::display->xAppContext, &message);
ZafEventStruct event(E_MOTIF, &message);
Put(event, Q_BEGIN);

}
#endif

...
}

// Windows.
msg.message == WM_KEYDOWN
msg.wParam == 0x0009

// Motif.
message.type == KeyPress
message.key == XLookupString() which passes back a value of

XK_Tab.

ZafWindowObject 657

Keyboard definitions, such as TAB, SPACE, ESCAPE, etc. are defined in
z_keymap.hpp and contain environment specific values that allow ZAF to
match OS specific information with ZAF const values, in order to determine
what type of key is pressed:

#if defined(ZAF_Windows)
const ZafRawCode ESCAPE = 0x001B;
const ZafRawCode ENTER = 0x000D;
const ZafRawCode TAB = 0x0009;
const ZafRawCode SPACE = 0x0020;
const ZafRawCode BACKSPACE = 0x0008;
#elif defined(ZAF_MOTIF)
const ZafRawCode ESCAPE = XK_Escape;
const ZafRawCode ENTER = XK_Return;
const ZafRawCode TAB = XK_Tab;
const ZafRawCode SPACE = XK_space;
const ZafRawCode BACKSPACE = XK_BackSpace;
#endif

These raw OS values are then matched against <defaultMap>.rawCode to
determine a match. If a match exists then <defaultMap>.logicalValue is
returned.

Coordinate Conversions

In addition to this simple event translation (raw event -> logical mapping),
LogicalEvent() also causes mouse coordinates to be converted relative to the
calling object. For example, a mouse click on a group child generates a raw
event that ultimate arrives at the group child. The programmer calls Logica-
lEvent(event) to interpret the event, and in the process the mouse pointer coor-
dinates are converted relative to this. If the programmer then needs these
coordinates at the parent group level or higher, parent->LogicalEvent(event)
will remap the coordinates relative to the calling object (“parent” in this case).
This remapping of coordinates may be done by any window object up the win-
dow object hierarchy, ultimately terminating at the ZafWindowManager. The
ZafWindowManager will map coordinates relative to the Display()—the entire
screen.

Converting coordinates relative to various objects may be accomplished using
other methods as well. These alternatives are particularly useful when convert-
ing to or from screen coordinates. See ConvertToScreenPosition() and Con-
vertToObjectPosition() for details.

There are many more details associated with LogicalEvent() that are not dis-
cussed in this section. These details are necessary for the internal workings of
the ZAF libraries, but should not be necessary for full use of ZAF by develop-
ers.

658 Zinc Application Framework 5

As a real-world example, the following code shows how the derived ZafDate
and ZafTable use LogicalEvent() to determine child movement.

ZafEventType ZafDate::Event(const ZafEventStruct &event)
{
// Check for logical events.
ZafEventType ccode = event.type;
if (event.InputType() == E_KEY)
ccode = LogicalEvent(event);

switch (ccode)
{
case L_SELECT:
...
break;
}

}

ZafEventType ZafTable::Event(const ZafEventStruct &event)
{
// Check for logical events.
ZafEventType ccode = LogicalEvent(event);

// Check for zinc events.
switch (ccode)
{
case L_BEGIN_SELECT:
...
break;
}

}

Each window object may map raw events differently. A complete table of pos-
sible “Logical Events” is contained in the “Event Definitions” appendix. The
ZafWindowObject class provides logical mapping for the following logical
events:

Logical Event Description

L_BEGIN_ESCAPE Mapped in response to a right mouse button
down-click event.

L_CONTINUE_ESCAPE Mapped when the mouse moves while the right
mouse button is still depressed.

L_END_ESCAPE Mapped in response to a right mouse button up-
click event.

ZafWindowObject 659

LogicalPalette virtual ZafPaletteStruct LogicalPalette(ZafPaletteType
type, ZafPaletteState state);

This function returns a portable color/font description given a requested palette
type and state. The allowed arguments for “ZafPaletteType type” are:

L_BEGIN_SELECT Mapped in response to a left mouse button
down-click event.

L_CONTINUE_SELECT Mapped when the mouse moves while the left
mouse button is still depressed.

L_END_SELECT Mapped in response to a left mouse button up-
click event.

L_CANCEL Mapped in response to an <escape> event.

L_DOUBLE_CLICK Mapped when the left mouse button is quickly
clicked twice in a row. The maximum time
between the first up-click and the second down-
click is determined by the native environment,
or ZafMouse::DoubleClickRate().

L_VIEW Mapped when an unpressed mouse is posi-
tioned over a window object.

Logical Event Description

Argument Description

ZAF_PM_OUTLINE This requests a palette entry that contains bor-
der colors. This request should only be made if
the object’s Bordered() flag is “true,” and when
you want to draw an encompassing border
around the object’s specified region. This value
should not be used when drawing a 3-dimen-
sional border around the object.

ZAF_PM_BACKGROUND Used when you want to clear or draw to the
background portion of the object. The back-
ground palette specifies a pattern, and fore-
ground/background color that can be used in
clearing operations.

660 Zinc Application Framework 5

ZAF_PM_FOREGROUND Used when you want to draw graphic informa-
tion, such as lines, rectangles, and ellipses
within a window object. This palette is used
after the background has been cleared, and
additional information, such as a check-mark,
or radio-button still need to be rendered on the
display. Note, both the
ZAF_PM_FOREGROUND and
ZAF_PM_BACKGROUND colors are com-
bined only when the fill pattern is a non-solid
type fill (e.g.,
ZAF_PTN_INTERLEAVE_FILL).

ZAF_PM_TEXT This requests a palette that has font, pattern,
foreground and background entries that will be
used in text drawing operations.

ZAF_PM_HOT_KEY This requests an entry to be used when drawing
the “hotkey” portion of a string value. Nor-
mally, this value is only used on text based
environments, since GUI environments gener-
ally show hotkey information with an under-
line.

ZAF_PM_LIGHT_SHADOW This requests the light colors of a 3-dimen-
sional shadow. This is used in conjunction with
ZAF_PM_DARK_SHADOW to present a
shadowed appearance on the object. When the
object appears raised, this entry is used on the
left and top sides of the object. If the object
appears depressed, this entry is used for the
right and bottom sides of the object.

ZAF_PM_DARK_SHADOW This requests the dark colors of a 3-dimen-
sional shadow. This is used in conjunction with
ZAF_PM_LIGHT_SHADOW to present a
shadowed appearance on the object. When the
object appears raised, this entry is used on the
right and bottom sides of the object. If the
object appears depressed, this entry is used for
the left and top sides of the object.

ZAF_PM_FOCUS This requests a color value to be used when
drawing the focus rectangle around a window
object. Typically, this entry is used with
ZAF_PM_ANY_STATE so the focus is drawn
in a consistent color.

Argument Description

ZafWindowObject 661

The associated values of “ZafPaletteState state” are generally determined at
run-time (see the example below) but may include:

ZAF_PM_ANY_TYPE Specifying this value will match any palette
request, as long as the specified state is
ZAF_PM_ANY_STATE or the value matches
the palette map entry.

Value Description

ZAF_PM_ANY_STATE Specifying this value will match any palette
request, as long as the specified type is
ZAF_PM_ANY_TYPE or the value matches the
palette map entry.

ZAF_PM_ACTIVE This state is typically used when you want to show
the window, or window object, in an active state;
meaning the window has input focus and objects
can be immediately selected or focused.

ZAF_PM_CURRENT This state is typically used when you want to show
that the object has the focus. This is particularly
useful when you want to distinguish items that
have the input focus in a more distinctive way than
just drawing a focus rectangle.

ZAF_PM_INACTIVE This is a special request that is used when the
object distinguishes between a parent that does, or
does not have the input focus. For example, ZafTi-
tle is drawn with different colors that have a unique
presentation to show the window either does or
does not have the immediate input focus.

ZAF_PM_SELECTED This state is used when the object’s Selected()
attribute is “true.” Many objects, such as vertical
and horizontal lists, show their “selected” children
in a highlighted state, giving immediate visual
queues to the user, that the object has been selected
from among the list of siblings.

ZAF_PM_DISABLED This state is used when the object’s Disabled()
attribute is “true.” Typically, this palette contains a
“dithered” font and color setting that shows the
object in a diminished, or incapacitated state.

Argument Description

662 Zinc Application Framework 5

The returned ZafPaletteStruct, is the class or instance palette that matches the
type and state argument supplied by the programmer. You are guaranteed a
valid palette definition as the return argument for LogicalPalette() because
ZAF automatically provides default matching palettes for all their ZAF classes.

The palette structure contains the following information:

This function is normally used in conjunction with an object’s draw operations.
In general, the type argument of the request does not change, but the state argu-
ment depends on the current run-time status of the object. Here is some sample
code from the Windows implementation of ZafString::Draw() function.

ZafEventType ZafString::Draw(const ZafEventStruct &,
ZafEventType ccode)

{

ZAF_PM_ENABLED This state is used when the object’s Disabled()
attribute is “false.” This palette typically contains
the normal presentation of font and color settings.

Palette Attribute Description

lineStyle This is the type of line (solid, dotted) that can be drawn.

fillPattern This is the type of pattern (solid, interleaved) that can be
used either in the clearing of background information, or
in the display of text information.

colorForeground

colorBackground

These are the foreground/background color pairs used
on color systems when drawing the object’s visual infor-
mation.

monoForeground

monoBackground

These are the foreground/background monochrome
color pairs used on black/white systems when drawing
the object’s visual information.

font This is the logical font to be used when rendering text
information to the display.

osPalette This is an OS specific value that provides optimization
of palette information. For instance, Motif uses objects
called “graphic contexts” that contain information simi-
lar to ZafPaletteStruct. Whenever default color and font
information is used with a Motif widget, the optimal
drawing mechanism is through the graphic contexts, not
ZAF’s palettes. This “opaque” handle allows ZAF to
optimize drawing operations on Motif, while providing
override information in the ZafPaletteStruct.

Value Description

ZafWindowObject 663

// Begin drawing operation.
ZafRegionStruct drawRegion = BeginDraw();

...
// Set the text palette.
ZafPaletteState state = PaletteState();
Display()->SetPalette(LogicalPalette(ZAF_PM_TEXT, state));

// Draw the text.
Display()->Text(drawRegion.left + 1, drawRegion.top + 1,
stringData->Text(), -1);

...
}

MemberUser-
Function

typedef ZafEventType
(ZafWindowObject::*MemberUserFunction)(const
ZafEventStruct &event, ZafEventType ccode);

memberUser-
Function

MemberUserFunction memberUserFunction;

The variable memberUserFunction provides a pointer-to-member C++ capabil-
ity at the window object level. This member is generally used in conjunction
with userFunction to “hook” between functional techniques and the more pow-
erful member replacement. A user function returns 0 if no error occurs; other-
wise it returns a non-zero value. To illustrate its use, lets look at three default
override member functions that are declared in ZAF:

• ZafButton::SendMessage(),

• ZafString::DefaultValidateFunction()

• ZafWindowObject::DefaultUserFunction.

Each one of these functions provides a specific type of interface that is used
with derived window objects. For instance, the ZafButton member SendMes-
sage() simply packages up a message and places it in the event queue, when-
ever the L_SELECT or L_DOUBLE_CLICK messages are received. The
member DefaultUserFunction() calls the associated user-function, whenever
focus changes from one object to another, or when a selection sequence is pro-
cessed. And finally, DefaultValidateFunction() maintains all the functionality
of DefaultUserFunction(), but also provides simple validation for dates, times,
numbers, etc. whenever the user presses <enter> or tabs off the field.

Each member provides a unique mechanism for user callback, depending on
the state and type of message being processed. As a developer, you can also
replace memberUserFunction to give program specific handling of events
through derived classes, rather than a flat function based interface (the archi-
tecture supported by the userFunction variable). It is important that you under-
stand the subtle difference between the member pointer, and the simple

664 Zinc Application Framework 5

function pointer methods supported by ZAF. To illustrate this difference,
examine the following section of code:

class MyButton : public ZafButton
{
 ZafDiskFile *database;
public:
 MyButton(void);
 ZafEventType MyNotification(const ZafEventStruct &event,

ZafEventType ccode);
};

ZafEventType MyButton::MyNotification(const ZafEventStruct
&event, ZafEventType ccode)

{
 database->Seek(0, ZAF_SEEK_START);
 return (0);
}

ZafEventType MyCallback(MyButton *myButton, ZafEventStruct
&event, ZafEventType ccode)

{
 myButton->database->Seek(0, ZAF_SEEK_START); // oops!

database is private!
 return (0);
}

void Initialize(void)
{
 MyButton *button1 = new MyButton;
 button1->userFunction = (ZafUserFunction)MyCallback;
 MyButton *button2 = new MyButton;
 button2->memberUserFunction =

(ZafWindowObject::MemberUserFunction)
MyButton::MyNotification;

}

Obviously, this code is simplistic. Things could be moved around MyCallback
could be made a static member of MyButton, database could be made public,
etc. But hopefully you see the added benefit of using a pointer-to-member.
These benefits include, but are not limited to:

• the class member function gives you real access to the data, at any level,

• the member does not require the use of a globally visible function,

• there are no typecasts necessary for the member pointer.

ZafWindowObject 665

MoveDraggable bool MoveDraggable(void) const;

See ZafWindowObject::Draggable().

MoveEvent virtual ZafEventType MoveEvent(const ZafEventStruct
&event);

The Event() function dispatches some events to MoveEvent() which provides
filtered input of movement events. The programmer should not generally
overload MoveEvent() but should instead trap all events in Event().

The following events may be dispatched to MoveEvent():

• L_LEFT

• L_RIGHT

• L_UP

• L_DOWN

• L_FIRST

• L_LAST

• L_NEXT

• L_PREVIOUS

• L_PGDN

• L_PGUP.

Whenever an object receives a movement event, the messages are first inter-
cepted in the object’s Event() function. To allow for more encapsulation and a
more efficient handling of similar movement functionality, ZAF defines
MoveEvent() which may be called by the base ZafWindowObject class when-
ever one of the aforementioned messages is generated.

The programmer should not call MoveEvent(), but it is used internally by ZAF.
When deriving to intercept movement events, the programmer should always
use the Event() function itself.

The return value for MoveEvent() is normally event.type if processing is suc-
cessful. Otherwise, S_ERROR or S_UNKNOWN may be returned, indicating
the object either detected an error on the message, or that the function did not
recognize the specified message.

Next ZafWindowObject *Next(void) const;

This overloaded function adds a type-safe cast of “ZafWindowObject *” to the
object while accessing the next sibling in a window’s list of children. The
overload allows you to initialize and manipulate a list of associated window

666 Zinc Application Framework 5

objects with the proper base type declaration. Here is a code snippet that
shows the proper use of this overloaded member.

// Select all of the objects in the group.
for (ZafWindowObject *object = group->First(); object; object =

object->Next())
object->SetSelected(true);

Noncurrent bool Noncurrent(void) const;

virtual bool SetNoncurrent(bool noncurrent);

The term “non-current” specifies whether an object can receive system focus
and subsequent keyboard input. If an object sets SetNoncurrent(true), then the
user will not be able to tab or set the focus on the object, but will still be able to
use the mouse to select or click within the specified object. For instance, one
common use of the Noncurrent() attribute is with scrollbars. Normally, the
end-user clicks the mouse to “activate” up- and down-arrows, to select page-up
and page-down options, or to grab the thumb control on the center portion of
the scrollbar. The visual focus never moves to the scrollbar, nor does the
scrollbar ever accept keyboard control. It simply modifies the visual presenta-
tion of an adjacent object, such as a multi-line text field. Another typical appli-
cation is the use of Noncurrent() with toolbars. Toolbars typically have button
children that allow the user to select application options (open, close, cut, copy,
paste, etc.). As with scrollbar, the mouse is used to select one of the toolbar
items, causing application changes. You may have noticed that the focus is
never changed to a field inside the toolbar, but rather, still resides on another
field within the window. The toolbar simply processes mouse information,
never receiving focus or keyboard control. This is accomplished by calling
SetNoncurrent(true) on the toolbar object.

The use of SetNoncurrent() is somewhat restricted. For instance, ZafBorder,
ZafTitle, ZafMinimizeButton, ZafMaximizeButton never allow you to change
the value of Noncurrent() (they automatically set this value to true). You are
encouraged to refer to the associated section of the object you are creating to
understand any restrictions or limitations on this function.

Here is some sample code that shows the correct use of these functions:

// Set the button’s noncurrent state.
button->SetNoncurrent(true);

// Check all the object’s noncurrent status.
for (ZafWindowObject *object = First(); object; object = object-

>Next())
if (object->Noncurrent())

ZafWindowObject 667

printf("NO! Object %s does not allow keyboard focus.\n",
object->StringID())

else
printf("YES! Object %s allows keyboard focus.\n", object-
>StringID())

// This code has no effect since you cannot reset the noncurrent
state of a ZafPrompt object.

extern ZafPrompt *prompt;
prompt->SetNoncurrent(false); // error!

Note, setting the noncurrent attribute on a parent object causes all of the chil-
dren to become noncurrent, even though their individual noncurrent states may
not be “true.” SetNoncurrent() functionality is thus propagated to children,
grandchildren, etc., but only through inheritance, not by value replacement (i.e.
the child object’s noncurrent value is not reset to be the same as the parent’s
value). Once the Noncurrent() state is set back to false, the input and focus
aspects of children are restored.

The return value for Noncurrent() and SetNoncurrent() is the final, or current
state of the object (true or false). Under normal circumstances, this value will
be the value passed into the SetNoncurrent() function, but may differ if the
derived class restricts its use.

NotifyFocus virtual ZafWindowObject *NotifyFocus(ZafWindowObject
*object, bool focus);

This is an advanced function that is used to notify a parent object, or set of
hierarchical objects, that the focus of a child is in the process of being changed.
Under normal conditions, you will not need to explicitly call this function.
Subsequent discussion of this function is intended for advanced ZAF program-
mers, and as adeptly stated by many reference manuals as not indented for the
“faint of heart.”

The consequences of changing focus are fairly dramatic for most windows and
window objects. For instance, changing the focus from one window to
another, requires all of the ancestors of the old focus object to be notified of a
focus change (their Focus() attribute changes to false), and all the ancestors of
the new focus object to be notified of their focus change (their Focus() attribute
changes to true). A fairly complicated endeavor when you consider all the
ways in which an object may gain focus! NotifyFocus() provides a consistent
method of notification for these affected objects.

The illustration below demonstrates one simple aspect of focus notification
from one child object to another:

668 Zinc Application Framework 5

// Sample code to move the focus on another window.
window1->Current()->SetFocus(true); // Assume this is the base

state.
...
window2->Current()->SetFocus(true); // This focus change is

described by the algorithm.

When window2 resets the focus for its Current() object, the following algo-
rithm is executed:

• SetFocus() is called on the current object of window2. If a focus change is
allowed by the current object, it proceeds to step 2. Otherwise the function ends
and SetFocus() returns false.

• Current() calls NotifyFocus() for itself, beginning the process of notification. This
is done with the following arguments:

NotifyFocus(this, true);

The return value for NotifyFocus() will be null if the object can obtain the focus,
or non-null if another object will become “invalid” if the focus is moved. A non-
null return value is the final chance of the “old focus” object to request a cancella-
tion of focus change.

• NotifyFocus() calls its parent’s NotifyFocus() function as follows:

parent->NotifyFocus(this, true);

The “this” pointer is a pointer to itself, whereas “true” tells the parent object that
the focus is being turned on for the object.

• The parent propagates the “focus” up, if it does not currently have the focus, or
notifies the old focus object that it will lose the focus. Notification of focus change
is made by sending the N_NON_CURRENT and S_NON_CURRENT messages
to the old focus object’s Event() function, in the following manner:

if (Event(N_NON_CURRENT) == 0)
Event(S_NON_CURRENT);

These messages allow the object to call associated user or validate functions, in
preparation of losing the input focus.

• If the return “invalidObject” argument is null, the parent finalizes the objects focus
by calling the object’s Event() function with S_CURRENT and N_CURRENT.
The default operation of these messages is to reset the Focus() variable and to call
any associated user-functions.

One way to view this algorithm is to envision a pyramid.

We start on a corner of the pyramid and walk all the way to its peak. This rep-
resents traversing all the non-focus objects in our parent’s hierarchy. Once we
reach the top, we have reached the root object that currently contains the sys-
tem focus. Now we must walk all the way down the other side of the pyramid

ZafWindowObject 669

to find the exact object that currently has the system focus. Once this is
accomplished, we begin walking back up the pyramid, systematically turning
off the focus of the old focus object’s parent hierarchy. This is done by sending
N_NON_CURRENT and S_NON_CURRENT messages to the objects, allow-
ing them to turn off their focus attributes, to call associated user-functions, etc.
Once we reach the top of the pyramid, the focus value changes from “false” to
“true” and all ancestors are systematically notified of their new focus state.
The process ends when we reach the beginning spot on the pyramid.

It would be impractical to describe all the combinations and possible variations
of NotifyFocus(). The example above is intended as a simplified explanation
to the types of operations that are occurring whenever the NotifyFocus() func-
tion is called.

In order to fully explain the nature of NotifyFocus(), a partial code snippet
from ZafWindow::NotifyFocus() is shown below:

ZafWindowObject *ZafWindow::NotifyFocus(ZafWindowObject
*focusObject, bool setFocus)

{
...
// Check for algorithm direction.
ZafWindowObject *invalidObject = ZAF_NULLP(ZafWindowObject);
if (!setFocus) // down
{
// Remove focus from the current branch.
if (Current())
invalidObject = Current()->NotifyFocus(focusObject, false);

// Remove focus from the "this"
if (!invalidObject)
invalidObject = ZafWindowObject::NotifyFocus(focusObject,
false);

}
else if (!focus) // up
{
// Recurse the entire focus path. Give this object focus.
invalidObject = ZafWindowObject::NotifyFocus(this, true);

 // This window is now the root of the focus path. Transition
focus

// if focusObject doesn’t already have it.
if (!invalidObject && Current() && Current() != focusObject)

invalidObject = Current()->NotifyFocus(this, false);

// Set focus if validation succeeded.
if (!invalidObject)

ZafList::SetCurrent(focusObject);

670 Zinc Application Framework 5

}
else // transition
{
 // This window is the root of the focus path. Transition focus

// if focusObject doesn’t already have it.
if (Current() && Current() != focusObject)

invalidObject = Current()->NotifyFocus(this, false);

// Set focus if validation succeeded.
if (!invalidObject)

ZafList::SetCurrent(focusObject);
}
...
}

NotifySelection virtual ZafWindowObject *NotifySelection(ZafWindowObject
*object, bool selected);

This is an advanced function that is used to notify a parent object, or set of
hierarchical objects, that the selection state of a child is in the process of being
changed. Under normal conditions, you should not call this function directly.
A description of this function follows as “useful information” in your program-
ming endeavors.

For simple objects, a call to SetSelected() simply changes the state of the
object and reflects the change on the display. It does not, however, take into
account the consequences of such an action on other siblings, or as it may
affect the state of an application. In addition, since some simple objects (list
and tree items) do not know what consequence the change of its state will have,
it does not update its visual representation if its SystemObject() status is
“false.” This aspect of selection is deferred to the parent’s NotifySelection()
function.

Let’s briefly look at the selection process of two objects: a basic window and a
vertical list to give you better insight into the selection process.

In a basic window, the mechanics of selection are straight forward. If Selec-
tionType() is ZAF_MULTIPLE_SELECTION or
ZAF_EXTENDED_SELECTION no additional processing is needed on the
window’s children. The object simply marks itself as selected, calls parent->
NotifySelection() which returns without action, and redisplays its changes.
The selection process then continues within the context of the application.

In the case of ZAF_SINGLE_SELECTION, however, ZafWindow::NotifySe-
lection() traverses all children to either turn off their selection status (if the
selection state of the notify child is “true”), or to check for another selected
object (if the child requests the selection status to be turned off). Note the Zaf-

ZafWindowObject 671

Window class simply calls SetSelected() on the children, no special OS pro-
cessing is needed.

ZafWindowObject *ZafWindow::NotifySelection(ZafWindowObject
*selectedObject, bool setSelected)

{
...
if (setSelected && SelectionType() == ZAF_SINGLE_SELECTION)
{
// Deselect all objects except "selectedObject."
for (ZafWindowObject *object = First(); object; object =
object->Next())
if (object->Selected() && object != selectedObject)
object->SetSelected(false);

...
}
// Return the object selection.
return (selectedObject);

}

In the case of ZafVtList, there is an important component added to the selec-
tion process; the native operating system’s update of list items. If the vertical
list is set with a selection type of ZAF_SINGLE_SELECTION, the list must
not only turn off the selection status of all other selected children, but must also
redisplay the child’s visual information in accordance with proper API calls, to
reflect the changed status on the display. For this object, the particular aspects
of redisplay are environment specific.

For instance, Windows must send an LB_SETCURSEL message to the parent
list of a single-select list item, a message that automatically causes the item to
be redisplayed in its new state.

ZafWindowObject *ZafVtList::NotifySelection(ZafWindowObject
*object, bool setSelected)

{
ZafWindow::NotifySelection(object, setSelected);
int index = Index(object);
...
SendMessage(screenID, LB_SETCURSEL, (WPARAM)index, (LPARAM)0);

}

If the list is ZAF_MULTIPLE_SELECTION or
ZAF_EXTENDED_SELECTION, however, it must process an LB_SETSEL
message for the selected child, in order to redisplay correctly:

672 Zinc Application Framework 5

SendMessage(screenID, LB_SETSEL, (WPARAM)setSelected,
(LPARAM)index);

Each environment has specific methods for accessing and manipulating native
lists and list items. Thus, the rendering of these changes is overridden through
environment specific implementations of the ZafVtList::NotifySelection()
member function. (Note, the children will not automatically update them-
selves when SetSelected(true/false) is called, because they are marked by the
list as non-system objects.)

The methods of selection for other derived windows is similar. If the object
has a native implementation, API calls are intermixed with ZAF functionality
to properly reflect changes to the object’s status. Otherwise, the derived win-
dow defers the notification process to the base ZafWindow class.

Here is some sample code that shows the use of NotifySelection().

bool ZafWindowObject::SetSelected(bool setSelected)
{
...
// Check the object selection with its parent.
ZafWindow *window = DynamicPtrCast(parent, ZafWindow);
if (window)
window->NotifySelection(this, setSelected);

...
}

The return value for NotifySelection() is a pointer to the current selected item.
Typically, this is the object you passed to NotifySelection(), but may be differ-
ent if an associated user-function or derived object does not allow selection of
the item specified.

OSDraw bool OSDraw(void) const;

virtual bool SetOSDraw(bool osDraw);

This is a special attribute function that combines with derived Draw() func-
tions to “reconnect” OS specific display calls. Some operating environments
provide special mechanisms for drawing native objects. These methods should
not be overridden unless you have specific drawing needs that are not automat-
ically handled by the native object. You should only clear OSDraw() when you
derive a particular window object and need to override the Draw() functional-
ity of that object. Here is some sample code that shows how this is done:

class MyButton : public ZafButton
{

ZafWindowObject 673

virtual ZafEventType Draw(const ZafEventStruct &event,
ZafEventType ccode);

...
};

MyButton::MyButton(int left, int top, int width, int height) :
ZafButton(left, top, width, height, ZAF_NULLP(ZafIChar),
ZAF_NULLP(ZafBitmapData))

{
// Make sure Draw() gets the proper update calls.
SetOSDraw(false);
...

}

Note that overloading the draw capabilities requires two operations: the defini-
tion of a derived Draw() function, and the clearing of the OSDraw() variable.
If both steps are not taken, the results are undefined and environment depen-
dent.

The return value for OSDraw() and SetOSDraw() is the final, or current draw
attribute associated with the object (true or false). Under normal circum-
stances, this will be the value passed into the SetOSDraw() function, but may
be different if the object does not allow you to override this functionality.

OSScreenID virtual OSWindowID OSScreenID(ZafScreenIDType type =
ZAF_SCREENID) const;

This virtual function provides access to OS specific information associated
with a window object. The screenID value represents a “hook” from the ZAF
class hierarchy, to the underlying operating environment. type indicates an OS
specific value indicating which type of OS handle is to be returned, and may be
any of the following according to OS:

Platform Possible Values

MS Windows ZAF_SCREENID (lowest level of OS object, HWND)
ZAF_CLIENTID (client handle)
ZAF_FRAMEID (frame handle)

Motif ZAF_SCREENID (lowest level of OS object, Widget)
ZAF_CLIENTID (client handle)
ZAF_FRAMEID (frame handle)
ZAF_SHELLID (shell handle)

674 Zinc Application Framework 5

See ZafWindowObject::screenID for more information.

PaletteState virtual ZafPaletteState PaletteState(void);

This function indicates the current state of an instantiated object, in values rec-
ognized by palette computation functions such as ZafWindowObject::Logi-
calPalette() and ZafPaletteData::GetPalette(). The following values are
inclusively defined by ZAF:

• ZAF_PM_ANY_STATE (0x0000)

• ZAF_PM_ACTIVE (0x0001)

• ZAF_PM_CURRENT (0x0002)

• ZAF_PM_INACTIVE (0x0004)

• ZAF_PM_SELECTED (0x0008)

• ZAF_PM_DISABLED (0x0010)

• ZAF_PM_ENABLED (0x0020)

This function is generally used within drawing operations to determine the cur-
rent drawing state of an object. Here is some code from ZafString::Draw(),
that shows the use of PaletteState() to determine the proper color to use in
drawing text information.

ZafEventType ZafString::Draw(const ZafEventStruct &,
ZafEventType ccode)

{
// Begin drawing operation.
ZafRegionStruct drawRegion = BeginDraw();

...
// Set the text palette.
ZafPaletteState state = PaletteState();
Display()->SetPalette(LogicalPalette(ZAF_PM_TEXT, state));

// Draw the text.

Macintosh ZAF_SCREENID (lowest level of OS object)
ZAF_WINDOWREF (parent window, WindowRef)

OS/2 ZAF_SCREENID (lowest level of OS object, HWND)
ZAF_CLIENTID (client handle)
ZAF_FRAMEID (frame handle)

DOS ZAF_SCREENID (lowest level of OS object)

Platform Possible Values

ZafWindowObject 675

Display()->Text(drawRegion.left + 1, drawRegion.top + 1,
stringData->Text(), -1);

...
}

Note, the function call LogicalPalette() uses two variables to associate the
proper color/font information: ZAF_PM_TEXT and state. ZAF_PM_TEXT is
a “static” request that tells LogicalPalette() that we want to retrieve the proper
color associated with the textual information of the object. The state argument,
however, is “dynamic,” meaning its value must be determined at run-time, (in
this case as determined by the return value of PaletteState() function) in order
to obtain the correct color and font information.

For more information on palette settings, see ZafWindowObject::UserPalette-
Data() or the ZafPaletteMap section of this manual.

Parent ZafWindowObject *Parent(void) const;

ZafWindowObject *SetParent(ZafWindowObject *parent);

These functions set or provide access to an object’s instance hierarchy. Par-
ent(), combined with the Next(), Previous(), ZafWindow::First() and ZafWin-
dow::Last() give programmers the ability to move bidirectionally within a
window.

Here are some code snippets that show the use of the Parent() function.

ZafWindowObject *ZafWindow::Add(ZafWindowObject *object,
ZafWindowObject *position)

{
// Make sure add is allowed.
if (object->Parent())
return (object);

// Set object’s parent.
object->SetParent(this);
...

}

// Find the root window object.
ZafWindowObject *ZafWindowObject::RootObject(void)
{

ZafWindowObject *object = this;
while (object->Parent())

object = object->Parent();
return (object);

}

676 Zinc Application Framework 5

// Notify the parent of a pending action.
if (buttonToDisableWindow->Selected())
buttonToDisableWindow->Parent()->SetDisabled(true);

Under normal circumstances, you will not use the SetParent() function,
because the Parent() value is automatically set when the ZafWindow::Add()
function is called.

The return value for Parent() and SetParent() is the current parent associated
with the object. This value will always be the value passed into SetParent().

ParentDrawBorder bool ParentDrawBorder(void) const;

virtual bool SetParentDrawBorder(bool parentDrawBorder);
ParentDrawFocus bool ParentDrawFocus(void) const;

virtual bool SetParentDrawFocus(bool parentDrawFocus);
ParentPalette bool ParentPalette(void) const;

virtual bool SetParentPalette(bool parentPalette);

These functions are used to defer drawing or the retrieval of color information
from a child to its parent. In general, you should not set these values because
they are automatically set by advanced ZAF objects such as ZafVtList and
ZafTree. These list objects set the Parent*() values, of children added to them,
to “true” in order to give all their children a consistent presentation to the
screen. Here is a brief explanation of these functions.

SetParentDrawBorder() Causes the object to defer the border drawing opera-
tion to its immediate parent. In this case, the corresponding colors of the
immediate object are ignored.

SetParentDrawFocus() Causes the object to defer the focus drawing operation
to its immediate parent. As with SetParentDrawBorder(), setting this attribute
to “true” causes the object to ignore any colors that correspond to its own focus
rendering.

SetParentPalette() Causes the child to ignore its default class palette informa-
tion and use the parent object’s class or instance palette information. Note, this
flag is ignored if you specify a UserPalette(). The child only refers to parent
information if the user palette does not contain the information necessary for
the requested drawing operations. Normally, this operation is desired when all
the children of an object (ZafVtList, ZafTreeList) need to be presented in a
uniform manner.

Here is some sample code that shows the proper use of these functions.

ZafWindowObject 677

ZafWindowObject *ZafVtList::Add(ZafWindowObject *object,
ZafWindowObject *position)

{
...
// Add the object to the list.
object->SetSystemObject(false);
object->SetParentPalette(true);
ZafWindow::Add(object, position);
...

}

All of these functions return the current attribute associated with the object
(true or false). Normally, this will be the original value passed to the SetPar-
ent*() function, but may be different if the derived window object does not
allow changes to the Parent*() attributes.

Previous ZafWindowObject *Previous(void) const;

This overloaded function adds a type-safe cast of “ZafWindowObject *” to the
object while accessing the previous sibling in a window’s list of children. The
overload allows you to initialize and manipulate a list of associated window
objects with the proper base type declaration. Here is a code snippet that
shows the proper use of this overloaded member.

// Clear all the entries in a window.
for (ZafWindowObject *object = window->Last(); object; object =

object->Previous())
object->SetText(ZAF_NULLP(ZafIChar));

QuickTip const ZafIChar *QuickTip(void) const;

virtual const ZafIChar *SetQuickTip(const ZafIChar
*quickTip);

SetQuickTip(), along with SetHelpObjectTip() allows you to associate particu-
lar help messages with the run-time presentation of an object. QuickTip() is
the “pop-up” portion of the ZafHelpTips object that appears below the mouse
cursor anytime the mouse is idle and positioned over an object that has a
QuickTip() string. It is important to note that a ZafHelpTips device must be
added to the event manager for quick tips to function (see ZafHelpTips for
more information).

The return value for QuickTip() and SetQuickTip() is the current string associ-
ated with the object. This will always be the value passed into the SetQuick-
Tip() function. Here is a code snippet that shows the correct usage of these
functions:

678 Zinc Application Framework 5

// Create two objects with quick-tip information.
ZafButton *save = new ZafButton(0, 0, 20, "Save",

ZAF_NULLP(ZafBitmapData));
save->SetQuickTip("Save the application.");

ZafButton *cancel = new ZafButton(25, 0, 20, "Cancel",
ZAF_NULLP(ZafBitmapData));

cancel->SetQuickTip("Cancel the save operation.");

Read static ZafElement *Read(const ZafIChar *name,
ZafObjectPersistence &persist);

This static function defines a pointer to the persistent constructor (see ZafWin-
dowObject::ZafWindowObject()) which reads a window object from a persis-
tent file. This function should not be used directly with object construction.
Rather, it is used by the ZafObjectPersistence class to allow the run-time deter-
mination of window object constructors. Here is a portion of the default
ZafObjectPersistence table used when constructing a persistence object along
with code that constructs a persistent window:

ZafObjectPersistence::ObjectConstructor
ZafObjectPersistence::defaultObjectConstructor[] =

{
// --- Window objects ---
{ 0, ID_ZAF_BIGNUM, ZafBignum::className, ZafBignum::Read },
{ 0, ID_ZAF_BORDER, ZafBorder::className, ZafBorder::Read },
{ 0, ID_ZAF_BUTTON, ZafButton::className, ZafButton::Read },
{ 0, ID_ZAF_WINDOW, ZafWindow::className, ZafWindow::Read },
...
// --- End-of-array ---
{ 0, ID_END, 0, 0 }

};

// Load a persistent window.
ZafStorage *storage = new ZafStorage("myfile.dat");
ZafObjectPersistence persist(storage,

zafDefaultDataConstructor, zafDefaultObjectConstructor);
windowManager->Add(new ZafWindow("MyWindow", persist));

The return value for Read() is a newly instantiated object. If an error occurred
during the creation of the object, the object’s Error() value will be
ZAF_ERROR_CONSTRUCTOR or ZAF_ERROR_FILE_READ.

ZafWindowObject 679

Redisplay void Redisplay(void);
RedisplayData void RedisplayData(void);

These two functions send appropriate ZAF messages (S_REDISPLAY and
S_REDISPLAY_DATA) that cause the object to either redisplay the data por-
tion of its area (e.g. The ZafString field redisplays only the text associated
with the object) or the entire object’s region.

zafRegion ZafRegionStruct zafRegion;
Region virtual ZafRegionStruct Region(void) const;

virtual void SetRegion(const ZafRegionStruct ®ion);

This function and member gives the current position and size of a window
object. In ZAF, all regions are defined to be positioned on a “0,0 left-top”
based coordinate system, the coordinate system either specified as “client”
based relative to their parent if they are normal window objects, or based on a
“frame” area of their parent if they are support objects.

The zafRegion values for more complex objects also fit within the “frame/cli-
ent” specification described above. Thus, the 0,0 left-top based coordinate not
only applies to top-level windows, but also to sub-windows contained within a
parent object.

Although this member is publicly available, it is recommended you never
change its contents directly. Rather, the constructor for each object, the mes-
sage S_SIZE, and the member functions ZafWindowObject::SetRegion(), Zaf-
WindowObject::SetCoordinateType() and ZafWindowManager::Center() can
be used to effect a change in the zafRegion structure. Here are some code snip-
pets that show the various operations that can be used to modify the size and
position of a window object.

// Create a string and reset its coordinate type.
// These calls set:
// string->zafRegion.left = 20,
// string->zafRegion.top = 20,
// string->zafRegion.right = 119,
// string->zafRegion.bottom (depends on
// ZafDisplay::cellHeight), and
// string->zafRegion.coordinateType = ZAF_PIXEL.

ZafString *string = new ZafString(20, 20, 100, "string", 50);
string->SetCoordinateType(ZAF_PIXEL);

// Reset the position of a sub-object.
ZafEventStruct event(S_SIZE);
event.region.left = event.region.top = 100;
event.region.right = 600;

680 Zinc Application Framework 5

event.region.bottom = 400;
object->Event(event);

// Center a window on the screen.
zafWindowManager->Center(window);
zafWindowManager->Add(window);

RegionType ZafRegionType RegionType(void) const;

virtual ZafRegionType SetRegionType(ZafRegionType
regionType);

SetRegionType() is used to specify the type of area that an object occupies
within its parent. The initial region is defined by zafRegion, which is used or
modified according to the following specifications:

Region Type Description

ZAF_INSIDE_REGION Tells the parent object that the object overlays
its region within the parent according to the
object’s zafRegion member. This is the default
type for most ZAF objects and is commonly
referred to as a “field” object. Note, this type
of region allows multiple objects to be overlaid
on the same position in a window at one time.
The presentation of overlapping window
object’s is environment specific. While not
normally used in such a manner, it clarifies the
non-ownership relation of the object with its
specified zafRegion. Here is a picture that
shows a normal window object that uses the
ZAF_INSIDE_REGION type:

ZafWindowObject 681

ZAF_AVAILABLE_REGION Specifies ownership of a particular screen area
within its parent. A simple way of thinking
about this type of region is to imagine an object
that “hogs” or “reserves” a particular area of a
window, not allowing other sibling objects to
occupy the same area. Another way to think
about this attribute is in conjunction with
geometry management. Setting this flag would
be equivalent to specifying geometry attributes
that “pinned” the left, top, right, and bottom
areas of the object to specific positions within
its parent window and disallowed any other
object to occupy the same area on the window.

The ZAF_AVAILABLE_REGION attribute is
mainly associated with support objects, but can
also be associated with child objects such as
ZafText and ZafVtList when you want the
object to occupy all the remaining area of the
window.

Region Type Description

682 Zinc Application Framework 5

ZAF_OUTSIDE_REGION Specifies ownership of an area directly outside
the specified zafRegion. This setting is similar
to ZAF_AVAILABLE_REGION, but the own-
ership area is defined to be outside the zafRe-
gion, not inside. Currently, only the ZafBorder
class uses this type of region.

The return value for RegionType() and SetRe-
gionType() is the final, or current attribute asso-
ciated with the object. Under normal
circumstances, this will be the value passed into
the SetRegionType() function but can differ if
the specified object does not allow the resetting
of this attribute.

Here is some sample code that shows the cor-
rect use of these functions.

// Create a text view window.
ZafWindow *window = new ZafWindow(0, 0,

50, 10);
window->AddGenericObjects(new

ZafStringData("View Text"));
ZafText *text = new ZafText(0, 0, 0, 0,

"text", 1000);
text-

>SetRegionType(ZAF_AVAILABLE_REGIO
N);

window->Add(text);

ZafEventType
ZafWindowObject::Event(const
ZafEventStruct &event)

{
...
case S_COMPUTE_SIZE:
if (RegionType() !=
ZAF_INSIDE_REGION)

 zafRegion = parent ? parent-
>MaxRegion(this) : windowManager-
>MaxRegion(this);

break;
}

Region Type Description

ZafWindowObject 683

RepeatDelay static int RepeatDelay(void);

See ZafWindowObject::InitialDelay().

RootObject ZafWindowObject *RootObject(void) const;

This function traverses an object’s Parent() hierarchy to find the root ZAF
object (typically a ZafWindow or derived window). The return value is the
root, or final object in the instance hierarchy that can be attached to the win-
dow manager or MDI child. Here is some code that shows effective use of the
RootObject() function.

ZafPaletteState ZafWindowObject::PaletteState(void)
{
// Check for the matching palette state.
ZafPaletteState state = ZAF_PM_ANY_STATE;
if (RootObject()->Focus())
state |= ZAF_PM_ACTIVE;

...
}

// Determine if my non-MDI window is attached to the window
manager.

extern ZafButton *myButton;
ZafWindowObject *root = myButton->RootObject();
if (windowManager->Index(root) == -1)
printf("My window is not attached to the window manager\n");

else if (root->Visible())
printf("%s is visible to the user\n", root->StringID());

screenID OSWindowID screenID;

This variable provides access to OS specific information associated with a
window object. The screenID value represents a “hook” from the ZAF class
hierarchy, to the underlying operating environment. The following definitions
apply to screenID:

Platform Description

MS Windows Represents an HWND. For example, the Windows imple-
mentation of ZafString creates an “EDIT” with a call to the
Windows API CreateWindowEx().

684 Zinc Application Framework 5

Normally, you will not use screenID directly in your application. For
advanced ZAF programming, however, this provides a fundamental mecha-
nism for deriving objects that ZAF does not provide, but that may have native
implementation on certain GUI environments. See ZafWindowObject::OSS-
creenID() for more information.

Another possible use of screenID is to check if an object is on the screen or not.
Since the Visible() attribute may be set to true before the object’s parent win-
dow is actually added to the screen, Visible() may be true before the object is
really on the screen. On the other hand, none of a parent window’s children
receive screenIDs until the parent window is added to the screen. So if
screenID is null the object is not on the screen yet. See Visible() for more
information.

Here are some sample code snippets that show how screenID is used in the
implementation of S_REDISPLAY to make native API calls on Windows and
Motif.

// Windows implementation of S_REDISPLAY.
if (SystemObject())
RedrawWindow(screenID, NULL, 0, RDW_INVALIDATE | RDW_ERASE |
RDW_ALLCHILDREN);

else
{
// Get the object region in OS coordinates.
ZafRegionStruct region = parent ? parent-
>ConvertToDrawRegion(this) :
windowManager->ConvertToDrawRegion(this);

RECT rect;

Motif Represents a Widget. For example, screenID for a ZafString
object corresponds to a derived Motif “XmTextField” widget;
ZafWindow corresponds to a derived “XmBulletinBoard”
widget, and ZafButton corresponds to a derived “XmPush-
Button” widget.

Macintosh Represents a class-specific API reference. For example, the
Macintosh implementation of ZafString creates a TEHandle
object by calling the Macintosh API TENew().

OS/2 Represents an HWND. For example, the OS/2 implementa-
tion of ZafString creates an “EDIT” with a call to the OS/2
API CreateWindowEx().

DOS Represents a unique screen identifier generated by the display.
This environment has no specific OS hook. The value is sim-
ply used to reserve a region of the display.

Platform Description

ZafWindowObject 685

region.ExportPoint(rect);

// Invalidate the object region.
RedrawWindow(screenID, &rect, 0, RDW_INVALIDATE | RDW_ERASE |
RDW_ALLCHILDREN);

}

// Motif implementation of S_REDISPLAY.
if (SystemObject())
XClearArea(XtDisplay(screenID), XtWindow(screenID), 0, 0, 0,
0, true);

else
{
// Dismiss border area for non-system objects (complex motif
// object) such as list and tool-bar overlap their children by
// the border area of their children).
ZafRegionStruct updateRegion = zafRegion;
updateRegion -= ZAF_BORDER_WIDTH;
XClearArea(XtDisplay(screenID), XtWindow(screenID),
updateRegion.left, updateRegion.top, updateRegion.Width(),
updateRegion.Height(), true);

}

ScrollEvent virtual ZafEventType ScrollEvent(const ZafEventStruct
&event);

The Event() function may dispatch some events to ScrollEvent which provides
filtered input of scrolling events. The programmer should not overload
ScrollEvent, but instead trap all events in Event().

The following events may be dispatched to ScrollEvent():

• N_VSCROLL

• N_HSCROLL

• S_VSCROLL

• S_HSCROLL

• S_VSCROLL_SET

• S_HSCROLL_SET

• S_VSCROLL_CHECK

• S_HSCROLL_CHECK

• S_VSCROLL_COMPUTE

• S_HSCROLL_COMPUTE

Whenever an object receives a scrolling messages, the messages are first inter-
cepted in the object’s Event() function. To allow for more encapsulation and a

686 Zinc Application Framework 5

more efficient handling of similar scrolling functionality, ZAF defines
ScrollEvent() which may be called by the base ZafWindowObject class when-
ever one of the aforementioned messages is generated.

The programmer should not call ScrollEvent(), but it is used internally by ZAF.
When deriving to intercept scrolling events, the programmer should always use
the Event() function itself.

The return value for ScrollEvent() is normally event.type if processing is suc-
cessful. Otherwise, S_ERROR or S_UNKNOWN may be returned, indicating
the object either detected an error on the message, or that the function did not
recognize the specified message.

Selected bool Selected(void) const;

virtual bool SetSelected(bool selected);
ToggleSelected virtual bool ToggleSelected(void);

The term selected, specifies a programming state where an object becomes
peculiar or “stands out” within its context with respect to other sibling objects.
For example, you may want to create a vertical list that allows end-users to
select a set of files to be deleted from a directory. If the user clicks the mouse
over a particular item in the list, the item becomes selected. When the user fin-
ishes his/her selection, a set of programming code traverses the list of files to
determine which items the user wants deleted. This is done by looking at the
selected state of a particular item and deleting the associated file when its
selected state is set to true.

If you pass true as the argument to SetSelected(), the object will become
selected. In addition, setting this attribute causes the object to notify its parent,
such as a group, list, or window, to tell the parent of its intended changed state.
The parent then determines if other siblings need to have their states changed
in response to this sibling’s new state. Generally their selection states will be
changed to false if the parent does not allow multiple objects to be selected at
one time (specified by the ZafWindow::SelectionType() member).

If, on the other hand, you specify false as the argument to SetSelected(), the
object will turn off its selected state, will notify its parent that the state has
changed, and will then give the parent final control to determine whether the
specified object can really be de-selected within its context to other sibling
objects.

The return value for Selected() and SetSelected() is the final, or current
selected state of the object. Under normal circumstances, this value will be the
value passed into the SetSelected() function, but may vary if the parent object
does not allow the de-selection or automatic selection of a particular object.

The following code shows the proper use of these functions:

ZafWindowObject 687

// Modify the selected attribute on some combo-boxes.
if (userHasPhone)
phone->SetSelected(true);

if (userKnowsPassword)
password->SetSelected(true);

if (userHasOfficeKeys)
keys->SetSelected(true);

...
userHasPhone = phone->Selected();
userKnowsPassword = password->Selected();
userHasOfficeKeys = keys->Selected();

SupportObject bool SupportObject(void) const;

virtual bool SetSupportObject(bool supportObject);

An object with the SupportObject() attribute set is placed in the support list of
its parent by the parent’s Add() method. As such, a SupportObject() is not con-
sidered a regular child of the parent. Some common support objects of a Zaf-
Window object are ZafBorder, ZafTitle and ZafScrollBar. Support objects
reserve their space on the parent window before the regular children occupy
the window’s client region. In other words, SupportObject() causes the client
region of the parent window to shrink according to the size of the object. This
attribute defaults to false, but SetSupportObject() may be used to modify it
before the object is added to its parent. Most objects that need to, set this
attribute to true by default, so the programmer generally does not call the
advanced method SetSupportObject().

SystemObject bool SystemObject(void) const;

virtual bool SetSystemObject(bool systemObject);

An object with the SystemObject() attribute set will cause a corresponding
operating system object to be created, if possible. For example, a SystemOb-
ject() ZafButton on Macintosh will request the Control Manager to create a
corresponding native control object. On the other hand, if SystemObject() is
false, no native object is created for the ZafWindowObject (such as for list
items). This attribute defaults to true, but SetSystemObject() may be used to
modify it. Most objects that need to, set this attribute to false by default, so the
programmer generally does not call the advanced method SetSystemObject().

Text virtual const ZafIChar *Text(void);

virtual ZafError SetText(const ZafIChar *text);

688 Zinc Application Framework 5

These functions allow you to retrieve or change the textual information associ-
ated with an object. The base ZafWindowObject class contains no textual
information, but many derived objects such as ZafString, ZafDate, ZafGroup,
etc., do contain textual input or output information.

The exact implementation of these functions depends on the derived object, but
here are a few explanations of its use with some common ZAF objects:

ZafString Resets the string according to the specified “text” parameter. The
argument is accepted “as is” and will only be truncated if the specified string is
larger than the buffer allocated by the instantiated ZafString object (as deter-
mined by ZafString::MaxLength()).

ZafDate Interprets the contents of the string based on its internal Zaf-
Date::InputFormatData(). The value is thus “filtered” by the ZafDate object,
then presented to the screen in a format consistent with the ZafDate::Output-
FormatData(). For example, a partial “dec 95” string may be formatted as
“December 1, 1995.”

ZafFormattedString Interprets the contents of the string as either “com-
pressed,” or “expanded” data. For instance, the string value “8017858900”
may be re-formatted to be “(801) 785-8900,” as seen by the user.

The return value for Text() is a const pointer, which indicates the current tex-
tual information associated with the object. Under normal circumstances, this
value will be the same as the value passed to SetText(), but may differ if the
object filters the text information in a manner similar to that described with the
ZafDate and ZafFormattedString object definitions given above.

The return value for SetText() is an error indicator. The following general
error conditions apply to window objects:

Here is some sample code that shows the correct usage of Text() and SetText()
with derived window objects.

// Reset the string information.
if (strcmp(string->Text(), "Stop"))
string->SetText("Stop");

// Reset the date.

Error Description

ZAF_ERROR_NONE The value passed to SetText() was accepted with-
out any errors.

ZAF_ERROR_INVALID The value passed to SetText() was invalid for the
receiving object. An example of this type of error
would be passing “10:00am” to a ZafDate object.

ZafWindowObject 689

date->SetText("January 1, 2001");

// Clear all the editable object fields of a window.
for (ZafWindowObject *object = First(); object; object = object-

>Next())
if (object->IsA(ID_ZAF_STRING) && !object->Disabled())
object->SetText("");

TextColor ZafLogicalColor TextColor(ZafLogicalColor *color =
ZAF_NULLP(ZafLogicalColor), ZafLogicalColor *mono =
ZAF_NULLP(ZafLogicalColor));

ZafLogicalColor SetTextColor(ZafLogicalColor color,
ZafLogicalColor mono = CLR_NULL);

Text color is the color associated with the textual presentation of an object.

SetTextColor() changes the foreground color associated with the normal pre-
sentation of an instantiated object. There are two types of colors that can be
passed to SetTextColor(): a color value and a monochrome value. The first
parameter specifies the color for normal operation, the second specifies the
black/white value for monochrome or black/white modes of operation. Here is
a list of predefined ZAF color values:

Color Values Monochrome Values

ZAF_CLR_PARENT ZAF_MONO_PARENT

ZAF_CLR_DEFAULT ZAF_MONO_DEFAULT

ZAF_CLR_NULL ZAF_MONO_NULL

ZAF_CLR_BACKGROUND ZAF_MONO_BACKGROUND

ZAF_CLR_BLACK ZAF_MONO_BLACK

ZAF_CLR_BLUE ZAF_MONO_DIM

ZAF_CLR_GREEN ZAF_MONO_NORMAL

ZAF_CLR_CYAN ZAF_MONO_WHITE

ZAF_CLR_RED ZAF_MONO_HIGH

ZAF_CLR_MAGENTA

ZAF_CLR_BROWN

ZAF_CLR_LIGHTGRAY

ZAF_CLR_DARKGRAY

ZAF_CLR_LIGHTBLUE

ZAF_CLR_LIGHTGREEN

ZAF_CLR_LIGHTCYAN

ZAF_CLR_LIGHTRED

690 Zinc Application Framework 5

In addition to the pre-defined colors described above, users can define and use
their own logical colors. For more information on these color specifications,
and for more details on derived color entries, see the ZafPaletteStruct and
ZafDisplay sections of this manual or ZafWindowObject::UserPaletteData().

Here is some sample code that shows the correct use of SetTextColor().

// Change the text color of the object.
object->SetTextColor(ZAF_CLR_BLACK, ZAF_MONO_BLACK);

// Check the current color of an object, and change where
necessary.

if (object->TextColor() == ZAF_CLR_NULL)
object->SetTextColor(object->parent->TextColor());

// Change an object’s text and background color.
object->SetAutomaticUpdate(false);
object->SetBackgroundColor(ZAF_CLR_RED);
object->SetTextColor(ZAF_CLR_WHITE);
object->SetAutomaticUpdate(true);

The return value for TextColor() and SetTextColor() is the final, or current
color value associated with the object. Under normal circumstances, this will
be the color value passed into the SetTextColor(), but may be different if the
object does not allow for a particular type of color specification or if the sys-
tem is running in black/white mode.

typedef ZafUInt16 ZafFlags;
userFlags ZafFlags userFlags;

userFlags is a member of ZafWindowObject provided exclusively for the pro-
grammer’s use, and is only initialized to 0 at the ZafWindowObject level.
Since userFlags is defined at the ZafWindowObject level, it may be useful for
storing user-defined bit flags in any object derived from ZafWindowObject
(including built-in ZAF objects).

typedef ZafEventType (*ZafUserFunction)(ZafWindowObject
*, ZafEventStruct &, ZafEventType);

ZAF_CLR_LIGHTMAGENTA

ZAF_CLR_YELLOW

ZAF_CLR_WHITE

Color Values Monochrome Values

ZafWindowObject 691

userFunction ZafUserFunction userFunction;
UserFunction ZafUserFunction UserFunction(void) const;

virtual ZafUserFunction SetUserFunction(ZafUserFunction
userFunction);

These functions provide a callback mechanism for operation with an instanti-
ated window object. When the userFunction variable is set, the programmer
does not need to derive an object to implement multiple types of selection, col-
oration, or application control. For instance, the ZafButton class is frequently
used to “Accept” changes to a dialog window, to “Cancel” changes, or the get
“Help” for a specified operation. In traditional function based programming,
these methods would be implemented using Accept(), Cancel(), and Help()
functions. The use of userFunction allows you to chain these traditional meth-
ods of programming with a derived window object.

// Hook up normal functions.
ZafEventType Accept(ZafWindowObject *object, ZafEventStruct &,

ZafEventType ccode)
{ ... }

ZafEventType Cancel(ZafWindowObject *object, ZafEventStruct &,
ZafEventType ccode)

{ ... }

ZafEventType Help(ZafWindowObject *object, ZafEventStruct &,
ZafEventType ccode)

{ ... }

// Connect the user functions.
button1->SetUserFunction(Accept);
button2->SetUserFunction(Cancel);
button3->SetUserFunction(Help);

The default callback sequence of an object is defined as follows:

• When Focus() changes from “true” to “false” the associated user-function is called
with an N_NON_CURRENT message. When this event occurs, the user has
either tabbed onto another field, or has moved the focus to another object using the
mouse.

• When Focus() changes from “false” to “true” the associated user-function is called
with an N_CURRENT message. When this event occurs, the user has selected the
receiving object, moving the focus to the object.

• When the user presses a selection key (usually the space bar, or <enter> key) the
user-function is called with an L_SELECT message. The contents of the event
argument will be an event.InputType() of E_KEY, signifying that a key event
caused the selection.

692 Zinc Application Framework 5

• When the user clicks the mouse button while being positioned over the object the
user-function is called with an L_SELECT message. When this occurs, the con-
tents of the event argument will contain an event.InputType() of E_MOUSE, sig-
nifying that a mouse event caused the user-function to be called. ZafString and its
derivatives do not call the user function with mouse clicks.

• When the user double-clicks on the object the user-function is called with
L_DOUBLE_CLICK. The contents of the event structure will be of type
E_MOUSE, signifying that a mouse event caused the user-function to be called.
ZafString and its derivatives do not call the user function with mouse clicks.

The user-function should return 0 on success, and if some error occurred, any-
thing non-zero should be returned. Here are several sample code snippets that
show the correct use of the userFunction variable.

// Specify the callbacks.
ZafEventType MyStringCallback(ZafWindowObject *object,

ZafEventStruct &, ZafEventType ccode)
{
if (ccode == N_NON_CURRENT)

object->SetText("Oh No! I’m losing focus.\n");
else if (ccode == N_CURRENT)

object->SetText("Yea! I’m back in control.\n");
return (0);

}

ZafEventType MyButtonCallback(ZafWindowObject *object,
ZafEventStruct &, ZafEventType ccode)

{
if (ccode == L_SELECT && object->Selected())

object->SetBackgroundColor(ZAF_CLR_RED);
else if (ccode == L_SELECT)

object->SetBackgroundColor(ZAF_CLR_DEFAULT);
else if (ccode == L_DOUBLE_CLICK && object->Selected())

object->SetText("OK");
else if (ccode == L_DOUBLE_CLICK)

object->SetText("Cancel");
return (0);

}

// Set the user-functions.
stringField->SetUserFunction(MyStringCallback);
buttonField->SetUserFunction(MyButtonCallback);

UserInformation virtual void *UserInformation(ZafInfoRequest request,
void *data, ZafClassID classID = ID_DEFAULT);

ZafWindowObject 693

UserInformation() is a virtual function provided for the programmer’s use, and
is a stub at the ZafWindowObject level. Since UserInformation() is defined at
the ZafWindowObject level, it may be useful for getting class-specific infor-
mation from a derived object through a ZafWindowObject pointer to the
object. To do so, UserInformation() definitions may be provided by the pro-
grammer in derived classes. ZafInfoRequest is an unsigned int.

userObject void *userObject;

This is a void pointer, reserved for your use during the run-time operation of
your application. ZAF sets this value to null in the ZafWindowObject con-
structor, but does not evaluate or modify its contents during the instantiated
object’s run-time operation. Since this is a void pointer, you must dynamically
cast the object in your application. Here is some sample code, showing two
possible implementations of the userObject member.

// Derived object implementation.
class MyObject : public ZafButton
{
public:
MyDatabase *Database(void) const
{ return ((MyDatabase *)userObject); }

MyDatabase *SetDatabase(MyDatabase *database)
{ userObject = database; return (database); }

};

// User callback implementation.
ZafEventType MyUserFunction(ZafWindowObject *object,

ZafEventStruct &, ZafEventType ccode)
{
MyDatabase *database = (MyDatabase *)object->userObject;
...
return (0);

}

userPaletteData ZafPaletteData *userPaletteData;
UserPaletteData ZafPaletteData *UserPaletteData(void) const;

ZafPaletteData *SetUserPaletteData(ZafPaletteData
*userPaletteData);

These functions provide an instance override for default object color and font
attributes. On each environment, ZAF coordinates its color and font rendering
with the underlying operating environment, giving you a native looking appli-
cation whether you are running on Windows, Motif, Macintosh, or even DOS
based applications. These functions allow you a rich set of mechanisms that

694 Zinc Application Framework 5

override these system colors, in order to show specific object information, such
as selection states, specific object errors, or particular points of emphasis.
Whenever you define user palettes, the instantiated object’s Draw() function
uses these color and font definitions in its drawing process. A brief description
of the palette color and attribute overrides follows (A more complete discus-
sion can be read in the ZafPaletteData section of this manual).

There are three main aspects of a user palette that determine the override func-
tionality of an object.

(1) Color/font/style attributes. This is the actual palette information that will
apply in the drawing operation if the conditions set in (2) and (3) are met. This
part of the palette map is specified by “ZafPaletteStruct palette,” which con-
tains the following members:

(2) Object Type. This part of the ZafPaletteMap structure, defined by “Zaf-
PaletteType type,” specifies the type of drawing that you want to override. The
following values are defined by ZAF:

Member Description

lineStyle This is the type of line (solid, dotted) that can be drawn.

fillPattern This is the type of pattern (solid, interleaved) that can be
used either in the clearing of background information, or
in the drawing of textual information.

colorForeground

colorBackground

These are the foreground/background color pairs used
on color systems when drawing the object’s visual infor-
mation.

monoForeground

monoBackground

These are the foreground/background monochrome
color pairs used on black/white systems when drawing
the object’s visual information.

font This is the logical font to be used when rendering text
information to the display.

Value Definition

ZAF_PM_ANY_TYPE This matches any palette request. If used, this
should be the last matching entry (just before
ZAF_PM_NONE) in the palette array since its
value is the OR’ed composite of all other types.

ZafWindowObject 695

ZAF_PM_NONE This is an end-of-array indicator. This entry must
be the last entry of an array. It is used by ZAF
when counting the number of palette entries
available in a given ZafPaletteData object. It
should not be used as a sole member of a palette
table.

ZAF_PM_OUTLINE This specifies a palette entry that contains border
colors. This is only used when the Bordered()
flag is set, and the requesting object wants to
draw an encompassing border around its speci-
fied region. This value is not used when a 3-
dimensional border is drawn around the object.

ZAF_PM_BACKGROUND Used when clearing or drawing to the back-
ground portion of the object. The background
clears to the pattern specified in this palette using
the foreground, background and pattern for the
cleared area.

ZAF_PM_FOREGROUND Used when drawing graphic information, such as
lines, rectangles, and ellipses within a window
object. This palette is used after the background
has been cleared, and additional information,
such as a check-mark, or radio-button still need
to be rendered on the display.

ZAF_PM_TEXT This indicates a palette to be used when drawing
textual information. Window objects typically
use the font, pattern, foreground and background
entries of the associated palette entry when ren-
dering text information to the screen.

ZAF_PM_HOT_KEY This indicates an entry to be used when drawing
the “hotkey” portion of a string value. Normally,
this value is only set and used on text based envi-
ronments, since GUI environments generally
show hot key information with an underline.

ZAF_PM_LIGHT_SHADOW This is the light area of a 3-dimensional shadow.
This palette is used in conjunction with
ZAF_PM_DARK_SHADOW to present a shad-
owed appearance on the object. When the object
appears raised, this entry is used on the left and
top sides of the object. If the object appears
depressed, this entry is used for the right and bot-
tom sides of the object.

Value Definition

696 Zinc Application Framework 5

(3) Object state. This part of the ZafPaletteMap structure, defined by “Zaf-
PaletteState state,” is used in conjunction with ZafPaletteType, and specifies
the state the object must be in, in order for the palette to be used in the current
drawing operation. The following values are defined by ZAF:

ZAF_PM_DARK_SHADOW This is the dark area of a 3-dimensional shadow.
This palette is used in conjunction with
ZAF_PM_LIGHT_SHADOW to present a shad-
owed appearance on the object. When the object
appears raised, this entry is used on the right and
bottom sides of the object. If the object appears
depressed, this entry is used for the left and top
sides of the object.

ZAF_PM_FOCUS This specifies the color value to be used when
drawing the focus rectangle around a window
object. Typically, this entry is used with
ZAF_PM_ANY_STATE so the focus is drawn in
a consistent color.

Value Definition

ZAF_PM_ANY_STATE This value matches any logical palette request, as
long as the specified type is ZAF_PM_ANY_TYPE
or the value matches the requested palette type. This
is typically used as the “final” matching entry in a
palette array, so objects automatically match a
default request.

ZAF_PM_ACTIVE This state is used when the window, or window
object, is shown as the front window. The colors in
this entry are typically the same as
ZAF_PM_INACTIVE, but may be different for
objects that show different colors when shown as the
front window (e.g. a window’s title bar is typically
shown in an active color when the window has input
focus, or inactive when it does not have the focus).

ZAF_PM_CURRENT This matches when the requested object has the
focus. This entry can be used if you want to distin-
guish items that have the input focus in more dra-
matic ways than just drawing a focus rectangle.

Value Definition

ZafWindowObject 697

There are three pre-defined ZafWindowObject functions that actually make
changes to the user palette. These functions are SetBackgroundColor(), Set-
TextColor() and SetFont(). Evaluation of the SetTextColor() function provides
a good tutorial on the proper use of user palettes.

ZafLogicalColor ZafWindowObject::SetTextColor(ZafLogicalColor
color, ZafLogicalColor mono)

{
// Make sure there is a userPalette.
if (!userPaletteData)
SetUserPaletteData(new ZafPaletteData());

// Add the new entry.
ZafPaletteStruct textPalette = userPaletteData->
GetPalette(ZAF_PM_TEXT, ZAF_PM_ANY_STATE);

textPalette.colorForeground = color;
textPalette.monoForeground = mono;
userPaletteData->AddPalette(ZAF_PM_TEXT, ZAF_PM_ANY_STATE,
textPalette);

// Return the current color.
return (color);

}

ZAF_PM_INACTIVE This state is used when the parent does not have the
input focus. As stated in ZAF_PM_ACTIVE, most
objects do not use this setting. It is provided for spe-
cial visual objects such as ZafTitle, that have a
unique presentation to show the window either does
or does not have the immediate input focus.

ZAF_PM_SELECTED This state is used when the object’s Selected()
attribute is “true.” Many objects, such as vertical
and horizontal lists, show their “selected” children in
a highlighted state, giving immediate visual queues
to the user that the object has been selected from
among the list of siblings.

ZAF_PM_DISABLED This state is used when the object’s Disabled()
attribute is “true.” Typically, this palette contains a
“dithered” font and color setting that shows the
object in a diminished, or unselectable state.

ZAF_PM_ENABLED This state is used when the object’s Disabled()
attribute is “false.” This palette typically contains
the normal font and color setting associated with
window objects.

Value Definition

698 Zinc Application Framework 5

The code above shows two main pieces. The first part shows the creation and
specification of a new default ZafPaletteData object, if no user palette cur-
rently exists. The ZafPaletteData object provides a “container” for all color
and font modifications. The second part adds a particular palette entry by
either retrieving the palette entry if it already exists, or by creating a new entry
if it does not exist (both operations accomplished within the GetPalette() func-
tion). The new palette is then modified by setting the color and monochrome
text values, and finally, added as a new entry with the AddPalette() function.

Here is another code snippet that reinforces the palette creation techniques
used in an application.

// Create a new button.
ZafButton *button = new ZafButton(0, 0, 20, "button",

ZAF_NULLP(ZafBitmapData));

// Modify the selected background of the button to be yellow.
ZafPaletteData *palette = new ZafPaletteData();
ZafPaletteStruct entry = palette->GetPalette(ZAF_PM_BACKGROUND,

ZAF_PM_SELECTED);
entry.colorBackground = ZAF_CLR_YELLOW;
palette->AddPalette(ZAF_PM_TEXT, ZAF_PM_SELECTED, entry);
button->SetUserPaletteData(palette);

Note that SetUserPaletteData() is an instance replacement of color and font
information, not a class replacement. Thus, setting a new user palette will only
affect the instantiated object where the information is specified, not all objects
associated with the instance’s class (e.g. a new button object vs. the ZafButton
class). Also, be careful to examine the present contents of UserPaletteData()
before replacing those contents. As mentioned above, the SetBackground-
Color(), SetTextColor() and SetFont() functions create a user palette before
adding a particular font or color specification.

The return value for UserPaletteData() and SetUserPaletteData() is the current
user palette data associated with the object. This will always be the color value
passed into the SetUserPaletteData().

typedef ZafUInt16 ZafStatus;
userStatus ZafStatus userStatus;

userStatus is a member of ZafWindowObject provided exclusively for the pro-
grammer’s use, and is only initialized to 0 at the ZafWindowObject level.
Since userStatus is defined at the ZafWindowObject level, it may be useful for

ZafWindowObject 699

storing user-defined status values in any object derived from ZafWindowOb-
ject (including built-in ZAF objects).

Visible bool Visible(bool traverse = true) const;

virtual bool SetVisible(bool visible);

A visible object is one that can be viewed by the user from within a window or
on the screen. There are many occasions where changing an object’s visibility
may be appropriate. These may include, but are not restricted to:

• Overlaying multiple objects on the same window location, then making one object
visible according to the current state of the application.

• Making the object invisible while performing extensive changes to the object.
These changes may include modifying text information, removing presentation
bitmaps, changing the selected state of the object, etc. Changing a single piece of
information would not require temporarily making the object invisible. Multiple
changes in succession, however, are greatly enhanced while the object is invisible
because it dramatically reduces the amount of object refreshing.

• Modifying the object while preserving the object’s position, relative to other sib-
lings. You can always remove an object using Subtract(), but this causes the
object’s OS representation to be destroyed, and its position, relative to other sib-
lings to be removed. Thus, Subtract() should only be used when extensive
changes, that cannot be accomplished by toggling either AutomaticUpdate() or
Visible(), are performed.

As stated above, using SetVisible(false) simply removes the object’s visual
presentation from the screen. It does not affect the object’s current settings, its
position within the parent window, the space the object occupies, or its created
state with the underlying GUI environment.

Here is some sample code that shows the correct use of SetVisible().

// Make extensive changes to the object.
object->SetVisible(false);
object->SetText("Continue with the application?");
object->Disabled(false);
object->SetViewOnly(true);
object->SetHzJustification(ZAF_HZ_CENTER);
object->SetVisible(true);

// Place two objects on the same screen location,
// setting one invisible.
ZafButton *button1 = new ZafButton(2, 2, 20, "No Error",

ZAF_NULLP(ZafBitmapData));
window->Add(button1);

700 Zinc Application Framework 5

ZafButton *button2 = new ZafButton(2, 2, 20, "Kill
Application!", ZAF_NULLP(ZafBitmapData));

button2->SetBackgroundColor(ZAF_CLR_RED);
button2->SetTextColor(ZAF_CLR_WHITE);
button2->SetVisible(false);
window->Add(button2);

Note, you can also use the SetAutomaticUpdate() function to prevent flashing
of an object when color, font, or child additions and subtractions are being per-
formed in your application. It is recommended you review ZafWindowOb-
ject::SetAutomaticUpdate() to understand the benefits and limitations of this
related function.

Since the Visible() attribute may be set to true before the object’s parent win-
dow is actually added to the screen, Visible() may be true before the object is
really on the screen. One way to see if the object is on the screen or not is to
check its screenID. See screenID for more information.

Finally, note that setting the visible attribute on a parent object to false causes
all of the children to become invisible, even though their individual visible
states may be preset to be true. The functionality of SetVisible() is thus propa-
gated to children, grandchildren, etc., but only through inheritance, not by
value replacement (i.e. the child object’s visible member is not reset to be the
same as the parent’s value). Once the Visible() state is set back to true, the
visual aspects of the children are restored.

If traverse is true, Visible() ascends the parental tree up to the root window
until it finds a value of false (otherwise it returns true). If traverse is false, the
value of the object’s Visible() is returned.

The return value for Visible() and SetVisible() is the final, or current visible
state of the object (true or false). Under normal circumstances, this will be the
value passed into the SetVisible() function. It is only if a derived object over-
rides the functionality of SetVisible(), that the return state may be different
from the value passed to SetVisible().

windowManager static ZafWindowManager *windowManager;

This is a static pointer to the application’s window manager. It is initialized
when the ZafWindowManager’s constructor is called and should not be modi-
fied. All derived window objects use this member when making requests to
the window manager. They do not use the global variable zafWindowMan-
ager.

Here is a code snippet that shows how a derived window object can use the
window manager to determine the current drag object.

ZafWindowObject 701

ZafEventType MyDerivedWindowObject::DragDropEvent(const
ZafEventStruct &event)

{
if (event.type == S_DROP_DEFAULT && windowManager->dragObject)
SetText(windowManager->dragObject->Text());

...
}

This member, as well as the static ZafWindowObject::display and ZafWin-
dowObject::eventManager members are duplicate copies of the global vari-
ables zafDisplay, zafEventManager, and zafWindowManager. They are
defined in the base ZafWindowObject class to allow advanced ZAF program-
mers the opportunity of removing the static definition, thus allowing particular
instance variables to be associated with each window object; a feature useful in
some multiple-display and embedded-system applications.

Write virtual void Write(ZafObjectPersistence &persist);

This function is used to persist a ZAF object. Typically, objects are persisted to
a Zinc specified .DAT file using the ZAF Designer. But ZAF objects may also
be persisted “in-code,” if they have been instantiated and have received an
S_INITIALIZE message (This message causes the object to register string and
number identifications, essential to object persistence). The following code
shows how this type of persistence is performed.

// Create a window, then persist it to the specified file.
ZafWindow *window = new ZafWindow(0, 0, 50, 10);
window->AddGenericObjects(ZafStringData("Window"));
window->Add(new ZafPrompt(2, 2, 10, "name:");
window->Add(new ZafString(12, 2, 30, ZAF_NULLP(ZafIChar), 100));
...

window->Event(S_INITIALIZE);

// Create the persist object.
ZafStorage *storage = new ZafStorage("myfile.dat");
ZafObjectPersistence persist(storage,

zafDefaultDataConstructor, zafDefaultObjectConstructor);
window->Write(persist);
delete storage;

As shown above, this function is generally used when storing a complete win-
dow, not just a window object. Nevertheless, the advanced definition of .DAT
files allows the persistence of single window objects, if the associated file sys-

702 Zinc Application Framework 5

tem allows directory traversal and independent object storage (both features
available with the ZafStorage object). Here is a code snippet that shows how
to persist a ZafButton object inside a parent window’s directory.

// Persist a ZafButton to ~ZafWindow~MyWindow~MyButton.
ZafButton *button = new ZafButton(2, 2, 10, "OK",

ZAF_NULLP(ZafBitmapData));
button->SetStringID("MyButton");
button->Event(S_INITIALIZE);

ZafStorage *storage = new ZafStorage("myfile.dat");
ZafObjectPersistence persist(storage,

zafDefaultDataConstructor, zafDefaultObjectConstructor);
storage->ChDir(~ZafWindow~MyWindow");
button->Write(persist);

For in-depth information on object persistence, refer to the source code for
ZafWindow::Write() and the ZafWindowObject constructor section of this
chapter.

zafRegion ZafRegionStruct zafRegion;

See Region().

Function Reference

ZafAbs 705

ZafAbs
inline int ZafAbs(int value);

Declaration #include <z_utils.hpp>

Description ZafAbs() returns the absolute value of value.

The following code snippet shows how to use ZafAbs():

int absolute = ZafAbs(myInteger);
// Do some calculation with the absolute value of myInteger.

706 Zinc Application Framework 5

ZafCrNlToCr
ZAF_EXPORT ZafIChar *ZafCrNlToCr(ZafIChar *src, ZafIChar

*dst = ZAF_NULLP(ZafIChar));

Declaration #include <z_utils.hpp>

Description ZafCrNlToCr() converts all the ’\r’,’\n’ pairs in src to ’\r’ characters. If dst is
null, the converted string is returned in src. Otherwise, the converted string is
returned in dst. An example of when this is useful is when converting a ZAF
string to a native Mac OS string.

A pointer to the converted string is returned.

The following code snippet shows how to use ZafCrNlToCr():

// Convert the text to be written to a native text file.
ZafIChar *text = strdup(object->Text());
ZafCrNlToCr(text);
WriteTextToNativeFile(text);

ZafCrNIToNI 707

ZafCrNlToNl
ZAF_EXPORT ZafIChar *ZafCrNlToNl(ZafIChar *src, ZafIChar

*dst = ZAF_NULLP(ZafIChar));

Declaration #include <z_utils.hpp>

Description ZafCrNlToNl() converts all the ’\r’,’\n’ pairs in src to ’\n’ characters. If dst is
null, the converted string is returned in src. Otherwise, the converted string is
returned in dst. An example of when this is useful is when converting a ZAF
string to a native Unix string.

A pointer to the converted string is returned.

The following code snippet shows how to use ZafCrNlToNl():

// Convert the text to be written to a native text file.
ZafIChar *text = strdup(object->Text());
ZafCrNlToNl(text);
WriteTextToNativeFile(text);

708 Zinc Application Framework 5

ZafCrToCrNl
ZAF_EXPORT ZafIChar *ZafCrToCrNl(ZafIChar *src, ZafIChar

*dst = ZAF_NULLP(ZafIChar));

Declaration #include <z_utils.hpp>

Description ZafCrToCrNl() converts all the ’\r’ characters in src to ’\r’,’\n’ pairs. If dst is
null, the converted string is returned in src. Otherwise, the converted string is
returned in dst. The return buffer must have been previously allocated large
enough to fit the original string along with the inserted ’\n’ characters. An
example of when this is useful is when converting a native Mac OS string to a
ZAF string.

A pointer to the converted string is returned.

The following code snippet shows how to use ZafCrToCrNl():

// Read the text and convert it for use by the ZAF object.
ZafIChar text[MAX_FILE_LENGTH];
ReadTextFromNativeFile(text);
ZafCrToCrNl(text);
object->SetText(text);

DynamicPtrCast 709

DynamicPtrCast
#define DynamicPtrCast(arg, type)

Declaration #include <z_list.hpp>

Description DynamicPtrCast() is a macro provided by ZAF that aids in supporting RTTI. If
a compiler doesn’t support RTTI via dynamic_cast(), DynamicPtrCast() pro-
vides similar functionality for classes derived from ZafElement by calling
ZafElement::EvaluateIsA(). For compilers that support RTTI, DynamicPtr-
Cast() simply calls dynamic_cast(). For compilers that don’t support RTTI,
DynamicPtrCast() only works with non-const types. See ZafElement::Evalu-
ateIsA() for more information.

The following code snippet shows how to use DynamicPtrCast():

ZafEventType MyClass::Event(const ZafEventStruct &event)
{
ZafEventType ccode = LogicalEvent(event);
switch (ccode)
{
...
case MY_STRING_EVENT:
{
// We know event.windowObject is a ZafString, since
// the application created the event elsewhere.
ZafString *myString = DynamicPtrCast(myString, ZafString);
DoSomethingWithString(myString);
}
break;

...
}
return (ccode);

}

710 Zinc Application Framework 5

ZafMax
inline int ZafMax(int arg1, int arg2);

Declaration #include <z_utils.hpp>

Description ZafMax() returns the maximum value of arg1 and arg2.

The following code snippet shows how to use ZafMax():

int biggest = ZafMax(myInteger1, myInteger2);
// Do some calculation with the biggest integer.

ZafMin 711

ZafMin
inline int ZafMin(int arg1, int arg2);

Declaration #include <z_utils.hpp>

Description ZafMin() returns the minimum value of arg1 and arg2.

The following code snippet shows how to use ZafMin():

int smallest = ZafMin(myInteger1, myInteger2);
// Do some calculation with the smallest integer.

712 Zinc Application Framework 5

ZafNlToCrNl
ZAF_EXPORT ZafIChar *ZafNlToCrNl(ZafIChar *src, ZafIChar

*dst = ZAF_NULLP(ZafIChar));

Declaration #include <z_utils.hpp>

Description ZafNlToCrNl() converts all the ’\n’ characters in src to ’\r’,’\n’ pairs. If dst is
null, the converted string is returned in src. Otherwise, the converted string is
returned in dst. The return buffer must have been previously allocated large
enough to fit the original string along with the inserted ’\r’ characters. An
example of when this is useful is when converting a native Unix string to a
ZAF string.

A pointer to the converted string is returned.

The following code snippet shows how to use ZafNlToCrNl():

// Read the text and convert it for use by the ZAF object.
ZafIChar text[MAX_FILE_LENGTH];
ReadTextFromNativeFile(text);
ZafNlToCrNl(text);
object->SetText(text);

ZafNIToCrNI 713

714 Zinc Application Framework 5

ZafRegisterMouse
bool ZafRegisterMouse(ZafWindowObject *object, bool view

= false, bool leftMouse = true, bool rightMouse =
true);

Declaration #include <m_utils.hpp>

Description ZafRegisterMouse() is a function defined for Motif only. Normally, mouse
movement events are not received in a Motif application. In the event that
these events are desired for some objects, ZafRegisterMouse() may be called to
allow mouse movement events. ZafRegisterMouse() must be called after an
object has been registered (via the S_REGISTER_OBJECT event).

object is a pointer to the ZAF object to receive the events. Passing true in view
will cause the object to receive L_VIEW events. Passing true in leftMouse
causes the object to receive L_CONTINUE_SELECT events. Passint true in
rightMouse causes the object to receive L_CONTINUE_ESCAPE events.
Passing false into any of these latter three parameters causes the corresponding
event not to be received by the object.

ZafRegisterMouse() returns false if the operation did not complete success-
fully (such as when called before the object has been registered); otherwise
true is returned.

The following code snippet shows how to use ZafRegisterMouse() in the
S_REGISTER_OBJECT case of a derived button’s Event() method:

...
case S_REGISTER_OBJECT:
// Pass it to immediate base class first for registration.
ZafButton::Event(event);

// Cause this object to receive L_VIEW events.
ZafRegisterMouse(this, true, false, false);
break;

...

ZafStrColl 715

ZafStrColl
int ZAF_EXPORT ZafStrColl(const ZafIChar *s1, const

ZafIChar *s2);

Declaration #include <z_string.hpp>

Description ZafStrColl() does a comparison of the strings s1 and s2, respecting current
locale settings.

ZafStrColl() returns 0 if the strings match. It returns some value less than 0 if
the first character in s1 that doesn’t match has an ISO value less than the corre-
sponding character in s2, or it returns some value greater than 0 if the first
character in s1 that doesn’t match has an ISO value greater than the corre-
sponding character in s2.

ZafStrColl() provides the same functionality for ZafIChar strings as the ANSI
strcoll() function for char strings. If the library has been compiled in ISO
mode (see the header file z_env.hpp), a macro is defined for strcoll() to call
ZafStrColl() so that the programmer may internationalize source code more
easily.

The following code snippet shows how to use ZafStrColl():

if (ZafStrColl(object1->Text(), object2->Text()) == 0)
return (THE_STRINGS_MATCH);

716 Zinc Application Framework 5

ZafStrdup
ZAF_EXPORT ZafIChar *ZafStrdup(const ZafIChar

*srcString);

Declaration #include <z_string.hpp>

Description ZafStrdup() allocates a buffer, copies srcString into it, and returns a pointer to
the buffer. The programmer must delete the buffer when done with it. The
delete operator must be used with brackets when deleting the buffer.

ZafStrdup() provides the same functionality for a ZafIChar string as the ANSI
strdup() function for a char string. If the library has been compiled in ISO
mode or Unicode mode (see the header file z_env.hpp), a macro is defined for
strdup() to call ZafStrdup() so that the programmer may internationalize source
code more easily.

The following code snippet shows how to use ZafStrdup():

ZafIChar *newBuffer = ZafStrdup(object->Text());
// Use the copy of the object’s text.
delete []newBuffer;

streq 717

streq
ZAF_EXPORT int streq(const ZafIChar *s1, const ZafIChar

*s2);

Declaration #include <z_string.hpp>

Description streq() determines if strings s1 and s2 are equal.

streq() returns 0 if the strings match. It returns some value less than 0 if the
first character in s1 that doesn’t match has an ISO or Unicode value less than
the corresponding character in s2, or it returns some value greater than 0 if the
first character in s1 that doesn’t match has an ISO or Unicode value greater
than the corresponding character in s2.

streq() provides the same functionality for ZafIChar strings as the ANSI
strcmp() function for char strings.

The following code snippet shows how to use streq():

if (streq(object1->Text(), object2->Text()) == 0)
return (THE_STRINGS_MATCH);

718 Zinc Application Framework 5

ZafStricmp
ZAF_EXPORT int ZafStricmp(const ZafIChar *a, const

ZafIChar *b);

Declaration #include <z_string.hpp>

Description ZafStricmp() does a case-insensitive comparison of the strings a and b.

ZafStricmp() returns 0 if the strings match. It returns some value less than 0 if
the first character in a that doesn’t match has an ISO or Unicode value less than
the corresponding character in b, or it returns some value greater than 0 if the
first character in a that doesn’t match has an ISO or Unicode value greater than
the corresponding character in b.

ZafStricmp() provides the same functionality for ZafIChar strings as the ANSI
stricmp() function for char strings. If the library has been compiled in ISO
mode or Unicode mode (see the header file z_env.hpp), a macro is defined for
stricmp() to call ZafStricmp() so that the programmer may internationalize
source code more easily.

The following code snippet shows how to use ZafStricmp():

if (ZafStricmp(object1->Text(), object2->Text()) == 0)
return (THE_STRINGS_MATCH);

ZafStrlwr 719

ZafStrlwr
ZAF_EXPORT ZafIChar *ZafStrlwr(ZafIChar *string);

Declaration #include <z_string.hpp>

Description ZafStrlwr() converts uppercase characters in string to lowercase, and returns a
pointer to string.

ZafStrlwr() provides the same functionality for a ZafIChar string as the ANSI
strlwr() function for a char string. If the library has been compiled in ISO
mode or Unicode mode (see the header file z_env.hpp), a macro is defined for
strlwr() to call ZafStrlwr() so that the programmer may internationalize source
code more easily.

The following code snippet shows how to use ZafStrlwr():

ZafIChar *myString = ZafStrdup(object->Text());
ZafStrlwr(myString);
// Use the lowercase string.
delete []myString;

720 Zinc Application Framework 5

strneq
ZAF_EXPORT int strneq(const ZafIChar *s1, const ZafIChar

*s2, int n);

Declaration #include <z_string.hpp>

Description strneq() determines if strings s1 and s2 are equal, comparing up to n characters.

strneq() returns 0 if the characters compared all match. It returns some value
less than 0 if the first character in s1 that doesn’t match has an ISO or Unicode
value less than the corresponding character in s2, or it returns some value
greater than 0 if the first character in s1 that doesn’t match has an ISO or Uni-
code value greater than the corresponding character in s2.

strneq() provides the same functionality for ZafIChar strings as the ANSI
strncmp() function for char strings.

The following code snippet shows how to use strneq():

if (strneq(object1->Text(), object2->Text(), 2) == 0)
return (PARTIAL_MATCH);

strnicmp 721

strnicmp
ZAF_EXPORT int strnicmp(const ZafIChar *a, const ZafIChar

*b, int n);

Declaration #include <z_string.hpp>

Description strnicmp() does a case-insensitive comparison of the strings a and b, compar-
ing up to n characters.

strnicmp() returns 0 if the characters compared all match. It returns some
value less than 0 if the first character in a that doesn’t match has an ISO or
Unicode value less than the corresponding character in b, or it returns some
value greater than 0 if the first character in a that doesn’t match has an ISO or
Unicode value greater than the corresponding character in b.

The following code snippet shows how to use strnicmp():

if (strnicmp(object1->Text(), object2->Text(), 2) == 0)
return (PARTIAL_MATCH);

722 Zinc Application Framework 5

strrepc
ZAF_EXPORT void strrepc(ZafIChar *string, ZafIChar c,

ZafIChar repc);

Declaration #include <z_string.hpp>

Description strrepc() replaces all the characters in string that match c with repc.

The following code snippet shows how to use strrepc():

// Change "Best Brain" to "Test Train".
strrepc("Best Brain", ’B’, ’T’);

strstrip 723

strstrip
ZAF_EXPORT void strstrip(ZafIChar *string, ZafIChar c);

Declaration #include <z_string.hpp>

Description strstrip() deletes all the characters in string that match c.

The following code snippet shows how to use strstrip():

// Delete all the ’\n’ and ’\r’ characters from myString.
extern ZafIChar *myString;
strstrip(myString, ’\n’);
strstrip(myString, ’\r’);

724 Zinc Application Framework 5

ZafStrupr
ZAF_EXPORT ZafIChar *ZafStrupr(ZafIChar *string);

Declaration #include <z_string.hpp>

Description ZafStrupr() converts lowercase characters in string to uppercase, and returns a
pointer to string.

ZafStrupr() provides the same functionality for a ZafIChar string as the ANSI
strupr() function for a char string. If the library has been compiled in ISO
mode or Unicode mode (see the header file z_env.hpp), a macro is defined for
strupr() to call ZafStrupr() so that the programmer may internationalize source
code more easily.

The following code snippet shows how to use ZafStrupr():

ZafIChar *myString = ZafStrdup(object->Text());
ZafStrupr(myString);
// Use the uppercase string.
delete []myString;

ZafStrXFrm 725

ZafStrXFrm
int ZAF_EXPORT ZafStrXFrm(ZafIChar *s1, const ZafIChar

*s2, int n);

Declaration #include <z_string.hpp>

Description ZafStrXFrm() transforms up to n characters in s2 into s1, such that resulting
strings passed into strcmp() and strcoll() would return the same value. The
resulting string is a tokenized string providing weighting information for use in
string collation. s1 must have been allocated by the programmer large enough
to hold the resulting tokenized string. Each tokenized character may be up to 4
times the size of the source character, depending on weighting rules for the
character.

ZafStrXFrm() returns the number of characters copied not including the null
terminator. If the return value is greater than or equal to n, nothing was copied
into s1.

ZafStrXFrm() provides the same functionality for ZafIChar strings as the
ANSI strxfrm() function for char strings. If the library has been compiled in
ISO mode (see the header file z_env.hpp), a macro is defined for strxfrm() to
call ZafStrXFrm() so that the programmer may internationalize source code
more easily.

The following code snippet shows how to use ZafStrXFrm():

ZafIChar result = new ZafIChar[4 * strlen(object->Text())];
ZafStrXFrm(result, object->Text(), strlen(object->Text()));
// Use the result.
delete []result;

726 Zinc Application Framework 5

WildStrcmp
ZAF_EXPORT int WildStrcmp(const ZafIChar *str, const

ZafIChar *pattern);

Declaration #include <z_utils.hpp>

Description WildStrcmp() does a case-insensitive comparison of a string to a pattern that
may include wildcards. string is the string to be compared, and pattern is the
pattern to be compared against.

A wildcard may be either ’*’ or ’?’. A ’*’ in the pattern matches any 0 or more
characters in the string, and a ’?’ in the pattern matches any 1 character in the
string. Both ’*’ and ’?’ may be embedded in the middle of the string.

WildStrcmp() returns 0 if the string matches the pattern. It returns some value
less than 0 if the first character in the string that doesn’t match has an ISO or
Unicode value less than the corresponding character in the pattern, or it returns
some value greater than 0 if the first character in the string that doesn’t match
has an ISO or Unicode value greater than the corresponding character in the
pattern.

The following code snippet shows how to use WildStrcmp():

if (WildStrcmp("String999Beans", "String*Beans") == 0)
return (true);

...
if (WildStrcmp("Model36X", "Model??X") != 0)
return (NOT_A_MODEL_X);

Utility Reference

Convert Utility 729

Convert
“Convert” provides support for converting ZAF 4.x persistent object data files
(such as those created with Zinc Designer) to their ZAF version 5 equivalents.
Convert persistent data files is one of three major steps in converting a ZAF 4.x
project to ZAF 5. (The other steps are running “Rep4to5” and manually con-
verting logic). Convert is not needed when creating new ZAF 5 applications.

Usage convert [source file] [target file]

Convert may be passed two command line parameters to specify the original
ZAF 4.x data file and the ZAF 5 output file name. If the file names are not
specified, the user may provide them using the supplied graphical user inter-
face. The ZAF 4.x data file name is specified for “Source file:” and the output
file name is specified for “Destination file:”. To begin the conversion process,
select the “Convert” button. The names of the objects converted will appear in
the scrolling text field.

Convert has limitations:

• User data is not converted. For example, if the programmer has derived an object
and overloaded the ZAF 4 Store() function to store custom data, this data cannot
be automatically converted. If customer data is encountered during the conversion
process, the converter may terminate unexpectedly, or the data file may not be
properly converted.

• Only data file directories containing “known” data are searched during the conver-
sion process. If the programmer has stored user data or Zinc objects in custom
directories, the information will not be converted. However, these unknown direc-
tories will not affect the conversion of other directories.

• After conversion, objects may be stored in different directory names. The pro-
grammer should examine the file using Zinc Designer to become familiar with the
new structure. Note that different window types (normal, dialog, scrolled, etc.) are
stored in different directories.

Source code (convert.cpp) is supplied, and may be modified to handle special
cases.

730 Zinc Application Framework 5

Rep
“Rep” provides support for replacing strings in a file, and can be useful when
changing class names or other symbols in source code files. A modification of
this utility, Rep4to5, is available to automatically replace many of the ZAF 4.x
symbols with their version 5 equivalents. See Rep4to5 for more information.

Rep modifies the source file in place. Backup of the source file is therefore
recommended.

Usage rep [options] <file> <oldString,newString>
[oldString,newString [...]]

The command line options for the Rep utility are as follows:

Some examples of using the ZMake utility follow:

Option Description

/word Match complete words only

/force Force replacement without asking the user to verify

Command Line Description

rep *.?pp dog,rat “dog” is replaced with “rat”, “dogbert” is
replaced with “ratbert”, each replacement is
verified with “y” or “n”. All occurrences of
“dog” are replaced whether complete words
or portions of words.

rep /word /force *.?pp
dog,rat cat,mouse

“dog” is replaced with “rat”, “cat” is replaced
with “mouse”, “dogbert” remains “dogbert”,
replacements are made without verification.

Rep4to5 Utility 731

Rep4to5
“Rep4to5” automatically replaces most of the ZAF 4.x symbols to their version
5 equivalents. Rep4to5 is one step in converting a ZAF 4.x project to ZAF 5.
(Other steps include running “Convert” and manually converting program
logic).

Rep4to5 is a simple string replacement utility. As such, it does not reorder
parameters or handle other sophisticated code conversion tasks. It is intended
only to provide a quick head start to the code conversion process by pointing
the programmer in the right direction.

“Rep4to5” is a customized version of the ZAF 5 “Rep” utility.

Usage rep4to5 <file>

file specifies the filename to be converted. This file is modified in place and
should be backed up before converting.

Rep4to5 may be customized by modifying replacementArray[] in rep4to5.cpp
and rebuilding the application. The programmer may modify which symbols
are replaced, and their replacements. The first field in an element of replace-
mentArray[] is the old symbol, and the second field is the replacement symbol.
The array must be terminated with “{ 0, 0 }”.

Conversions The pairs of strings used by rep4to5 is listed below as a ZAF 4 alphabetical ref-
erence to new names used in ZAF 5.

You will notice that many ZAF 4 strings, particularly flag names, cannot be
directly converted to ZAF 5. In ZAF 4 these flags were used both to set and
get values. In ZAF 5 setting of properties is accomplished using Set* functions
while querying the same properties use different accessor functions. In these
cases, where the original string was ambiguous, Rep4to5 adds a comment to
the converted code to help identify the proper ZAF 5 member. It is left to the
programmer to complete the conversion.

ZAF 4 symbol (old) ZAF 5 replacement

_classID classID

_className className

AcceptsDrop AcceptDrop

AllowsCheckMark AllowToggling

AllowsDragSelection

AllowsMultipleSelection AllowsMultipleSelection
/* SelectionType() ==
ZAF_MULTIPLE_SELECTION */

732 Zinc Application Framework 5

AllowsToggling AllowToggling

ALT_STATE ZafDevice::ZafAltState

AppliesToOppositeSide OppositeSide

ATCF_BOTTOM ATCF_BOTTOM
/* Type() == ZAF_ATCF_BOTTOM */

ATCF_LEFT ATCF_LEFT
/* Type() == ZAF_ATCF_LEFT */

ATCF_OPPOSITE ATCF_OPPOSITE /* OppositeSide() */

ATCF_RIGHT ATCF_RIGHT
/* Type() == ZAF_ATCF_BOTTOM */

ATCF_STRETCH ATCF_STRETCH /* Stretch() */

ATCF_TOP ATCF_TOP
/* Type() == ZAF_ATCF_TOP */

AutoRepeatsSelection AutoRepeatSelection

AutoSizes AutoSize

AutoSortsData AutoSortData

BTF_AUTO_SIZE BTF_AUTO_SIZE /* AutoSize() */

BTF_CHECK_BOX BTF_CHECK_BOX
/*ButtonType() == ZAF_CHECK_BOX */

BTF_DEFAULT_BUTTON BTF_DEFAULT_BUTTON
/* parent->DefaultButton() */

BTF_DOUBLE_CLICK BTF_DOUBLE_CLICK
/* SelectOnDoubleClick() */

BTF_DOWN_CLICK BTF_DOWN_CLICK
/* SelectOnDownClick() */

BTF_NO_3D BTF_NO_3D
/* ButtonType() == ZAF_FLAT_BUTTON
*/

BTF_NO_TOGGLE BTF_NO_TOGGLE
/* !AllowToggling() */

BTF_RADIO_BUTTON BTF_RADIO_BUTTON
/* ButtonType() ==
ZAF_RADIO_BUTTON */

BTF_REPEAT BTF_REPEAT
/* AutoRepeatSelection() */

BTF_SEND_MESSAGE BTF_SEND_MESSAGE
/* SendMessageWhenSelected() */

BTF_STATIC_BITMAPARRAY BTF_STATIC_BITMAPARRAY
/* bitmapData->staticArray */

BUTTON_TYPE ZafButtonType

ZAF 4 symbol (old) ZAF 5 replacement

Rep4to5 Utility 733

BUTTON_TYPE BUTTON_TYPE /* ButtonType() */

DEVICE_IMAGE ZafDeviceImage

DeviceImage SetDeviceImage

DevicePosition SetDevicePosition

DeviceState SetDeviceState

EVENT_TYPE ZafEventType

FALSE false

Get Get /*Possibly GetObject*/

ICF_DOUBLE_CLICK ICF_DOUBLE_CLICK
/* SelectOnDoubleClick() */

ICF_MINIMIZE_OBJECT ICF_MINIMIZE_OBJECT
/* IconType() == ZAF_MINIMIZE_ICON
*/

ICF_STATIC_ICONARRAY ICF_STATIC_ICONARRAY
/* IconData()->staticArray*/

ICHAR_T ZafIChar

ID_ATTACHMENT ID_ZAF_ATTACHMENT

ID_BIGNUM ID_ZAF_BIGNUM

ID_BORDER ID_ZAF_BORDER

ID_BUTTON ID_ZAF_BUTTON

ID_CHECK_BOX ID_ZAF_CHECK_BOX

ID_COMBO_BOX ID_ZAF_COMBO_BOX

ID_CONSTRAINT ID_ZAF_CONSTRAINT

ID_DATE ID_ZAF_DATE

ID_DIALOG_WINDOW ID_ZAF_DIALOG_WINDOW

ID_DIMENSION_CONSTRAINT ID_ZAF_DIMENSION_CONSTRAINT

ID_EVENT_MANAGER ID_ZAF_EVENT_MANAGER

ID_FORMATTED_STRING ID_ZAF_FORMATTED_STRING

ID_GEOMETRY_MANAGER ID_ZAF_GEOMETRY_MANAGER

ID_GROUP ID_ZAF_GROUP

ID_HLIST ID_ZAF_HZ_LIST

ID_HZ_LIST ID_ZAF_HZ_LIST

ID_ICON ID_ZAF_ICON

ID_IMAGE ID_ZAF_IMAGE

ID_INTEGER ID_ZAF_INTEGER

ID_LIST ID_ZAF_LIST

ID_MAXIMIZE_BUTTON ID_ZAF_MAXIMIZE_BUTTON

ID_MINIMIZE_BUTTON ID_ZAF_MINIMIZE_BUTTON

ZAF 4 symbol (old) ZAF 5 replacement

734 Zinc Application Framework 5

ID_NOTEBOOK ID_ZAF_NOTEBOOK

ID_POP_UP_ITEM ID_ZAF_POP_UP_ITEM

ID_POP_UP_MENU ID_ZAF_POP_UP_MENU

ID_PROMPT ID_ZAF_PROMPT

ID_PULL_DOWN_ITEM ID_ZAF_PULL_DOWN_ITEM

ID_PULL_DOWN_MENU ID_ZAF_PULL_DOWN_MENU

ID_RADIO_BUTTON ID_ZAF_RADIO_BUTTON

ID_REAL ID_ZAF_REAL

ID_RELATIVE_CONSTRAINT ID_ZAF_RELATIVE_CONSTRAINT

ID_SCROLL_BAR ID_ZAF_SCROLL_BAR

ID_SPIN_CONTROL ID_ZAF_SPIN_CONTROL

ID_STATUS_BAR ID_ZAF_STATUS_BAR

ID_STRING ID_ZAF_STRING

ID_SYSTEM_BUTTON ID_ZAF_SYSTEM_BUTTON

ID_TABLE ID_ZAF_TABLE

ID_TABLE_HEADER ID_ZAF_TABLE_HEADER

ID_TABLE_RECORD ID_ZAF_TABLE_RECORD

ID_TEXT ID_ZAF_TEXT

ID_TIME ID_ZAF_TIME

ID_TITLE ID_ZAF_TITLE

ID_TOOL_BAR ID_ZAF_TOOL_BAR

ID_VLIST ID_ZAF_VT_LIST

ID_VT_LIST ID_ZAF_VT_LIST

ID_WINDOW ID_ZAF_WINDOW

ID_WINDOW_MANAGER ID_ZAF_WINDOW_MANAGER

ID_WINDOW_OBJECT ID_ZAF_WINDOW_OBJECT

IMF_AUTO_SIZE IMF_AUTO_SIZE /* AutoSize() */

IMF_BACKGROUND IMF_BACKGROUND /* Wallpaper() */

IMF_SCALED IMF_SCALED /* Scaled() */

IMF_TILED IMF_TILED /* Tiled() */

Inherited IsA

Is3D Is3D
/* ButtonType() != ZAF_FLAT_BUTTON
*/

IsAutoClear AutoClear

IsBackground Wallpaper

IsBordered Bordered

ZAF 4 symbol (old) ZAF 5 replacement

Rep4to5 Utility 735

IsCheckBox IsCheckBox
/*ButtonType() == ZAF_CHECK_BOX */

IsCopyDraggable CopyDraggable

IsDefaultButton IsDefaultButton
/*parent->DefaultButton() == ...*/

IsDefaultInvalid Invalid

IsDefaultUnanswered Unanswered

IsDestroyable Destroyable

IsLocked Locked

IsLowerCase LowerCase

IsMinimizeIcon IsMinimizeIcon
/* IconType() == ZAF_MINIMIZE_ICON
*/

IsModal Modal

IsMoveable Moveable

IsMoveDraggable MoveDraggable

IsNoncurrent Noncurrent

IsNonselectable Disabled

IsPasswordStyle Password

IsRadioButton ButtonType() == ZAF_RADIO_BUTTON

IsScaled Scaled

IsSelectable !Disabled()

IsSeparator ItemType() == ZAF_SEPARATOR

IsSizeable Sizeable

IsSupport SupportObject

IsTemporary Temporary

IsTiled Tiled

IsUpperCase UpperCase

IsViewOnly ViewOnly

MNIF_ABOUT MNIF_ABOUT
/*ItemType() == ZAF_ABOUT_OPION */

MNIF_CHECK_MARK MNIF_CHECK_MARK
/* AllowToggling */

MNIF_CLOSE MNIF_CLOSE
/*ItemType() == ZAF_CLOSE_OPION */

MNIF_MAXIMIZE MNIF_MAXIMIZE
/* ItemType() ==
ZAF_MAXIMIZE_OPTION */

ZAF 4 symbol (old) ZAF 5 replacement

736 Zinc Application Framework 5

MNIF_MINIMIZE MNIF_MINIMIZE
/* ItemType() ==
ZAF_MINIMIZE_OPION */

MNIF_MOVE MNIF_MOVE
/*ItemType() == ZAF_MOVE_OPTION */

MNIF_NON_SELECTABLE MNIF_NON_SELECTABLE
/* Disabled() */

MNIF_RESTORE MNIF_RESTORE
/* ItemType() == ZAF_RESTORE_OPION
*/

MNIF_SEND_MESSAGE MNIF_SEND_MESSAGE
/* SendMessageWhenSelected() */

MNIF_SEPARATOR MNIF_SEPARATOR
/* ItemType() == ZAF_SEPARATOR */

MNIF_SIZE MNIF_SIZE
/*ItemType() == ZAF_SIZE_OPTION */

MNIF_SWITCH MNIF_SWITCH
/*ItemType() == ZAF_SWITCH_OPTION
*/

NOTIFY_ELEMENT ZafNotifyElement

NOTIFY_LIST ZafNotifyList

NUMBERID ZafNumberID

NUMID_BORDER ZAF_NUMID_BORDER

NUMID_C_SCROLL ZAF_NUMID_C_SCROLL

NUMID_CNR_HEADER ZAF_NUMID_CORNER_HEADER

NUMID_COL_HEADER ZAF_NUMID_COLUMN_HEADER

NUMID_GEOMETRY ZAF_NUMID_GEOMETRY

NUMID_HZ_SCROLL ZAF_NUMID_HZ_SCROLL

NUMID_MAXIMIZE ZAF_NUMID_MAXIMIZE

NUMID_MINIMIZE ZAF_NUMID_MINIMIZE

NUMID_OPT_CLOSE ZAF_NUMID_OPT_CLOSE

NUMID_OPT_MAXIMIZE ZAF_NUMID_OPT_MAXIMIZE

NUMID_OPT_MINIMIZE ZAF_NUMID_OPT_MINIMIZE

NUMID_OPT_MOVE ZAF_NUMID_OPT_MOVE

NUMID_OPT_RESTORE ZAF_NUMID_OPT_RESTORE

NUMID_OPT_SIZE ZAF_NUMID_OPT_SIZE

NUMID_OPT_SWITCH ZAF_NUMID_OPT_SWITCH

NUMID_ROW_HEADER ZAF_NUMID_ROW_HEADER

NUMID_SYSTEM ZAF_NUMID_SYSTEM

ZAF 4 symbol (old) ZAF 5 replacement

Rep4to5 Utility 737

NUMID_TITLE ZAF_NUMID_TITLE

NUMID_VT_SCROLL ZAF_NUMID_VT_SCROLL

OBJECTID ZafNumberID

relative ZafRegion

S_CURRENT N_CURRENT

S_DISPLAY_ACTIVE S_DISPLAY_ACTIVE
/*Redisplay() or
S_REDISPLAY_REGION */

S_DISPLAY_INACTIVE S_DISPLAY_INACTIVE
/*Redisplay() or
S_REDISPLAY_REGION */

S_NON_CURRENT N_NON_CURRENT

SBF_CORNER SBF_CORNER
/* ScrollType() ==
ZAF_CORNER_SCROLL */

SBF_HORIZONTAL SBF_HORIZONTAL
/* ScrollType() ==
ZAF_CORNER_SCROLL */

SBF_SCALE SBF_SCALE /* ScrollType() */

SBF_SLIDER SBF_SLIDER /* ScrollType() */

SBF_VERTICAL SBF_VERTICAL
/* ScrollType() ==
ZAF_VERTICAL_SCROLL */

searchID searchID /*Use ClassName()*/

SEEK ZafSeek

SelectsOnDoubleClick SelectOnDoubleClick

SelectsOnDownClick SelectOnDownClick

SendsMessageWhenSelected SendMessageWhenSelected

STF_LOWER_CASE STF_LOWER_CASE /* LowerCase() */

STF_PASSWORD STF_PASSWORD /* Password() */

STF_UPPER_CASE STF_UPPER_CASE /* UpperCase() */

STF_VARIABLE_NAME STF_VARIABLE_NAME
/* VariableName() */

storageError Error()

TBLF_GRID TBLF_GRID
/* Grid() */

THF_COLUMN_HEADER THF_COLUMN_HEADER
/* HeaderType() ==
ZAF_COLUMN_HEADER */

ZAF 4 symbol (old) ZAF 5 replacement

738 Zinc Application Framework 5

THF_CORNER_HEADER THF_CORNER_HEADER
/* HeaderType() ==
ZAF_CORNER_HEADER */

THF_GRID THF_GRID /* Grid() */

THF_ROW_HEADER THF_ROW_HEADER
/*HeaderType() == ZAF_ROW_HEADER*/

TRUE true

true. /* */

UCHAR ZafUInt8

UI_APPLICATION ZafApplication

UI_ATTACHMENT ZafAttachment

UI_CONSTRAINT ZafConstraint

UI_DEVICE ZafDevice

UI_DEVICE ZafDevice

UI_DIMENSION_CONSTRAINT ZafDimensionConstraint

UI_DISPLAY ZafDisplay

UI_DISPLAY ZafDisplay

UI_DISPLAY_IMAGE ZafDisplayImage

UI_ELEMENT ZafElement

UI_ERROR_STUB ZafErrorStub

UI_ERROR_SYSTEM ZafErrorSystem

UI_EVENT ZafEventStruct

UI_EVENT ZafEventStruct

UI_EVENT_MANAGER ZafEventManager

UI_EVENT_MANAGER ZafEventManager

UI_EVENT_MAP ZafEventMap

UI_GEOMETRY_MANAGER ZafGeometryManager

UI_GRAPHICS_DISPLAY ZafDisplay

UI_HELP_CONTEXT UI_HELP_CONTEXT
/* ZafIChar[lookupString]*/

UI_HELP_STUB ZafHelpStub

UI_HELP_SYSTEM ZafHelpSystem

UI_KEY ZafKeyStruct

UI_LIST ZafList

UI_LIST_BLOCK ZafListBlock

UI_MACINTOSH_DISPLAY ZafDisplay

UI_META_DISPLAY ZafDisplay

UI_MSC_DISPLAY ZafDisplay

ZAF 4 symbol (old) ZAF 5 replacement

Rep4to5 Utility 739

UI_MSWINDOWS_DISPLAY ZafDisplay

UI_NEXTSTEP_DISPLAY ZafDisplay

UI_OS2_DISPLAY ZafDisplay

UI_PALETTE ZafPaletteStruct

UI_PALETTE_MAP ZafPaletteMap

UI_PATH ZafPath

UI_PATH_ELEMENT ZafPathElement

UI_POSITION ZafPosition

UI_PRINTER ZafPrinter

UI_QUEUE_BLOCK ZafQueueBlock

UI_QUEUE_ELEMENT ZafQueueElement

UI_REGION ZafRegionStruct

UI_REGION_ELEMENT ZafRegionElement

UI_REGION_LIST ZafRegionList

UI_RELATIVE_CONSTRAINT ZafRelativeConstraint

UI_SCROLL_INFORMATION ZafScrollStruct

UI_TEXT_DISPLAY ZafDisplay

UI_WCC_DISPLAY ZafDisplay

ui_win.hpp zaf.hpp

UI_WIN.hpp zaf.hpp

UI_WINDOW_MANAGER ZafWindowManager

UI_WINDOW_MANAGER ZafWindowManager

UI_WINDOW_OBJECT ZafWindowObject

UI_WINDOW_OBJECT ZafWindowObject

UI_WINDOW_OBJECT::helpSystem zafHelpSystem

UI_WINDOW_OBJECT::
errorSystem

zafErrorSystem

UI_WINDOW_OBJECT::
defaultStorage

UI_WINDOW_OBJECT::defaultStorage
/*Use zafObjectPersistence*/

UI_XT_DISPLAY ZafDisplay

UID_CURSOR ZafCursor

UID_KEYBOARD ZafKeyboard

UID_MOUSE ZafMouse

UID_TIMER ZafTimer

UIW_BIGNUM ZafBignum

UIW_BORDER ZafBorder

UIW_BUTTON ZafButton

ZAF 4 symbol (old) ZAF 5 replacement

740 Zinc Application Framework 5

UIW_COMBO_BOX ZafComboBox

UIW_DATE ZafDate

UIW_FORMATTED_STRING ZafFormattedString

UIW_GROUP ZafGroup

UIW_HZ_LIST ZafHzList

UIW_ICON::_questionIconName ZAF_QUESTION_ICON

UIW_ICON::_handIconName ZAF_HAND_ICON

UIW_ICON::
_exclamationIconName

ZAF_EXLAMATION_ICON

UIW_ICON::_asteriskIconName ZAF_ASTERISK_ICON

UIW_ICON::
_applicationIconName

ZAF_APPLICATION_ICON

UIW_ICON ZafIcon

UIW_IMAGE ZafImage

UIW_INTEGER ZafInteger

UIW_MAXIMIZE_BUTTON ZafMaximizeButton

UIW_MINIMIZE_BUTTON ZafMinimizeButton

UIW_NOTEBOOK ZafNotebook

UIW_POP_UP_ITEM ZafPopUpItem

UIW_POP_UP_MENU ZafPopUpMenu

UIW_PROMPT ZafPrompt

UIW_PROMPT ZafPrompt

UIW_PULL_DOWN_ITEM ZafPullDownItem

UIW_PULL_DOWN_MENU ZafPullDownMenu

UIW_REAL ZafReal

UIW_SCROLL_BAR ZafScrollBar

UIW_SCROLL_BUTTON ZafScrollButton

UIW_SPIN_BUTTON ZafSpinButton

UIW_SPIN_CONTROL ZafSpinControl

UIW_STATUS_BAR ZafStatusBar

UIW_STRING ZafString

UIW_SYSTEM_BUTTON ZafSystemButton

UIW_TABLE ZafTable

UIW_TABLE_HEADER ZafTableHeader

UIW_TABLE_RECORD ZafTableRecord

UIW_TEXT ZafText

UIW_TIME ZafTime

ZAF 4 symbol (old) ZAF 5 replacement

Rep4to5 Utility 741

UIW_TITLE ZafTitle

UIW_TOOL_BAR ZafToolBar

UIW_VT_LIST ZafVtList

UIW_WINDOW ZafWindow

UsesAvailableRegion UsesAvailableRegion
/* RegionType() ==
ZAF_AVAILABLE_REGION */

UsesDefaultCellCoordinate UsesDefaultCellCoordinate
/* CoordinateType() == ZAF_CELL */

UsesDefaultMinicell-
Coordinate

UsesDefaultMinicellCoordinate
/* CoordinateType() ==
ZAF_MINICELL */

UsesDefaultPixelCoordinate UsesDefaultPixelCoordinate
/*CoordinateType() == ZAF_PIXEL */

UsesNormalHotKeys NormalHotkeys

UsesOutsideRegion UsesOutsideRegion
/* RegionType() ==
ZAF_OUTSIDE_REGION */

VirtualGet VirtualGet
/*Use
ZafWindowObject::BeginDraw()*/

VirtualPut VirtualPut
/*Use ZafWindowObject::EndDraw()*/

WNF_AUTO_SELECT WNF_AUTO_SELECT /* AutoSelect() */

WNF_AUTO_SORT WNF_AUTO_SORT /* AutoSortData() */

WNF_BITMAP_CHILDREN WNF_BITMAP_CHILDREN /*!OSDraw() */

WNF_NO_WRAP WNF_NO_WRAP /* !WrappedData() */

WNF_OWNERDRAW_CHILDREN WNF_OWNERDRAW_CHILDREN
/* !OSDraw() */

WNF_SELECT_MULTIPLE WNF_SELECT_MULTIPLE
/* SelectionType() ==
ZAF_MULIPLE_SELECTION */

WOAF_ACCEPTS_DROP WOAF_ACCEPTS_DROP
/* AcceptDrop() */

WOAF_COPY_DRAG_OBJECT WOAF_COPY_DRAG_OBJECT
/* CopyDraggable() */

WOAF_DIALOG_OBJECT WOAF_DIALOG_OBJECT
/* ZafDialogWindow */

WOAF_LOCKED WOAF_LOCKED /* Locked() */

WOAF_MDI_OBJECT WOAF_MDI_OBJECT /* ZafMDIWindow */

WOAF_MODAL WOAF_MODAL /* Modal() */

ZAF 4 symbol (old) ZAF 5 replacement

742 Zinc Application Framework 5

WOAF_MOVE_DRAG_OBJECT WOAF_MOVE_DRAG_OBJECT
/* MoveDraggable() */

WOAF_NO_DESTROY WOAF_NO_DESTROY
/* !Destroyable() */

WOAF_NO_MOVE WOAF_NO_MOVE /* !Moveable() */

WOAF_NO_SIZE WOAF_NO_SIZE /* !Sizeable() */

WOAF_NON_CURRENT WOAF_NON_CURRENT
/* Noncurrent() */

WOAF_NORMAL_HOT_KEYS WOAF_NORMAL_HOT_KEYS
/* NormalHotKeys() */

WOAF_OUTSIDE_REGION WOAF_OUTSIDE_REGION
/* RegionType() ==
ZAF_OUTSIDE_REGION */

WOAF_TEMPORARY WOAF_TEMPORARY /* Temporary() */

WOF_AUTO_CLEAR WOF_AUTO_CLEAR /* AutoClear() */

WOF_BORDER WOF_BORDER /* Bordered() */

WOF_INVALID WOF_INVALID /* Invalid() */

WOF_MINICELL WOF_MINICELL
/* CoordinateType() ==
ZAF_MINICELL */

WOF_NON_FIELD_REGION WOF_NON_FIELD_REGION
/* RegionType() ==
ZAF_AVAILABLE_REGION */

WOF_NON_SELECTABLE WOF_NON_SELECTABLE /*Disabled() */

WOF_PIXEL WOF_PIXEL
/*CoordinateType() == ZAF_PIXEL */

WOF_SUPPORT_OBJECT WOF_SUPPORT_OBJECT
/* SupportObject() */

WOF_UNANSWERED WOF_UNANSWERED /* Unanswered() */

WOF_VIEW_ONLY WOF_VIEW_ONLY /* ViewOnly() */

WOS_CHANGED WOS_CHANGED /* Changed() */

WOS_EDIT_MODE WOS_EDIT_MODE /* EditMode() */

WOS_GRAPHICS WOS_GRAPHICS /*CoordinateType() */

WOS_INVALID WOS_INVALID /* Invalid() */

WOS_MAXIMIZED WOS_MAXIMIZED /* Maximized() */

WOS_MINIMIZED WOS_MINIMIZED /* Minimized() */

WOS_OWNERDRAW WOS_OWNERDRAW /* !OSDraw() */

WOS_READ_ERROR WOS_READ_ERROR
/* Error() == ZAF_ERROR_READ */

ZAF 4 symbol (old) ZAF 5 replacement

Rep4to5 Utility 743

WOS_REDISPLAY WOS_REDISPLAY
/* S_REDISPLAY_DATA */

WOS_SELECTED WOS_SELECTED /* Selected() */

WOS_UNANSWERED WOS_UNANSWERED /* Unanswered() */

Z_ERROR ZafError

ZAF_DIALOG_WINDOW ZafDialogWindow

ZAF_GEOMETRY_MANAGER ZafGeometryManager

ZAF_MESSAGE_WINDOW ZafMessageWindow

ZAF_WINDOW ZafWindow

ZIL_BIGNUM ZafBignumData

ZIL_CHAR_MAP ZafCodeSetData

ZIL_COLOR ZafLogicalColor

ZIL_COMPARE_FUNCTION ZafCompareFunction

ZIL_DATE ZafDateData

ZIL_DESIGNER_EVENT ZafDesignerEvent

ZIL_DEVICE_STATE ZafDeviceState

ZIL_DEVICE_TYPE ZafDeviceType

ZIL_DIALOG_EVENT ZafDialogEvent

ZIL_DLG_ABORT S_DLG_ABORT

ZIL_DLG_CANCEL S_DLG_CANCEL

ZIL_DLG_IGNORE S_DLG_IGNORE

ZIL_DLG_NO S_DLG_NO

ZIL_DLG_OK S_DLG_OK

ZIL_DLG_RETRY S_DLG_RETRY

ZIL_DLG_YES S_DLG_YES

ZIL_ERA_TABLE ZafEraStruct

ZIL_EVENT_TYPE ZafEventType

ZIL_EXIT_FUNCTION ZafExitFunction

ZIL_EXPORT_CLASS ZAF_EXPORT

ZIL_EXPORT_CLASS ZAF_EXPORT

ZIL_FILE ZafFile

ZIL_FILE_CHAR char

ZIL_I18N ZafI18nData

ZIL_IBIGNUM ZafIBignum

ZIL_ICHAR ZafIChar

ZIL_ICHAR ZafIChar

ZIL_IMAGE_HANDLE OSImageID

ZAF 4 symbol (old) ZAF 5 replacement

744 Zinc Application Framework 5

ZIL_IMAGE_TYPE ZafDeviceType

ZIL_INT16 ZafInt16

ZIL_INT32 ZafInt32

ZIL_INT8 ZafInt8

ZIL_INTERNATIONAL:: <no replacement, not needed>

ZIL_LANGUAGE ZafLanguageData

ZIL_LANGUAGE_ELEMENT ZafLanguageData

ZIL_LOCALE ZafLocaleData

ZIL_LOCALE_ELEMENT ZafLocaleData

ZIL_LOGICAL_EVENT ZafLogicalEvent

ZIL_LOGICAL_FONT ZafLogicalFont

ZIL_LOGICAL_PALETTE ZafPaletteState

ZIL_LOGICAL_PATTERN ZafLogicalFillPattern

ZIL_MAXPATHLEN ZAF_MAXPATHLEN

ZIL_MSG_ABORT ZAF_DIALOG_ABORT

ZIL_MSG_CANCEL ZAF_DIALOG_CANCEL

ZIL_MSG_HELP ZAF_DIALOG_HELP

ZIL_MSG_IGNORE ZAF_DIALOG_IGNORE

ZIL_MSG_NO ZAF_DIALOG_NO

ZIL_MSG_OK ZAF_DIALOG_OK

ZIL_MSG_RETRY ZAF_DIALOG_RETRY

ZIL_MSG_YES ZAF_DIALOG_YES

ZIL_NEW_FUNCTION ZafObjectConstructor

ZIL_NULLP ZAF_NULLP

ZIL_NUMBER ZafNumber

ZIL_NUMBERID ZafNumberID

ZIL_OBJECTID ZafNumberID

ZIL_PRINTER_MODE ZafPrinterMode

ZIL_RAW_CODE ZafRawCode

ZIL_RBIGNUM ZafRBignum

ZIL_REVISION ZAF_REVISION

ZIL_SCREENID ZafScreenIDType

ZIL_STDARG ZafStandardArg

ZIL_STORAGE ZafStorage

ZIL_STORAGE_DIRECTORY ZafStorageDirectory

ZIL_STORAGE_OBJECT ZafStorageFile

ZIL_STORAGE_OBJECT_READ_ONLY ZafStorageFile

ZAF 4 symbol (old) ZAF 5 replacement

Rep4to5 Utility 745

ZIL_STORAGE_OBJECT_READ_ONLY ZafStorageFile

ZIL_STORAGE_READ_ONLY ZafStorage

ZIL_STORAGE_READ_ONLY ZafStorage

ZIL_SYSTEM_EVENT ZafSystemEvent

ZIL_SYSTEM_EVENT ZafSystemEvent

ZIL_TIME ZafTimeData

ZIL_UINT16 ZafUInt16

ZIL_UINT32 ZafUInt32

ZIL_UINT8 ZafUInt8

ZIL_USER_EVENT ZafUserEvent

ZIL_USER_FUNCTION ZafUserFunction

ZIL_UTIME ZafUTimeData

ZIL_VERSION ZAF_VERSION

ZINC_SIGNATURE ZafSignature

ZAF 4 symbol (old) ZAF 5 replacement

746 Zinc Application Framework 5

ZMake
“ZMake” is a make utility providing support for portable, compiler-indepen-
dent make files. Although make utilities provided with various compilers may
be used to build ZAF projects, Zinc provides ZMake as an alternate, preferred
method. ZMake supports the same concepts and most of the same syntax as
compiler-supplied make utilities.

ZMake make files are easier to create and use than traditional make files since
much of their internal complexity is off loaded to sub-make files supplied by
Zinc. (This is largely a product of make file organization, however, and is not
specifically related to ZMake.) By abstracting make syntax slightly, ZMake
allows a single make file to support many different compilers. This greatly
reduces make file maintenance issues for both Zinc and its customers.

Make files shipped with PC versions of ZAF are named ZMAKE.MAK, the
default file name of a ZMake make file. Currently, ZMake is implemented for
all compilers supported by ZAF for Microsoft Windows and MS DOS.
ZMake32 should be used under 32-bit Microsoft Windows platforms. Support
for other environments is planned. Currently, make files for Motif are gener-
ated from POSIX.MAK and do not use the utility or concepts discussed in this
reference.

Usage zmake [options] <target>

The command line options for the ZMake utility are as follows:

Some examples of using the ZMake utility follow:

Option Description

-f [makefile] Uses [makefile] instead of the default
ZMAKE.MAK

-k Keeps temporary response files

-p Shows pre-parser output (for make file debugging)

[macro=myString] Defines a macro that may be used in the make file

Command Line Description

zmake win16 Builds a ZAF program for 16-bit
Microsoft Windows using the make
file ZMAKE.MAK.

ZMake Utility 747

Environment
Variables

Before ZMake can be executed successfully, environment variables must be
defined. These environment variables may be used to define the compiler-
specific aspects of the make, thereby allowing the make files themselves to
remain compiler-independent.

Note that, like other make utilities, ZMake treats make file macros and envi-
ronment variables identically. Therefore it is possible to define environment
variables inside the make file itself, or to define the make file macros (dis-
cussed later) in the OS environment. Zinc has chosen to define the following
variables in the environment to maximize compiler independence and ease of
use. See Macros for more information.

The ZMake-compatible make files provided with ZAF utilize the following
environment variables:

zmake -f makefile.mak win32 Builds a ZAF program for 32-bit
Microsoft Windows using the make
file MAKEFILE.MAK instead of the
default ZMAKE.MAK file.

zmake myapp.exe Builds the program myapp.exe using
the make file ZMAKE.MAK.

zmake myfile.obj Builds only the object module
myfile.obj using the make file
ZMAKE.MAK.

Command Line Description

Environment Variable Description

ZAF_ROOT Required. Specifies the top-level directory contain-
ing the ZAF 5 installation. This directory is refer-
enced to find source files, include files, libraries,
etc.

ZINC_COMPILER Required. Specifies which compiler and linker
ZMake should invoke during the build process.
ZINC_COMPILER may be any of the following:
BORLAND, MICROSOFT, WATCOM.

748 Zinc Application Framework 5

Macros During the build process, ZMake make files expect several symbols to be
defined. Some of these symbols may be defined as environment variables (see
the preceding section), and others may be defined as make file macros. If a
symbol is defined both as an environment variable and as a macro, the later
macro definition is used.

The following macros are specifically supported:

INCLUDE Required for all compilers except Borland. Speci-
fies a complete include path. When specified,
INCLUDE should list the paths to compiler and
ZAF headers, plus any other headers required by
the project. If not specified (Borland only), the
include path specified in the compiler configuration
file (turboc.cfg or bcc32.cfg) will be used. Note
that the INCLUDE environment variable is not spe-
cifically used by ZMake, but is required by some
compilers.

LIB Required for all compilers except Borland. Speci-
fies a complete library path. When specified, LIB
should list the paths to compiler and ZAF libraries,
plus any other libraries required by the project
(ChartFolio, for example). If not specified (Bor-
land only), the lib path specified in the linker con-
figuration file (tlink.cfg or tlink32.cfg) will be
used. Note that the INCLUDE environment vari-
able is not specifically used by ZMake, but is
required by some linkers.

Environment Variable Description

Macro Definition

ZAF_ROOT Required. Normally specified as an environment vari-
able. See Environment Variables for more informa-
tion.

ZINC_COMPILER Required. Normally specified as an environment vari-
able. See Environment Variables for more informa-
tion.

ZMake Utility 749

Example # --- zake.mak --
Define macros used by main make file

PLATFORM Required. Specifies the target platform supported by
the current build option. Multiple build options (and
therefore multiple platforms) may be supported by a
single make file. Refer to make file examples (below)
for sample usage. Valid options:

WIN16 (16 bit Microsoft Windows platforms)
WIN32 (32 bit Microsoft Windows platforms)

TARGET_TYPE Required. Specifies the target type supported by the
current build option. Valid options:

EXE (Executable. ZAF statically linked)
EXEDLL (Executable. ZAF dynamically linked)
LIB (Library)
LIBDLL (Library. Calls functions in ZAF DLL)
DLL (Library. Dynamically linked)

TARGET Required. Specifies the name of the target file.

SOURCE_FILES Required. Specifies the source code files needed to
build the target.

IMPORT_LIBRARY Required for DLLs only. Specifies the name of the
Windows import library that will be generated when
the TARGET_TYPE is “DLL”.

ADD_OBJECT_FILES Optional. Specifies the names of additional object
files to be used in this build, if any.

ADD_LIBRARIES Optional. Specifies the names of additional library
files to be used in this build, if any.

DEFINITION_FILE Optional. Specifies the name of the Windows ".def"
file to be used in this build, if any.

RESOURCE_FILE Optional. Specifies the name of the Windows ".res"
file to be used in this build, if any.

DEBUG Optional. Specifies whether the code is compiled with
debug information or not. Valid options:

off (No debug information - default)
on (Build with debug information)

MAKE Internal. Returns the name of the make utility cur-
rently running. This will normally be “ZMAKE”.

Macro Definition

750 Zinc Application Framework 5

These macros are usually defined by environment variables.
ZAF_ROOT = c:\zaf500
ZINC_COMPILER = borland (options: borland, microsoft, watcom)

Options common to all targets
DEBUG = off
SOURCE_FILES = myapp1.cpp myapp2.cpp

16 bit windows target.
TARGET = myapp.exe
TARGET_TYPE = exe (options: exe, exedll, lib, libdll, dll)
PLATFORM = win16 (options: win32, win16)
DEFINITION_FILE = myapp.def
RESOURCE_FILE = bitmaps.rc
!include <zaf.mak> (required. generate rules for this target)

32 bit windows target.
TARGET = myapp32.exe
TARGET_TYPE = exe
PLATFORM = win32
DEFINITION_FILE =
RESOURCE_FILE = bitmaps.rc
!include <zaf.mak>

32 bit windows target linked to dll.
TARGET = myapp32d.exe
TARGET_TYPE = exedll
PLATFORM = win32
DEFINITION_FILE =
RESOURCE_FILE = bitmaps.rc
!include <zaf.mak>

Internal Make
Files

Most ZMake users will not need to understand the internal workings of tradi-
tional make files and their different syntaxes. Those who need such informa-
tion should consult the documentation for their specific make utility and study
the internal ZAF make files introduced in this section.

ZAF make files for PC platforms (Motif currently uses a different system) are
easy to understand and use, in part because Zinc has hidden much of the nor-
mal make file complexity in other make files typically unseen by the program-
mer. In the above example, “!include <zaf.mak>” triggers these other make
files to complete the build process.

The following information provides insight into the internal organization of
these “internal” make files. This information is considered “advanced” and is
not necessary for the full utilization of Zinc Application Framework.

ZMake Utility 751

As shipped, the ZMake build process actually interprets and executes four dif-
ferent make files. All internal make files are found in the “\include” directory
and should be individually studied by programmers interested in full control
over the build process.

The four make files, and the order in which they are referenced, follow:

Note: The “???” in the above filenames refers to a three letter abbreviation for
each compiler. For example, actual names include: optsbor.mak (for Borland),
optsmsc.mak (for Microsoft) and optswat.mak (for Watcom).

Make file Purpose

zmake.mak The user-supplied make file. (See the example above.)
This make file is the one initially invoked by ZMake.
This file must include the command "!include
<zaf.mak>" to trigger the remainder of the build pro-
cess.

zaf.mak The main ZAF make file. The primary purpose of this
file is to ensure that all necessary macros are defined
and available to subsequent steps in the build process.

opts???.mak These files specify compiler options unique to each
compiler. By placing the compiler options in this file,
Zinc ensures that the options used to build the library
match the options used to build applications. This is
where additional compiler options may be added, such
as pre-compiled headers. (Non-matching compile
options can cause difficult bugs.) Note: These files
have been created to allow non-ZMake users to access
them in their own compiler-specfic make files.

zaf???.mak These files specify build rules unique to each linker.

752 Zinc Application Framework 5

Appendices

Appendix A, Event Definitions 755

Event Definitions
ZAF 5 defines a set of portable messages that may be trapped and allow devel-
opers to take action in response to user and system events. Many of these
events are designed for programmer use, but some are intended for internal
library use only and these are documented as such. However, all messages are
fully documented to allow maximum flexibility.

Events are separated into six broad categories:

• Notification Events

• System Events
• Logical Events

• Raw Events
• Device Requests

• Application Events

Detailed descriptions of each category follow later in this chapter.

Subcategories exist within some of these broad categories as well. When
present, these subcategories generally separate portable events (intended for
use by ZAF programmers) from non-portable events (intended for internal
library use only).

To fully release the capabilities of Zinc Application Framework a developer
should be familiar with all these events. In particular, the following aspects of
each event are critical:

• Sendability refers to an event’s ability to be sent by the programmer to trigger an
action. Some events may be sent, others are expected to be generated only by the
Operating System or by ZAF internally.

• Portability refers to the identical behavior of the event on all Operating Systems.
Almost all ZAF events are fully portable, but some have been defined for the use
in specific operating systems as part of ZAF’s internal portable library implemen-
tation.

• Guarantee refers to the reliability of a particular event in an application context.
To maximize ease-of-use for developers, many events are guaranteed. That is,
they are generated internally by ZAF on Operating Systems that would not nor-
mally generate an event.

Notification
Events

Notification events are normally generated by the Operating System. They
notify the library that an OS internal operation has either been initiated or com-
pleted. Notification events are not requests to take action, and in general
should be used only to synchronize ZAF with the changing state of the OS.
However, some notification events indicate OS operations that may be can-

756 Zinc Application Framework 5

celed or reversed; In these cases, the library may intervene to reset the OS
state. (Notification events are only defined in response to an OS / ZAF state
discrepancy on a platform, and not for internal ZAF notifications.) For com-
parison purposes, the first notification event is equal to N_NOTIFY_FIRST
and the last is equal to N_NOTIFY_LAST.

• Notification events should not be sent by the user. For simplicity, ZAF assumes
these events to be generated only by the OS.

• Notification events are fully portable. They will be received at the same times, in
response to the same actions on all platforms.

• Notification events are guaranteed. Where an OS does not generate a notification
event on a particular platform, the library will emulate the behavior and generate
the event internally. (This is the only time that a notification event should be sent
by ZAF.)

Following is the set of notification events. Note: where shown, class names
refer to the indicated classes and all their subclasses.

N_CHANGE_PAGE Notifies ZafNotebook that the current notebook page has changed.

N_CLOSE Notifies ZafWindow that it is about to be closed. If ZafWindow returns 0, it
will be closed; otherwise it will not be closed. (Operation may not be cancella-
ble on Motif.)

N_CURRENT Notifies ZafWindowObject that it has received focus. event.windowObject
points to the object losing focus. Calls memberUserFunction(), if any.

N_EXIT Notifies ZafWindowManager that the application is about to exit. ZafWin-
dowManager responds by returning the result of exitFunction(), if any. If exit-
Function() returns 0, it will exit; otherwise it will not exit. (Operation may not
be cancellable on Motif.)

N_HSCROLL Notifies ZafWindowObject that its corresponding horizontal ZafScrollBar has
scrolled, if the scroll bar is SupportObject(). ZafWindowObject responds by
scrolling its data. If the scroll bar is not SupportObject(), then mem-
berUserFunction() is called.

N_MAXIMIZE Notifies ZafWindow that it has been maximized, and that its zafRegion reflects
the new size. ZafWindow responds by updating its internal information to cor-
respond with the operating system object.

N_MINIMIZE Notifies ZafWindow that it has been minimized. ZafWindow responds by
updating its internal information to correspond with the operating system
object.

N_MOUSE_ENTER Notifies ZafWindowObject that the mouse has entered its region. ZafWindow-
Manager::mouseObject already points to the object and event.position reflects

Appendix A, Event Definitions 757

the mouse position. Sends an initialization message to ZafHelpTips, if the
object has a help tip or a quick tip.

N_MOUSE_LEAVE Notifies ZafWindowObject that the mouse has left its region. Sends a deini-
tialization message to ZafHelpTips, if the object has a help tip or a quick tip.

N_MOVE Notifies ZafWindowObject that it has been moved, and that its zafRegion
reflects the new position. ZafWindowObject responds by updating its internal
information to correspond with the operating system object.

N_NON_CURRENT Notifies ZafWindowObject that it is about to lose focus. If ZafWindowObject
returns 0, it will lose focus; otherwise it will not lose focus. event.windowOb-
ject points to the object gaining focus. Calls memberUserFunction(), if any.
(Operation may not be cancellable on Motif.)

N_RESET_I18N Notifies ZafWindowObjects that depend on internationalization (such as Zaf-
Bignum, ZafDate, and ZafTime) that the internationalization values have been
reset, and such objects should redisplay their data according to the new values.

N_RESTORE Notifies ZafWindow that it has been restored from a maximized or minimized
state, and that its zafRegion reflects the new size. ZafWindow responds by
updating its internal information to correspond with the operating system
object.

N_SIZE Notifies ZafWindowObject that it has been sized, and that its zafRegion
reflects the new size. ZafWindowObject responds by updating its internal
information to correspond with the operating system object.

N_TIMER Notifies ZafWindowObject that a timer event has occurred.

N_VSCROLL Notifies ZafWindowObject that its corresponding vertical ZafScrollBar has
scrolled, if the scroll bar is SupportObject(). ZafWindowObject responds by
scrolling its data. If the scroll bar is not SupportObject(), then mem-
berUserFunction() is called.

System Events System events are normally generated internally by ZAF. They are requests
for action to be taken, and generally should not be ignored. For comparison
purposes, the first system event is equal to S_SYSTEM_FIRST and the last is
equal to S_SYSTEM_LAST.

• System events may be sent by the user. However, some system events are used
internally by ZAF and are not safe to be sent by the casual user. System events
that are specifically anticipated to be sent by users will be documented fully. All
others will be documented briefly for those trapping the events, or deriving custom
ZAF objects.

• System events are fully portable. They cause the same actions on all platforms.

758 Zinc Application Framework 5

• System events are guaranteed. ZAF will generate system events internally at the
same times, in the same orders on all platforms.

The following is the set of system events that are designed to be sent by the
user. Note: where shown, class names refer to those classes and all their sub-
classes.

S_ADD_OBJECT Causes ZafWindow to add event.windowObject as a child.

S_CLOSE Causes ZafWindowManager to close a window, and any temporary windows
above it. If event.windowObject is null, ZafWindowManager closes its top-
most non-temporary window; otherwise, it closes the window specified by
event.windowObject.

S_CLOSE_-
TEMPORARY

Causes ZafWindowManager to close its top-most window, if it is temporary.

S_CONTINUE User hook. For example, may cause a latent thread to continue processing.

S_COPY Causes ZafString or ZafText to copy its selected data to the clipboard.

S_COPY_DATA Causes ZafWindowObject to copy event.windowObject’s data values and
update visually.

S_CUT Causes ZafString or ZafText to cut its selected data to the clipboard.

S_DECREMENT Causes ZafSpinControl to decrement its field object by the value of ZafSpin-
Control::delta.

S_EXIT Causes ZafWindowManager to receive an N_EXIT event.

S_HELP Causes ZafWindowObject to display its help context by calling DisplayHelp().
Handled at the child-most level that has a help context.

S_HSCROLL Causes a horizontally scrollable object to scroll itself horizontally
event.scroll.delta units.

S_HSCROLL_CHECK Causes a horizontally scrollable object to ensure its current child is visible. If
it isn’t, it is scrolled horizontally into view.

S_HSCROLL_-
COMPUTE

Causes a horizontally scrollable object to compute its horizontal scrolling val-
ues, based on its current child and horizontal data. Its corresponding horizon-
tal scroll bar’s data is set accordingly.

S_HSCROLL_SET Causes a horizontal ZafScrollBar to replace its data with event.scroll and
update visually.

S_INCREMENT Causes ZafSpinControl to increment its field object by the value of ZafSpin-
Control::delta.

Appendix A, Event Definitions 759

S_MAXIMIZE Causes ZafWindowManager to maximize a window on the display. If
event.windowObject is non-null, ZafWindowManager passes the event to
event.windowObject; otherwise, it passes the event to its top-most window.

S_MDI_CASCADE_-
WINDOWS

Causes a parent ZafMDIWindow to cascade all its MDI child windows begin-
ning with the bottom-most window at the top-left corner and stepping each
window down and right.

S_MDI_CLOSE Causes a parent ZafMDIWindow to close the top-most MDI child window.

S_MDI_MAXIMIZE Causes a child ZafMDIWindow to maximize itself within its parent.

S_MDI_MINIMIZE Causes a child ZafMDIWindow to minimize itself within its parent.

S_MDI_MOVE_-
MODE

Causes keyboard moving mode to begin on the current MDI child window, if
supported by the native environment.

S_MDI_NEXT_-
WINDOW

Causes a parent ZafMDIWindow to bring the next MDI child window to the
top.

S_MDI_RESTORE Causes a maximized or minimized child ZafMDIWindow to restore itself
within its parent.

S_MDI_SIZE_MODE Causes keyboard sizing mode to begin on the current MDI child window, if
supported by the native environment.

S_MDI_TILE_-
WINDOWS

Causes a parent ZafMDIWindow to tile all its MDI child windows so that all
child windows are visible, taking up as much of the parent’s client space as
needed.

S_MINIMIZE Causes ZafWindowManager to minimize a window on the display. If
event.windowObject is non-null, ZafWindowManager passes the event to
event.windowObject; otherwise, it passes the event to its top-most window.

S_MOVE_MODE Causes keyboard moving mode to begin on the current window, if supported
by the native environment.

S_NEXT_WINDOW Causes ZafWindowManager to bring the next window to the top.

S_PASTE Causes ZafString or ZafText to paste the clipboard’s data to it at the current
cursor position, replacing any selected data.

S_REDISPLAY Causes ZafWindowObject to redraw itself. Higher-priority events (such as
mouse or keyboard events) may be processed first.

S_REDISPLAY_DATA Causes ZafWindowObject to immediately redraw only its data portions.

S_REDISPLAY_-
REGION

Causes ZafWindowObject to redraw the portion of itself requested in
event.region (specified as a region relative to the top left of the object).

760 Zinc Application Framework 5

Higher-priority events (such as mouse or keyboard events) may be processed
first.

S_RESTORE Causes ZafWindowManager to restore a maximized or minimized window on
the display. If event.windowObject is non-null, ZafWindowManager passes
the event to event.windowObject; otherwise, it passes the event to its top-most
window.

S_SET_DATA Causes ZafWindowObject to reset its data pointers to share event.windowOb-
ject’s data and update visually. The data manager updates its notification lists
to reflect the change.

S_SIZE Causes ZafWindowObject to set its zafRegion to event.region and update visu-
ally. May be used to size and/or move the object, since zafRegion is modified.

S_SIZE_MODE Causes keyboard sizing mode to begin on the current window, if supported by
the native environment.

S_SUBTRACT_-
OBJECT

Causes ZafWindow to subtract event.windowObject as a child.

S_VSCROLL Causes a vertically scrollable object to scroll itself vertically event.scroll.delta
units.

S_VSCROLL_CHECK Causes a vertically scrollable object to ensure its current child is visible. If it
isn’t, it is scrolled vertically into view.

S_VSCROLL_-
COMPUTE

Causes a vertically scrollable object to compute its vertical scrolling values,
based on its current child and vertical data. Its corresponding vertical scroll
bar’s data is set accordingly.

S_VSCROLL_SET Causes a vertical ZafScrollBar to replace its data with event.scroll and update
visually.

System Events
(Internal)

The following is the set of system events that may be trapped, but are generally
not sent by the user. These are generally “advanced” events used internally by
ZAF, but they may be exploited by expert ZAF programmers. Note: where
shown, class names refer to those classes and all their subclasses.

S_BEGIN_DRAG Causes windowManager::dragObject to point to the object being dragged.
Sent to the window object under the mouse when a drag operation is initiated,
usually by moving the mouse several pixels after a down-click. Dragging
begins only if windowManager::dragObject is set by this event.

S_COMPUTE_SIZE Causes ZafWindowObject to recompute its region. Normally sent to an object
when it is being created, or when its parent is being resized.

Appendix A, Event Definitions 761

S_CREATE Causes ZafWindowObject and its children to be created by processing the fol-
lowing events or functions in this order: SetVisible(false), S_INITIALIZE,
S_REGISTER_OBJECT, S_COMPUTE_SIZE, OSSize(), SetVisible(oldVisi-
ble). Normally sent to an object when it is added to its parent (or ZafWindow-
Manager), if the parent has already been created. The S_CREATE message
itself is not propogated to the object’s children, but the appropriate messages
are sent to the children for creation.

S_CURRENT Causes ZafWindowObject to complete the process of gaining focus by updat-
ing itself visually to indicate that it has focus, setting the focus member, and
synchronizing the ZAF object with the operating system.

S_DEINITIALIZE Causes ZafWindowObject to deinitialize itself and its children, by clearing
screenID, clearing windowManager::mouseObject if appropriate, and doing
anything else needed by the native environment. Normally sent to an object
when it is being destroyed.

S_DESTROY Causes ZafWindowObject to destroy itself and all its children, if any. Nor-
mally sent to an object when it is subtracted from its parent. Causes
S_DEINITIALIZE to be sent to itself and all its children, if any.

S_DRAG_COPY Received by ZafWindowObject being copy-dragged over.

S_DRAG_DEFAULT Received by ZafWindowObject being default-dragged over.

S_DRAG_LINK Received by ZafWindowObject being link-dragged over.

S_DRAG_MOVE Received by ZafWindowObject being move-dragged over.

S_DROP_COPY Received by ZafWindowObject that is copy-dropped on.

S_DROP_DEFAULT Received by ZafWindowObject that is default-dropped on.

S_DROP_LINK Received by ZafWindowObject that is link-dropped on. ZAF does not cur-
rently implement link-drop, but this message is provided as a hook for the user.

S_DROP_MOVE Received by ZafWindowObject that is move-dropped on.

S_END_DRAG Causes the object being dragged to clear windowManager::dragObject.

S_HLP_CLOSE Used internally by ZafHelpSystem to close the window when the Close button
is selected.

S_HLP_SELECT_-
TOPIC

Used internally by ZafHelpSystem to display event.windowObject’s help con-
text, sent when an item in the list is double-clicked.

S_HLP_SHOW_-
INDEX

Used internally by ZafHelpSystem to display the help context index when the
Show Index button is selected.

762 Zinc Application Framework 5

S_HLP_SHOW_-
TOPIC

Used internally by ZafHelpSystem to display the help context corresponding to
the name displayed in the string field when the Show Topic button is selected.

S_HLP_UPDATE_-
NAME

Used internally by ZafHelpSystem to set the string field corresponding to the
list item that is selected.

S_HOT_KEY Causes ZafWindowObject to perform an action appropriate to the hot key, if its
hotKeyChar is the same as event.key.value. When a hot key is typed, the cur-
rent window sends S_HOT_KEY to each of its children until a match is found,
or all the objects have been checked.

S_INITIALIZE Causes ZafWindowObject to initialize itself and its children, including con-
verting its zafRegion to be in native coordinates, initializing oldRegion, and
initializing its numberID and stringID to unique values (if they weren’t already
initialized). Normally sent to an object when it is being created.

S_NON_CURRENT Causes ZafWindowObject to complete the process of losing focus by updating
itself visually to indicate that it has lost focus, clearing the focus member, and
synchronizing the ZAF object with the operating system.

S_REDISPLAY_-
DEFAULT

Causes ZafButton to redisplay its border to indicate that it has gained or lost
default status.

S_REGISTER_-
OBJECT

Causes ZafWindowObject to register itself and its children with the operating
system, including calling RegisterObject(). Normally sent to an object when it
is being created.

S_SET_FOCUS Causes ZafWindowObject to gain focus. Normally put on the event manager’s
queue in NotifyFocus() if an object with invalid data should not lose focus.

S_VALID_CHECK Causes ZafWindowObject to check the validity of its data. The object returns
S_VALID, S_INVALID, or S_ERROR according to the validity of its data.
Normally sent to an object from NotifyFocus().

System Events
(Result Codes)

The following is the set of system event values that functions may return as
result codes. These system event values are not used in actual events, but may
be returned to indicate a status code or a user’s response. They are included
here since they are processed in much the same way as “normal” events. Note:
where shown, class names refer to those classes and all their subclasses.

S_DLG_ABORT Returned by ZafDialogWindow after it is closed by the Abort button.

S_DLG_CANCEL Returned by ZafDialogWindow after it is closed by the Cancel button.

S_DLG_IGNORE Returned by ZafDialogWindow after it is closed by the Ignore button.

S_DLG_NO Returned by ZafDialogWindow after it is closed by the No button.

Appendix A, Event Definitions 763

S_DLG_OK Returned by ZafDialogWindow after it is closed by the OK button.

S_DLG_RETRY Returned by ZafDialogWindow after it is closed by the Retry button.

S_DLG_YES Returned by ZafDialogWindow after it is closed by the Yes button.

S_ERROR Returned by ZafWindowObject and some functions to indicate error status.

S_INVALID Returned by ZafWindowObject in response to S_VALID_CHECK if its data is
invalid.

S_NO_OBJECT Returned by ZafWindowManager::Event(), indicating that there are no win-
dows open, and the application should exit.

S_UNKNOWN Returned from an Event() function when the event passed in was unknown to
the class, and thus not handled.

S_VALID Returned by ZafWindowObject in response to S_VALID_CHECK if its data is
valid.

Logical Events Logical events are portable mappings of OS events that represent raw end-user
input. These events include mouse and keyboard events, for example, but do
not include events triggered by ZAF objects or OS objects. (For example, a
button press or menu selection should not send a logical event.) For compari-
son purposes, the first logical event is equal to L_LOGICAL_FIRST and the
last is equal to L_LOGICAL_LAST.

• Logical events should not be sent by the user or ZAF. ZAF assumes these events
are portable mappings of raw OS input events, and therefore do not need to be
handled by ZAF library objects. (Typically, ZAF library objects will act on raw
OS input events to optimize performance). A portable subset of possible logical
mappings is documented below.

• Logical events may be portable. Logical events are normally returned by Logica-
lEvent() in response to raw OS events (or they may be natively available on some
platforms). A subset of possible logical mappings will be documented as portable.
By implication, a set of OS events that can be mapped to the documented logical
event set must pass through the ZAF objects on all platforms. Other logical events
are not portable and will be disclaimed by the documentation.

• Logical events are not guaranteed. However, the documented subset of OS Events
that map to logical events are guaranteed to be generated, and therefore the logical
mapping is guaranteed to be accessible. (In the future we may want to guarantee
full user extensibility of the event map table.)

The following is the set of portable logical event mappings designed to be
trapped by the user. Mappings on some systems are “soft” and may not corre-
spond exactly to the keystrokes listed. Note: where shown, class names refer

764 Zinc Application Framework 5

to those classes and all their subclasses, and “list object” means ZafHzList,
ZafVtList, or ZafTreeList.

L_BACKSPACE Mapped for ZafString or ZafText in response to a backspace event.

L_BEGIN_ESCAPE Mapped for ZafWindowObject in response to a right mouse button down-click
event.

L_BEGIN_SELECTMapped for ZafWindowObject in response to a left mouse
button down-click event.

L_BOL Mapped for ZafString or ZafText in response to a home event.

L_CANCEL Mapped for ZafWindowObject in response to an escape event.

L_CLOSE Mapped for ZafWindowManager when a keystroke (such as <ALT>-<F4>)
indicates that the top-most non-temporary window should be closed.

L_CLOSE_-
TEMPORARY

Mapped for ZafWindowManager when a keystroke (such as escape) indicates
that the top-most temporary window should be closed.

L_CONTINUE_-
ESCAPE

Mapped for the ZafWindowObject under the mouse when the mouse moves
while the right button is still depressed. In Motif, only mapped if ZafRegister-
Mouse() was called for the object with true in the rightMouse parameter.

L_CONTINUE_-
SELECT

Mapped for the ZafWindowObject under the mouse when the mouse moves
while the left button is still depressed. In Motif, only mapped if ZafRegister-
Mouse() was called for the window with true in the leftMouse parameter.

L_COPY Mapped for ZafString or ZafText when a keystroke indicates a copy event.

L_CUT Mapped for ZafString or ZafText when a keystroke indicates a cut event.

L_DELETE Mapped for ZafString or ZafText in response to a delete event.

L_DOUBLE_CLICK Mapped for ZafWindowObject when it is clicked on twice in a row quickly
with the left mouse button. The maximum time between the first up-click and
the second down-click is determined by the native environment, or ZafWin-
dowObject::doubleClickRate.

L_DOWN Mapped for ZafText or a list object in response to a down arrow event.

L_END_ESCAPE Mapped for the ZafWindowObject under the mouse when the right mouse but-
ton is released.

L_END_SELECT Mapped for the ZafWindowObject under the mouse when the left mouse but-
ton is released.

L_EXIT Mapped for ZafWindowManager when a keystroke indicates that the applica-
tion should exit.

Appendix A, Event Definitions 765

L_EOL Mapped for ZafString or ZafText in response to an end event.

L_FIRST Mapped for a list object in response to a home event.

L_HELP Mapped for ZafWindowObject in response to a help event.

L_LAST Mapped for a list object in response to an end event.

L_LEFT Mapped for ZafString, ZafText, or a list object in response to a left arrow
event.

L_MDI_NEXT_-
WINDOW

Mapped for a parent ZafMDIWindow when a keystroke indicates that the top-
most MDI child window should become bottom-most, and the next MDI child
window should become top-most.

L_MOUSE1_DOWN This is the same as L_BEGIN_SELECT.

L_MOUSE1_MOVE This is the same as L_CONTINUE_SELECT.

L_MOUSE1_UP This is the same as L_END_SELECT.

L_MOUSE2_DOWN This is the same as L_BEGIN_ESCAPE.

L_MOUSE2_MOVE This is the same as L_CONTINUE_ESCAPE.

L_MOUSE2_UP This is the same as L_END_ESCAPE.

L_NEXT Mapped for ZafWindow in response to a tab event. (Tabbing order of children
is defined by the environment).

L_PASTE Mapped for ZafString or ZafText when a keystroke indicates a paste event.

L_PGDN Mapped for ZafText, ZafScrolledWindow, or a list object in response to a page
down event.

L_PGUP Mapped for ZafText, ZafScrolledWindow, or a list object in response to a page
up event.

L_PREVIOUS Mapped for ZafWindow in response to a shift-tab event. (Tabbing order of
children is defined by the environment).

L_RIGHT Mapped for ZafString, ZafText, or a list object in response to a right arrow
event.

L_SELECT Mapped for a selectable object (e.g. ZafButton, ZafIcon, or any object in a list)
in response to an enter or return event.

L_UP Mapped for ZafText or a list object in response to an up arrow event.

766 Zinc Application Framework 5

L_VIEW Mapped for ZafWindowObject when the mouse moves over it. In Motif, only
mapped if ZafRegisterMouse() was called for the object with true in the view
parameter.

Logical Events
(Non-portable)

The following is the set of non-portable logical events that are platform-spe-
cific and unsafe for portable ZAF applications. These logical events are
required by ZAF internally for some native environments’ non-portable needs.
Programmers may trap these events on the platforms indicated, but will not
have access to them on others. Note: where shown, class names refer to those
classes and all their subclasses, and “list object” means ZafHzList, ZafVtList,
or ZafTreeList.

L_ALT_KEY Causes focus to switch to or from the pull-down menu when <ALT> is pressed
and released (DOS).

L_DELETE_EOL Mapped for ZafString or ZafText when a keystroke indicates to delete the data
from the beginning of the selected range to the end of the current line (DOS).

L_DELETE_WORD Mapped for ZafString or ZafText when a keystroke indicates to delete the word
that the cursor is positioned on (DOS).

L_EXTEND_FIRST Mapped for an ExtendedSelection list object when a keystroke indicates to
extend the selection through the first child (Motif).

L_EXTEND_LAST Mapped for an ExtendedSelection list object when a keystroke indicates to
extend the selection through the last child (Motif).

L_EXTEND_NEXT Mapped for an ExtendedSelection list object when a keystroke indicates to
extend the selection through the next unselected child (Motif).

L_EXTEND_-
PREVIOUS

Mapped for an ExtendedSelection list object when a keystroke indicates to
extend the selection through the previous unselected child (Motif).

L_INSERT_TOGGLE Mapped for ZafString or ZafText when the insert key is typed (DOS).

L_MARK_BOL Mapped for ZafString or ZafText when a keystroke indicates to extend the
selection to the beginning of the current line (DOS).

L_MARK_DOWN Mapped for ZafText when a keystroke indicates to extend the selection one line
down (DOS).

L_MARK_EOL Mapped for ZafString or ZafText when a keystroke indicates to extend the
selection to the end of the current line (DOS).

L_MARK_LEFT Mapped for ZafString or ZafText when a keystroke indicates to extend the
selection one character to the left (DOS).

Appendix A, Event Definitions 767

L_MARK_PGDN Mapped for ZafText when a keystroke indicates to extend the selection one
page down (DOS).

L_MARK_PGUP Mapped for ZafText when a keystroke indicates to extend the selection one
page up (DOS).

L_MARK_RIGHT Mapped for ZafString or ZafText when a keystroke indicates to extend the
selection one character to the right (DOS).

L_MARK_UP Mapped for ZafText when a keystroke indicates to extend the selection one line
up (DOS).

L_MARK_WORD_-
LEFT

Mapped for ZafString or ZafText when a keystroke indicates to extend the
selection one word to the left (DOS).

L_MARK_WORD_-
RIGHT

Mapped for ZafString or ZafText when a keystroke indicates to extend the
selection one word to the right (DOS).

L_MAXIMIZE Mapped for ZafWindow when a keystroke indicates to maximize itself on the
display (DOS).

L_MDI_MOVE_MODE Mapped for ZafMDIWindow to cause keyboard moving mode to begin on the
current MDI child window (DOS).

L_MDI_SIZE_MODE Mapped for ZafMDIWindow to cause keyboard sizing mode to begin on the
current MDI child window (DOS).

L_MINIMIZE Mapped for ZafWindow when a keystroke indicates to minimize itself on the
display (DOS).

L_MOVE_MODE Mapped for ZafWindow to cause keyboard moving mode to begin on the cur-
rent window (DOS).

L_NEXT_WINDOW Mapped for ZafWindowManager when a keystroke indicates to make the next
window top-most (Motif, DOS).

L_NONE Not an event mapping. Used to denote the last entry of an event map table.

L_RESTORE Mapped for a maximized ZafWindow when a keystroke indicates to restore
itself on the display (DOS).

L_SIZE_MODE Mapped for ZafWindow to cause keyboard sizing mode to begin on the current
window (DOS).

L_SYSTEM_MENU Mapped for ZafWindow when a keystroke (such as <ALT>-<space>) indicates
to open the system menu (DOS).

L_TOGGLE_-
EXPANDED

Mapped for ZafTreeList when a keystroke indicates to expand or close the cur-
rent tree item (Motif).

768 Zinc Application Framework 5

L_WORD_LEFT Mapped for ZafString or ZafText when a keystroke indicates to move the cur-
sor one word to the left (Motif, DOS, Macintosh).

L_WORD_RIGHT Mapped for ZafString or ZafText when a keystroke indicates to move the cur-
sor one word to the right (Motif, DOS, Macintosh).

Raw Events Raw events are OS specific raw input events including mouse and keyboard.

• Raw events should not be sent by the user or ZAF. These events are always placed
on the event queue by a ZAF device. Because these events vary widely between
systems, they will not be documented, except in the abstract.

• Raw events are not portable. However, these events can often be mapped to porta-
ble, logical events, and/or have their data made portable by calling LogicalEvent().
Data in mouse and keyboard events will be converted by LogicalEvent() to object
specific position, and portable character format, respectively. Despite documented
nonportability, the raw event structure itself is consistent across platforms.
event.type should always be E_OSEVENT, and event.InputType() should return
E_KEY, E_MOUSE, etc.

• Raw events are not guaranteed. These events are generally handled by the OS and
are not guaranteed to be received, with the exception of those raw events required
to yield documented portable logical event mappings.

The following is the set of raw event types that may be trapped by the user,
based on the return value of event.InputType().

E_KEY Indicates the ZafKeyboard device.

E_MOUSE Indicates the ZafMouse device.

E_OSEVENT Indicates a system event on any native environment, and is assigned to
event.type. event.InputType() may return E_KEY or E_MOUSE, as appropri-
ate. The value of this constant is also used for E_MACINTOSH, E_MOTIF,
E_MSWINDOWS, E_OS2, and E_XT.

Raw Events
(Event Types)

The following is the set of raw event types that are designed to pass to ZafE-
ventManager in specifying a device object, such as when calling the DeviceS-
tate() method. For comparison purposes, the first raw device event is equal to
E_DEVICE_FIRST and the last is equal to E_DEVICE_LAST.

E_CURSOR Indicates the ZafCursor device.

E_DEVICE Indicates all devices.

E_HELPTIPS Indicates the ZafHelpTips device.

Appendix A, Event Definitions 769

E_TIMER Indicates the ZafTimer device.

Device
Requests

Device messages are messages sent to ZAF devices to request an action. They
are similar in function to system events, but are sent only to devices. D_ mes-
sages apply to all devices. D?_ messages apply only to the device whose first
character matches the ?. For comparison purposes, the first device event is
equal to D_DEVICE_FIRST and the last is equal to D_DEVICE_LAST.

• Device messages can be sent by the user. Portable device request messages will
be documented.

• Device messages may be portable. However, due to OS differences, all device
messages are not implemented on all platforms. Portable messages will be fully
documented; others briefly.

• Device messages are not guaranteed. However, when possible ZAF UI objects
attempt to use these messages to achieve desired results, rather than working
around them with the native OS.

The following is the set of portable device request events designed to be sent
by the user. Note: where shown, class names refer to those classes and all their
Device Requests:subclasses.

D_STATE Causes a device to return its state.

DH_SET_HELP_-
OBJECT

Causes ZafHelpTips::helpObject to be set to event.windowObject.

DH_UPDATE_-
HELP_OBJECT

Causes ZafHelpTips::helpObject to update with the help tip of event.win-
dowObject, if event.windowObject is not nil.

DM_BOTTOM_-
LEFT_CORNER

Causes ZafMouse to show the bottom-left corner image.

DM_BOTTOM_-
RIGHT_CORNER

Causes ZafMouse to show the bottom-right corner image.

DM_BOTTOM_SIDE Causes ZafMouse to show the bottom side image.

DM_CANCEL Causes ZafMouse to show the cancel image.

DM_CROSS_HAIRS Causes ZafMouse to show the cross-hairs image.

DM_EDIT Causes ZafMouse to show the I-bar image.

DM_LEFT_SIDE Causes ZafMouse to show the left side image.

DM_MOVE Causes ZafMouse to show the move image.

DM_RIGHT_SIDE Causes ZafMouse to show the right side image.

770 Zinc Application Framework 5

DM_SELECT Causes ZafMouse to show the selection image.

DM_TOP_LEFT_-
CORNER

Causes ZafMouse to show the top-left corner image.

DM_TOP_RIGHT_-
CORNER

Causes ZafMouse to show the top-right corner image.

DM_TOP_SIDE Causes ZafMouse to show the top side image.

DM_VIEW Causes ZafMouse to show the default pointer image.

DM_WAIT Causes ZafMouse to show the wait image.

Device
Requests
(Non-portable)

The following is the set of non-portable device request events that are plat-
form-specific and unsafe for portable ZAF applications. These device events
are used internally for some native environments’ non-portable needs. Note:
where shown, class names refer to those classes and all their subclasses.

D_ACTIVATE Causes a device to be activated (DOS, Macintosh).

D_DEACTIVATE Causes a device to be deactivated (DOS, Macintosh).

D_DEINITIALIZE Causes a device to deinitialize (MSWindows, Motif, DOS, OS/2, Macintosh).

D_HIDE Causes ZafMouse to be hidden (MSWindows, DOS, OS/2, Macintosh).

D_INITIALIZE Causes a device to initialize (MSWindows, Motif, DOS, OS/2, Macintosh).

D_OFF Causes a device to stop putting events on the event queue (DOS).

D_ON Causes a device to put events on the event queue as normal (DOS).

D_POSITION Causes a device to change its position to event.position (DOS).

DC_INSERT Causes ZafCursor to show the insert image (DOS).

DC_OVERSTRIKE Causes ZafCursor to show the overstrike image (DOS).

DH_HELP_TIPS_-
TIMER

Notifies ZafHelpTips that its timer has expired, meaning that it should display
the help tip associated with the object that the mouse is over (Motif, Macin-
tosh).

DM_DRAG Causes ZafMouse to show the drag image (MSWindows, Motif, DOS, OS/2,
Macintosh).

DM_DRAG_COPY Causes ZafMouse to show the copy-drag image (MSWindows, Motif, DOS,
OS/2, Macintosh).

Appendix A, Event Definitions 771

DM_DRAG_COPY_-
MULTIPLE

Causes ZafMouse to show the multiple-item-copy-drag image (MSWindows,
Motif, DOS, OS/2, Macintosh).

DM_DRAG_LINK Causes ZafMouse to show the link-drag image (MSWindows, Motif, DOS,
OS/2, Macintosh).

DM_DRAG_LINK_-
MULTIPLE

Causes ZafMouse to show the multiple-item-link-drag image (MSWindows,
Motif, DOS, OS/2, Macintosh).

DM_DRAG_MOVE Causes ZafMouse to show the move-drag image (MSWindows, Motif, DOS,
OS/2, Macintosh).

DM_DRAG_MOVE_-
MULTIPLE

Causes ZafMouse to show the multiple-item-move-drag image (MSWindows,
Motif, DOS, OS/2, Macintosh).

DM_HORIZONTAL_-
SPLIT

Causes ZafMouse to show the horizontal split image (MSWindows, Motif,
DOS, OS/2, Macintosh).

DM_VERTICAL_-
SPLIT

Causes ZafMouse to show the vertical split image (MSWindows, Motif, DOS,
OS/2, Macintosh).

Application
Events

Application events are system wide events intended to be received and handled
only by the ZAF Window Manager. As such, these events are usually used to
implement macro level functionality such as loading a window, changing
application language, etc. Among other possible functionality, application
events allow Zinc Designer’s test mode to invoke more sophisticated applica-
tion flows. For comparison purposes, the first application event is equal to
A_APPLICATION_FIRST and the last is equal to A_APPLICATION_LAST.

• Application events can be sent by the user. In fact, this is the source of most appli-
cation events. All application events are fully documented.

• Application events are fully portable. In addition, the code required to implement
an application event should, in most cases be portable ZAF code.

• Application events are not guaranteed. Because they are sent by the user, ZAF
objects do not expect to receive these events at any specific time.

The following is the set of application events that may be sent by the user.
Note: where shown, class names refer to those classes and all their subclasses.

A_CLOSE_WINDOW Causes the application to close any window whose stringID matches
event.text. (The object handling the event deletes event.text. If the window is
Destroyable(), the object handling the event also deletes the window.)

A_HELP_CONTEXT Causes ZafHelpManager to display the help context specified by event.text.
(The object handling the event deletes event.text.)

772 Zinc Application Framework 5

A_MINIMIZE_-
WINDOWS

Causes ZafWindowManager to minimize all the windows on the display.

A_OPEN_-
DOCUMENT

User hook for opening the document whose file name is in event.text. If
event.text is nil, the application is starting up, and a new “untitled” document
should be opened. Some operating systems may send this event. (The object
handling the event deletes event.text.)

A_OPEN_WINDOW Causes the application to open the persistent window whose storage pathname
is in event.text, or if it’s already on the screen, the window receives focus.
(The object handling the event deletes event.text.)

A_PRINT_-
DOCUMENT

User hook for printing the document whose file name is in event.text. Some
operating systems may send this event. (The object handling the event deletes
event.text.)

A_RESET_I18N Causes the application to change its language and locale bases specified in
event.text. (The object handling the event deletes event.text.)

A_RESTORE_-
WINDOWS

Causes ZafWindowManager to restore all the minimized windows on the dis-
play.

Appendix B, Property Matrices 773

Property Matrices
Zinc Application Framework 5 supports a very large number of individual
“properties” or attributes that may be manipulated to change object appearance
and behavior. These properties are actually data members of each class that are
manipulated using accessor methods. Knowledge of these properties, their
definitions and interrelationships is vital to full usage of ZAF. This Appendix
provides a set of tables that may be used as a convenient reference to “object
properties.” In each table a matrix is presented. Each “cell” in the matrix indi-
cates how a specific derived object (listed in the top row of the matrix) sup-
ports a single property inherited from its base class (listed in the left column of
the matrix). Many possible types and degrees of support are possible.

Most properties are supported in one of several predictable ways. The follow-
ing chart legend shows the symbols found on the property matrices and their
corresponding meanings.

In addition to properties and objects, the property matrices show two other
pieces of information: support for “Dynamic” property manipulation, and con-
tructor property initialization.

“Dynamic” property manipulation refers to a programmer’s ability to change
the state of a property at any time. Some properties may be changed without
regard for an object’s current state while others may only be changed when not

Symbol For this derived class, the property is ...

“ ” (blank) undefined

 • supported normally (may be inherited functionality)

Ø initialized to zero

A forced to “ZAF_AVAILABLE_REGION”

B see base class for definition

C initialized to “ZAF_CELL”

D supported by DOS only (normally under end user control in
other operating environments)

F forced to “false”

I forced to “ZAF_INSIDE_REGION”

M forced to “ZAF_MULTIPLE_SELECTION”

N forced to “NULL”

O forced to “ZAF_OUTSIDE_REGION”

S forced to “ZAF_SINGLE_SELECTION”

T forced to “true”

774 Zinc Application Framework 5

being “managed” or displayed. Dynamic properties may be changed at any
time and are indicated by the supported symbol (“•”) in the “Dynamic” col-
umn.

All ZAF user interface objects have at least three very different constructors.
For ease of discussion, these are known as the “Normal” constructor, the
“Copy” constructor, and the “Persistent” constructor. The Normal constructor
is the one used in straight code—screen coordinates are specified and some
properties while the remaining properties are defaulted. The Copy constructor
duplicates an existing object—including all of its property states—and returns
a pointer to the copy. The Persistent constructor loads an object from a ZAF
binary data file and initializes many of its properties based on the contents of
the file.

Each of these constructors is shown along with the value of each property as it
is initialized by the constructor. “•” in these columns indicates that the prop-
erty is being copied or read from elsewhere rather than being set to a known
default value.

Base Classes All ZAF user interface objects are ultimately derived from ZafWindow and/or
ZafWindowObject. These two base classes therefore encapsulate the majority
of the properties that may be manipulated using ZAF. The first two tables pre-
sented in this appendix detail these most important classes and will be the ones
most commonly consulted.

The first table lists ZafWindowObject properties and indicates how each of its
derived classes supports its many properties. The second table lists ZafWin-
dow properties (including those inherited from ZafWindowObject) and indi-
cates how classes derived from ZafWindow support these properties.

Many exceptional cases exist. These are detailed in the footnotes following the
ZafWindow matrix.

Derived
Classes

ZAF user interface subclasses contain far fewer properties since they inherit
most of the functionality they need from their base classes. Unique properties
are listed in separate “mini-matrices” for each object along with properties
inherited from base classes other than ZafWindow and ZafWindowObject
(since these properties are already covered in the base class matrices). Prop-
erty inheritance, supported value, “Dynamic” property information, and
default constructor initializations are shown.

A “B” in a matrix indicates that the base class matrix should be consulted. A
“•” indicates that the class supports the property, although the property may be
restricted by base class definition.

Derived class or “subclass” matrices follow the base class matrices. No foot-
notes are supplied or necessary for the derived classes.

Appendix B, Property Matrices 775

Base Property Matrix—ZafWindowObject Classes

Legend to footnotes follows the ZafWindow matrix.

ZafWindowObject
Property1

Con-
structors Derived ZafWindowObject

D
yn

am
ic

2

N
or

m
a

l

C
op

y

P
er

si
st

en
t

P
ro

m
pt

S
tr

in
g

F
m

tS
tr

in
g

B
ig

nu
m

D
at

e

In
te

ge
r

R
ea

l

T
im

e

U
T

im
e

B
ut

to
n

Ic
on

B
itm

a
p

Im
ag

e

P
rg

re
ss

B
ar

S
pl

itt
er

P
ul

lD
nI

te
m

P
op

U
pI

te
m

B
or

de
r

T
itl

eB
ar

S
ys

B
ut

to
n

M
a

xB
ut

to
n

M
in

B
ut

to
n

AcceptDrop • F • • F • • • • • • • • • • F F F F F F F F F F F

AutomaticUpdate4 • T T T •

BackgroundColor • •5 •5 • • • • • • • • • • • • • • • D D D D D D D

Bordered F • • • • • • • • • • • • • • • • • F F F F F F F

Changed • F • F F • • • • • • • • • F •

CoordinateType C •

CopyDraggable • F • • F • • • • • • • • • • F F F F F F F F F F F

Disabled • F • • • • • • • • • • • • • • • • • • • F F F F F

EditMode F • F •

Error • N • N •

Focus • F F F F • • • • • • • • • • F F F F • • F F • F F

Font • •5 •5 • • • • • • • • • • • N N • N D D N D

HelpContext • N • • N • • • • • • • • • • N N N N • • N N N N N

HelpObjectTip • N • • • • • • • • • • • • • • N • • • • N N N N N

LinkDraggable • F • • F • • • • • • • • • • F F F F F F F F F F F

MoveDraggable • F • • F • • • • • • • • • • F F F F F F F F F F F

Noncurrent • F • • T • • • • • • • • • • T T T T • • T T F T T

OSDraw T • • • • • • • • • • • • • F • • F • • • • • • •

Parent N N N •

ParentDrawBorder7 F • • • • • • • • • • • • • • • F F F F F F F F F

ParentDrawFocus8 F • • • • • • • • • • • • • • • F F F F F F F F F

ParentPalette F • • • • • • • • • • • • • • • F • F F F F F F F

QuickTip • N • • • • • • • • • • • • • • • • • • • N N N N N

Region • Ø •

RegionType I • • I • • • • • • • • • I • • • • I I O A A A A

Selected • F • • F • • • • • • • • • • • • F F F • F F F F F

SupportObject F • • • F F F T T T T T

SystemObject T • T

Text9 • • • • • • • • • • • • • • • • •

TextColor • •5 •5 • • • • • • • • • • • N N • N D D N D

UserFunction • N • • N • • • • • • • • • • N N N • • N N N N N

UserPaletteData • N •5 •5 • • • • • • • • • • • • • • • D D D D D D D

Visible • T •

776 Zinc Application Framework 5

Base Property Matrix—ZafWindow Classes

ZafWindowObject
or ZafWindow
Property1

Con-
structor Derived ZafWindow

D
yn

am
ic

2

N
o

rm
al

C
o

py

P
er

si
st

e
nt

W
in

do
w

D
ia

lo
gW

in
do

w

M
es

sa
ge

W
in

S
cr

ol
le

d
W

in

M
D

I P
ar

en
t W

in

M
D

I C
hi

ld
 W

in

H
zL

is
t

V
tL

is
t

T
re

eL
is

t

T
re

eI
te

m

Ta
bl

e

Ta
bl

eH
ea

d
er

Ta
bl

eR
ec

or
d

N
o

te
bo

ok

To
ol

B
ar

S
ta

tu
sB

ar

G
ro

up

Te
xt

C
o

m
bo

B
ox

S
pi

n
C

on
tr

ol

S
cr

ol
lB

ar

P
ul

lD
ow

nM
en

u

P
op

U
pM

en
u

W
in

do
w

M
gr

AcceptDrop • F • • • F F • F • • • •3 F3 F F F F F F F • • F F F F F
AutomaticUpdate4 • T T T • • T • T
BackgroundColor • •5 •5 • D D D D
Bordered F • • • F F • F F • • • F • F F • • • • • T • F T T F
Changed • F • F • • • • • • • • • • • • •
CoordinateType C •
CopyDraggable • F • • F • • • • •
Disabled • F • • •6 F F •6 F F • • • • • • F • • • • • • • • F F
EditMode F • F •
Error • N • N •
Focus • F F F • • • • • • • • • • F • • • F • • • • • • •
Font • •5 •5 • D D D
HelpContext • N • • • • • • • • • • • • • N • • • • • • • • • • •
HelpObjectTip • N • • • • N •
LinkDraggable • F • • F • • • • •
MoveDraggable • F • • F • • • • •
Noncurrent • F • • •6 F F •6 F F • • • • • T F • • T • • • • • F F
OSDraw T • T
Parent N N N •6 N N •6 N • • • • • • • • • • • • • • • • • • N
ParentDrawBorder7 F • • F • F
ParentDrawFocus8 F • • F • T F
ParentPalette F • • •6 F •6 • • • • • • • • • • • • • • F F F F
QuickTip • N •
Region • Ø •
RegionType I • • • I I • I I • • • I • A I • A A • • • • • A I A
Selected • F • • F •
SupportObject F • • T F • T • T
SystemObject T • T
Text9 • •6 •6 •6 •6 • • • • • • •
TextColor • •5 •5 • D D D
UserFunction • N • • • N • N • •
UserPaletteData • N •5 •5 • D D D D
Visible • T •
DefaultButton • N N N • • • • •
Destroyable • T • • • • F • • • F F F F F F F F F F F F F F F F •
Locked F • • • • F • • • F F F F F F F F F F F F F F F F F
Maximized • F • • • • F • • • F F F F F F F F F F F F F F F F F
Minimized • F • • • • F • • • F F F F F F F F F F F F F F F F F
Modal F • • • • • • • • F F F F F F F F F F F F F F F F F
Moveable T • • • • T • • • F F F F F F F F F F F F F F F F F
NormalHotKeys • F • • • • • • • • F F F F F F F • F F • F F F F T T F
Owner10 N N N • • • • • N N N N N N N N N N N N N N N N N N
SelectionType S • • • • S • S • • • •3 •3 • • • S • S • S S S S S • S
Sizeable T • • • F F • • • F F F F F F F F F F F F F F F F F
Temporary F • • • F F • F F F F11 F F F F F F F F F F F F F F T F

Appendix B, Property Matrices 777

1. “Property” refers to accessor functions inside ZafWindowObject and ZafWindow that
manipulate private data members. Each accessor has both a “Get” and a “Set” variant.
For example, “SetAcceptDrop(true)” sets a property, while “if (AcceptDrop())” checks
the status of the property.

2. “Dynamic” indicates the property may be changed dynamically, i.e. after the object has
been initialized and has a screenID. If the property cannot be changed dynamically then
“SetProperty” functions must be called prior to adding the object to a managed parent or
to the ZafWindowManager. Alternatively, the object may be subtracted, properties
changed, and then re-added to its parent.

3. Property is set on ZafTreeList only, and affects the entire tree including all ZafTreeItems.

4. “AutomaticUpdate” is defined only for palette manipulation functions (BackgroundCol-
or, TextColor, Font, UserPaletteData) plus Add and Subtract. When “AutomaticUp-
date()==false” the display is not refreshed when these functions are called. This allows
the programmer to fully manipulate the palette, or add or subtract many items on a parent
without slow and distracting screen updates. “SetAutomaticUpdate(true)” restores the
normal display behavior and immediately redisplays the changes made while Automatic-
Update was false.

Note: AutomaticUpdate is not defined for other contexts and is therefore not portable
outside of palette functions, Add and Subtract. It may result in unpredictable and/or non-
portable behavior under other conditions and should therefore never be left in the “false”
state. In general, “SetAutomaticUpdate(false)” and “SetAutomaticUpdate(true)” should
immediately precede and follow the functions it is intended to affect.

5. This accessor function manipulates the UserPaletteData member which is an instance of
ZafPaletteData—a separate class. Initialization, duplication and persistence are handled
by ZafPaletteData rather than the user interface class.

6. Property is valid in some contexts for this class, but not others. For example, “SetDis-
abled(true)” is valid for proper child window only (i.e. windows without decorations).

7. By default, this property applies only to children of a ZafStatusBar. However, it may be
exploited for other purposes.

8. By default, this property applies only to children of ZafHzList, ZafVtList, ZafTreeList,
and ZafTreeItem. However, it may be exploited for other purposes.

9. Proper child windows cannot have decorations (e.g. TitleBar, Border, etc.) therefore,
Text is undefined is this case. MDI child windows do have decorations.

10. This property applies only to top-level windows, meaning that the window may not have
a parent. This property may not be supported in some environments.

778 Zinc Application Framework 5

11. Instances of this class are forced to “SetTemporary(true)” by ZafComboBox when they
are the ZafComboBox::list member.

Appendix B, Property Matrices 779

Property Matrices—Derived Classes

Bignum

Bitmap

Border

Button

ZafBignum
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowInvalid String • B B B B

AutoClear String • B B B B

BignumData • • • N • •

HzJustify String • B B B B

InputFormatData String • B B B B

Invalid String • B B B B

LowerCase String F B B B

OutputFormatData String • B B B B

Password String F B B B

RangeData String • B B B B

ReportInvalid String • B B B B

StringData String INVALID B B B

Unanswered String • B B B B

UpperCase String F B B B

VariableName String F B B B

ViewOnly String • B B B B

ZafBitmap
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AutoSize • • T • •

BitmapData • • • N • •

ZafBorder
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

Width (static member) • varies

ZafButton
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowDefault • • F • •

AllowToggling • • F • •

AutoRepeatSelection • • F • •

AutoSize • • T • •

BitmapData • • • N • •

ButtonType • • NATIVE • •

Depressed • internal F F F

Depth • • 2 • •

HotKeyChar • • Ø • •

HotKeyIndex • • -1 • •

780 Zinc Application Framework 5

ComboBox

Date

Formatted
String

HzJustify • • CENTER • •

SelectOnDoubleClick • • F • •

SelectOnDownClick • • F • •

SendMessageText • • • N • •

SendMessageWhenSelected • • F • •

StringData • • • N • •

Value • • • Ø • •

VtJustify • • CENTER • •

ZafButton
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

ZafComboBox
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AutoSortData • • • list list list

ViewOnly • • F • •

ZafDate
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AutoClear String • B B B B

DateData • • • N • •

HzJustify String • B B B B

InputFormatData String • B B B B

Invalid String • B B B B

LowerCase String F B B B

OutputFormatData String • B B B B

Password String F B B B

RangeData String • B B B B

ReportInvalid String • B B B B

StringData String INVALID B B B

Unanswered String • B B B B

UpperCase String F B B B

VariableName String F B B B

ViewOnly String • B B B B

ZafFormattedString
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowInvalid String • B B B B

AutoClear String • B B B B

CompressedData • • N • •

DeleteData • • N • •

ExpandedData • • StringData StringData StringData

FormatData • • InputFor-
matData

InputFor-
matData

InputFor-
matData

Appendix B, Property Matrices 781

Group

HzList

Icon

HzJustify String • B B B B

InputFormatData String INVALID B B B

Invalid String • B B B B

LowerCase String F B B B

OutputFormatData String INVALID B B B

Password String F B B B

RangeData String INVALID B B B

ReportInvalid String • B B B B

StringData String INVALID B B B

Unanswered String • • B B B

UpperCase String F B B B

VariableName String F B B B

ViewOnly String • B B B B

ZafFormattedString
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

ZafGroup
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AutoSelect • • F • •

HotKeyChar • • Ø • •

HotKeyIndex • • -1 • •

StringData • • • N • •

ZafHzList
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AutoSortData • • • F • •

CellHeight • • parameter • •

CellWidth • • parameter • •

ZafIcon
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowDefault Button F B B B

AllowToggling Button F B B B

AutoRepeatSelection Button F F F F

AutoSize Button • B B B B

BitmapData Button N B B B

ButtonType Button FLAT FLAT B B

Depressed Button • B B B B

Depth Button varies B B B

HotKeyChar Button Ø B B B

HotKeyIndex Button -1 B B B

HzJustify Button • B B B B

IconData • • • N • •

IconType • • NATIVE • •

782 Zinc Application Framework 5

Image

Integer

Maximize
Button

SelectOnDoubleClick Button • B T B B

SelectOnDownClick Button • B B B B

SendMessageText Button • B B B B

SendMessageWhenSelected Button • B B B B

StringData Button • B B B B

Value Button • B B B B

VtJustify Button • B B B B

ZafIcon
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

ZafImage
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AutoSize • • F • •

PathID • • • -1 • •

PathName • • • N • •

Scaled • • F • •

Tiled • • F • •

Wallpaper • • F • •

ZafInteger
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowInvalid String • B B B B

AutoClear String • B B B B

HzJustify String • B B B B

InputFormatData String • B B B B

IntegerData • • • N • •

Invalid String • B B B B

LowerCase String F B B B

OutputFormatData String • B B B B

Password String F B B B

RangeData String • B B B B

ReportInvalid String • B B B B

StringData String INVALID B B B

Unanswered String • B B B B

UpperCase String F B B B

VariableName String F B B B

ViewOnly String • B B B B

ZafMaximizeButton
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowDefault Button F B B B

AllowToggling Button F B B B

AutoRepeatSelection Button F B B B

Appendix B, Property Matrices 783

MDIWindow

Minimize
Button

AutoSize Button T B B B

BitmapData Button internal B B B

ButtonType Button 3D 3D B B

Depressed Button internal B B B

Depth Button 1 1 B B

HotKeyChar Button Ø B B B

HotKeyIndex Button -1 B B B

HzJustify Button CENTER B B B

SelectOnDoubleClick Button F B B B

SelectOnDownClick Button F B B B

SendMessageText Button N B B B

SendMessageWhenSelected Button T T B B

StringData Button internal B B B

Value Button internal S_MAX-
IMIZE B B

VtJustify Button CENTER B B B

ZafMaximizeButton
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

ZafMDIWindow
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

MDIType • • parameter • •

ZafMinimizeButton
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowDefault Button F B B B

AllowToggling Button F B B B

AutoRepeatSelection Button F B B B

AutoSize Button T B B B

BitmapData Button internal B B B

ButtonType Button 3D 3D B B

Depressed Button internal B B B

Depth Button 1 1 B B

HotKeyChar Button Ø B B B

HotKeyIndex Button -1 B B B

HzJustify Button CENTER B B B

SelectOnDoubleClick Button F B B B

SelectOnDownClick Button F B B B

SendMessageText Button N B B B

SendMessageWhenSelected Button T T B B

StringData Button internal B B B

Value Button internal S_MIN-
IMIZE B B

VtJustify Button CENTER B B B

784 Zinc Application Framework 5

Notebook

PopUpItem

ProgressBar

Prompt

ZafNotebook
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

CurrentPage • • • -1 • -1

TabHeight • • Ø • •

TabText • • •

TabWidth • • Ø • •

ZafPopUpItem
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowDefault Button F B B B

AllowToggling Button • B B B

AutoRepeatSelection Button F F F F

AutoSize Button F B B B

BitmapData Button N B B B

ButtonType Button FLAT FLAT B B

Depressed Button internal B B B

Depth Button Ø Ø B B

HotKeyChar Button • B B B B

HotKeyIndex Button • B B B B

HzJustify Button LEFT LEFT B B

ItemType • • B • •

SelectOnDoubleClick Button F B B B

SelectOnDownClick Button F B B B

SendMessageText Button • B B B B

SendMessageWhenSelected Button • B B B B

StringData Button • B B B B

Value Button • B B B B

VtJustify Button CENTER B B B

ZafProgressBar
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

ProgressData • • • N • •

ProgressStyle • • NATIVE • •

ProgressType • • HORIZON-
TAL • •

TextStyle • • TEXT_-
VALUE

• •

ZafPrompt
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AutoSize • • T • •

HotKeyChar • • Ø • •

HotKeyIndex • • -1 • •

Appendix B, Property Matrices 785

PullDownItem

Real

HzJustify • • LEFT • •

StringData • • • N • •

TransparentBackground • • F •

VtJustify • • TOP • •

ZafPrompt
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

ZafPullDownItem
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowDefault Button F B B B

AllowToggling Button F B B B

AutoRepeatSelection Button F F F F

AutoSize Button F B B B

BitmapData Button N B B B

ButtonType Button FLAT FLAT B B

Depressed Button internal B B B

Depth Button Ø Ø B B

HotKeyChar Button • B B B B

HotKeyIndex Button • B B B B

HzJustify Button CENTER B B B

SelectOnDoubleClick Button F B B B

SelectOnDownClick Button F B B B

SendMessageText Button N B B B

SendMessageWhenSelected Button F B B B

StringData Button • B B B B

Value Button Ø B B B

VtJustify Button CENTER B B B

ZafReal
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowInvalid String • B B B B

AutoClear String • B B B B

HzJustify String • B B B B

InputFormatData String • B B B B

Invalid String • B B B B

LowerCase String F B B B

OutputFormatData String • B B B B

Password String F B B B

RangeData String • B B B B

RealData • • • N • •

ReportInvalid String • B B B B

StringData String INVALID B B B

Unanswered String • B B B B

UpperCase String F B B B

786 Zinc Application Framework 5

ScrollBar

Scrolled
Window

SpinControl

Splitter

String

VariableName String F B B B

ViewOnly String • B B B B

ZafReal
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

ZafScrollBar
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AutoSize • • T • •

ScrollData • • • N • •

ScrollType • • VERTICAL • •

ZafScrolledWindow
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

HzScrollPos • • • parameter • •

ScrollHeight • • • parameter • •

ScrollWidth • • • parameter • •

VtScrollPos • • • parameter • •

ZafSpinControl
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

Delta • • • parameter • •

ViewOnly • • F • •

WrappedData • • • T • •

ZafSplitter
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

Live • • (F on
Motif) • T (F on

Motif)
• (F on
Motif)

• (F on
Motif)

NextPaneObject • • • N N N

Position • • • 50 percent • •

PreviousPaneObject • • • N N N

SplitterType • • parameter • •

Thickness • • 3 • •

ZafString
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowInvalid • • • F • •

AutoClear • • • T • •

HzJustify • • LEFT • •

InputFormatData • • N • •

Appendix B, Property Matrices 787

SystemButton

Table

Invalid • • • F • •

LowerCase • • F • •

OutputFormatData • • N • •

Password • • F • •

RangeData • • • N • •

ReportInvalid • • • T T •

StringData • • • N • •

Unanswered • • • F • •

UpperCase • • F • •

VariableName • • F • •

ViewOnly • • F • •

ZafString
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

ZafSystemButton
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowDefault Button F B B B

AllowToggling Button F B B B

AutoRepeatSelection Button F B B B

AutoSize Button T B B B

BitmapData Button internal B B B

ButtonType Button 3D 3D B B

Depressed Button internal B B B

Depth Button 1 1 B B

HotKeyChar Button Ø B B B

HotKeyIndex Button -1 B B B

HzJustify Button CENTER B B B

SelectOnDoubleClick Button F B B B

SelectOnDownClick Button F B B B

SendMessageText Button N B B B

SendMessageWhenSelected Button F T B B

StringData Button internal B B B

SystemButtonType • • NATIVE • •

Value Button Ø B B B

VtJustify Button CENTER B B B

ZafTable
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

CurrentOffset • internal user read-
able -1 -1 -1

Grid • • T • •

HeaderHeight • • • parameter ZafTable-
Header

ZafTable-
Header

HeaderWidth • • • parameter ZafTable-
Header

ZafTable-
Header

MaxOffset • • • -1 • •

788 Zinc Application Framework 5

TableHeader

TableRecord

Text

Time

ReadFunction • • • Read-
Record • Read-

Record

RowHeight • • parameter ZafTable-
Record

ZafTable-
Record

VirtualRecord • • N • •

WriteFunction • • • Write-
Record • Write-

Record

ZafTable
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

ZafTableHeader
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

HeaderType • • ROW • •

VirtualField • • N • •

ZafTableRecord
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

Offset • internal user read-
able -1 -1 -1

ZafText
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AutoClear • • • F • •

HzJustify • • LEFT • •

Invalid • • • F • •

StringData • • • N • •

Unanswered • • • F • •

ViewOnly • • F • •

WordWrap • • • T • •

ZafTime
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowInvalid String • B B B B

AutoClear String • B B B B

HzJustify String • B B B B

InputFormatData String • B B B B

Invalid String • B B B B

LowerCase String F B B B

OutputFormatData String • B B B B

Password String F B B B

RangeData String • B B B B

ReportInvalid String • B B B B

StringData String INVALID B B B

Appendix B, Property Matrices 789

Title

ToolBar

TreeItem

TimeData • • • N • •

Unanswered String • B B B B

UpperCase String F B B B

VariableName String F B B B

ViewOnly String • B B B B

ZafTime
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

ZafTitle
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowDefault Button F B B B

AllowToggling Button F B B B

AutoRepeatSelection Button F B B B

AutoSize Button T B B B

BitmapData Button N B B B

ButtonType Button FLAT FLAT B B

Depressed Button internal B B B

Depth Button Ø Ø B B

HotKeyChar Button Ø B B B

HotKeyIndex Button -1 B B B

HzJustify Button CENTER B B B

SelectOnDoubleClick Button T T B B

SelectOnDownClick Button T T B B

SendMessageText Button N B B B

SendMessageWhenSelected Button T T B B

StringData Button • B B B B

Value Button internal B B B

VtJustify Button CENTER B B B

ZafToolBar
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

DockType • • TOP • •

WrapChildren • • T • •

ZafTreeItem
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AutoSortData • • • F • •

Expandable • • F • •

Expanded • • • F • •

NormalBitmap • • N • •

SelectedBitmap • • N • •

StringData • • • N • •

790 Zinc Application Framework 5

TreeList

UTime

VtList

ZafTreeList
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AutoSortData • • • F • •

DrawLines • • T • •

ZafUTime
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AllowInvalid String • B B B B

AutoClear String • B B B B

HzJustify String • B B B B

InputFormatData String • B B B B

Invalid String • B B B B

LowerCase String F B B B

OutputFormatData String • B B B B

Password String F B B B

RangeData String • B B B B

ReportInvalid String • B B B B

StringData String INVALID B B B

Unanswered String • B B B B

UpperCase String F B B B

UTimeData • • • N • •

VariableName String F B B B

ViewOnly String • B B B B

ZafVtList
Property

Inherited
From Value Dynamic

Constructor
Normal Copy Persistent

AutoSortData • • • F • •

Appendix C, ZAF 4 to 5 Class Comparison 791

ZAF 5 to 4 Class Comparisons
Zinc Application Framework 5 introduces a new API. Naming conventions
and parameters have changed during this “once in a lifetime” rewrite. Core
architectures and concepts remain largely unchanged from previous versions of
ZAF, however.

Programmers using versions of ZAF prior to version 5 may find the following
table useful when transitioning to version 5. In the table, each ZAF 5 class is
listed along with an indication of similarity to a previous ZAF 4 class. All
ZAF 5 classes are different from their previous incarnations, but differences
vary significantly in degree.

• “Similar” indicates that the class is functionally very close to the ZAF 4 class.

• “Different” indicates that the class is functionally substantially different from the
equivalent ZAF 4 class.

• “New” indicates that the class introduces entirely new functionality for ZAF 5.

Class Similar Different New
ZafApplication •

ZafAttachment •

ZafBignum •

ZafBignumData •

ZafBitmapData •

ZafBitmapStruct •

ZafBorder •

ZafButton •

ZafChart •

ZafCodeSetData •

ZafComboBox •

ZafConstraint •

ZafCursor •

ZafData •

ZafDataManager •

ZafDataPersistence •

ZafDataRecord •

ZafDate •

ZafDateData •

ZafDevice •

792 Zinc Application Framework 5

ZafDialogWindow •

ZafDimensionConstraint •

ZafDiskFile •

ZafDiskFileSystem •

ZafDisplay •

ZafElement •

ZafEraStruct •

ZafErrorStub •

ZafErrorSystem •

ZafEventManager •

ZafEventMap •

ZafEventStruct •

ZafFile •

ZafFileDialog •

ZafFileInfoStruct •

ZafFileSystem •

ZafFormatData •

ZafFormattedString •

ZafGeometryManager •

ZafGroup •

ZafHelpStub •

ZafHelpSystem •

ZafHelpTips •

ZafHzList •

ZafI18nData •

ZafIcon •

ZafIconData •

ZafIconStruct •

ZafImage •

ZafImageStruct •

ZafInteger •

ZafIntegerData •

ZafKeyboard •

ZafKeyStruct •

Class Similar Different New

Appendix C, ZAF 4 to 5 Class Comparison 793

ZafLanguageData •

ZafLanguageManager •

ZafList •

ZafListBlock •

ZafLocaleData •

ZafLocaleStruct •

ZafMaximizeButton •

ZafMDIWindow •

ZafMessageData •

ZafMessageStruct •

ZafMessageWindow •

ZafMinimizeButton •

ZafMouse •

ZafMouseData •

ZafMouseStruct •

ZafNotebook •

ZafNotification •

ZafObjectPersistence •

ZafPaletteData •

ZafPaletteMap •

ZafPaletteStruct •

ZafPath •

ZafPathElement •

ZafPopUpItem •

ZafPopUpMenu •

ZafPositionStruct •

ZafPrinter •

ZafProgressBar •

ZafPrompt •

ZafPullDownItem •

ZafPullDownMenu •

ZafQueueBlock •

ZafQueueElement •

ZafRegionStruct •

Class Similar Different New

794 Zinc Application Framework 5

ZafReal •

ZafRealData •

ZafRelativeConstraint •

ZafScreenDisplay •

ZafScrollBar •

ZafScrollData •

ZafScrollStruct •

ZafScrolledWindow •

ZafSpinControl •

ZafStandardArg •

ZafStatusBar •

ZafStorage •

ZafStorageFile •

ZafString •

ZafStringData •

ZafSystemButton •

ZafTable •

ZafTableHeader •

ZafTableRecord •

ZafText •

ZafTime •

ZafTimeData •

ZafTimer •

ZafTitle •

ZafToolBar •

ZafTreeItem •

ZafTreeList •

ZafUTime •

ZafUTimeData •

ZafVtList •

ZafWindow •

ZafWindowManager •

ZafWindowObject •

Class Similar Different New

Appendix C, ZAF 4 to 5 Class Comparison 795

796 Zinc Application Framework 5

Character Maps
This appendix lists the character maps supported by Zinc Application Frame-
work in the file I18n.znc. See ZafCodeSetData for information on supporting
character maps.

ISO 8859-1 Character Maps (Code Sets)

ANSI/Latin 1 Windows (CP 1252)

Arabic Windows (CP 1256)

Canadian-French DOS (CP 863)

Cyrillic DOS (CP 855)

Cyrillic Windows (CP 1251)

Eastern European Windows (CP 1250)

Greek DOS (CP 869)

Greek Windows (CP 1253)

Hebrew Windows (CP 1255)

Iceland DOS (CP 861)

Latin 1 DOS (CP 850)

Macintosh

Nordic DOS (CP 865)

Portuguese DOS (CP 860)

Slavic DOS (CP 852)

Turkish DOS (CP 857)

Turkish Windows (CP 1254)

United States DOS (CP 437)

Unicode Character Maps (Code Sets)

ANSI/Latin 1 Windows

Arabic Windows

BIG 5

Canadian-French DOS

Cyrillic DOS

Cyrillic Windows

Eastern European Windows

Appendix D, Character Maps 797

EUC-JIS

GB 2312

Greek DOS

Greek Windows

Hebrew Windows

IBM 5550

Iceland DOS

KSC 5601

Latin 1 DOS

Macintosh

Nordic DOS

Portuguese DOS

Shift-JIS

Slavic DOS

Turkish DOS

Turkish Windows

United States DOS

Unicode Character Maps (Code Sets)

798 Zinc Application Framework 5

ISO Country Codes
This appendix lists the ISO country codes. Zinc will maintain compatibility
with the ISO definitions as they are updated or, in certain cases, before they are
officailly adopted if it is evident that a proposed standard will be adopted.
Please be aware that the inclusion of a country code in this table does not imply
support for that country code by Zinc Application Framework. This table is
the complete ISO table.

These codes are used by Zinc for identifying a particular country, or if neces-
sary, a locale within a country. The locale identified by these codes will affect
the formatting of dates and times, and the display of symbols (such as mone-
tary symbols). The codes are from the ISO3166 standard.

“†” Indicates that support for the country is already included in the I18n.znc
file. See ZafLocaleData for information on supporting countries.

Country ISO Code

AFGHANISTAN AF

ALBANIA AL

ALGERIA DZ

AMERICAN SAMOA AS

ANDORRA AD

ANGOLA AO

ANGUILLA AI

ANTARCTICA AQ

ANTIGUA AND BARBUDA AG

ARGENTINA AR

ARMENIA AM

ARUBA AW

AUSTRALIA AU

AUSTRIA AT†

AZERBAIJAN AZ

BAHAMAS BS

BAHRAIN BH

BANGLADESH BD

BARBADOS BB

BELARUS BY

BELGIUM BE

Appendix E, ISO Country Codes 799

BELIZE BZ

BENIN BJ

BERMUDA BM

BHUTAN BT

BOLIVIA BO

BOSNIA AND HERZEGOWINA BA

BOTSWANA BW

BOUVET ISLAND BV

BRAZIL BR

BRITISH INDIAN OCEAN TERRITORY IO

BRUNEI DARUSSALAM BN

BULGARIA BG

BURKINA FASO BF

BURUNDI BI

CAMBODIA KH

CAMEROON CM

CANADA CA†

CAPE VERDE CV

CAYMAN ISLANDS KY

CENTRAL AFRICAN REPUBLIC CF

CHAD TD

CHILE CL

CHINA CN†

CHRISTMAS ISLAND CX

COCOS (KEELING) ISLANDS CC

COLOMBIA CO

COMOROS KM

CONGO CG

COOK ISLANDS CK

COSTA RICA CR

COTE D’IVOIRE CI

CROATIA (local name: Hrvatska) HR

CUBA CU

CYPRUS CY

Country ISO Code

800 Zinc Application Framework 5

CZECH REPUBLIC CZ

DENMARK DK†

DJIBOUTI DJ

DOMINICA DM

DOMINICAN REPUBLIC DO

EAST TIMOR TP

ECUADOR EC

EGYPT EG

EL SALVADOR SV

EQUATORIAL GUINEA GQ

ERITREA ER

ESTONIA EE

ETHIOPIA ET

FALKLAND ISLANDS (MALVINAS) FK

FAROE ISLANDS FO

FIJI FJ

FINLAND FI†

FRANCE FR†

FRANCE, METROPOLITAN FX

FRENCH GUIANA GF

FRENCH POLYNESIA PF

FRENCH SOUTHERN TERRITORIES TF

GABON GA

GAMBIA GM

GEORGIA GE

GERMANY DE†

GHANA GH

GIBRALTAR GI

GREECE GR†

GREENLAND GL

GRENADA GD

GUADELOUPE GP

GUAM GU

GUATEMALA GT

Country ISO Code

Appendix E, ISO Country Codes 801

GUINEA GN

GUINEA-BISSAU GW

GUYANA GY

HAITI HT

HEARD AND MCDONALD ISLANDS HM

HONDURAS HN

HONG KONG HK

HUNGARY HU

ICELAND IS

INDIA IN

INDONESIA ID

IRAN (ISLAMIC REPUBLIC OF) IR

IRAQ IQ

IRELAND IE

ISRAEL IL

ITALY IT†

JAMAICA JM

JAPAN JP†

JORDAN JO

KAZAKHSTAN KZ

KENYA KE

KIRIBATI KI

KOREA, DEMOCRATIC PEOPLE’S REPUBLIC OF KP

KOREA, REPUBLIC OF KR†

KUWAIT KW

KYRGYZSTAN KG

LAO PEOPLE’S DEMOCRATIC REPUBLIC LA

LATVIA LV

LEBANON LB

LESOTHO LS

LIBERIA LR

LIBYAN ARAB JAMAHIRIYA LY

LIECHTENSTEIN LI LIE

LITHUANIA LT

Country ISO Code

802 Zinc Application Framework 5

LUXEMBOURG LU

MACAU MO

MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF MK

MADAGASCAR MG

MALAWI MW

MALAYSIA MY

MALDIVES MV

MALI ML

MALTA MT

MARSHALL ISLANDS MH

MARTINIQUE MQ

MAURITANIA MR

MAURITIUS MU

MAYOTTE YT

MEXICO MX†

MICRONESIA, FEDERATED STATES OF FM

MOLDOVA, REPUBLIC OF MD

MONACO MC

MONGOLIA MN

MONTSERRAT MS

MOROCCO MA

MOZAMBIQUE MZ

MYANMAR MM

NAMIBIA NA

NAURU NR

NEPAL NP

NETHERLANDS NL†

NETHERLANDS ANTILLES AN

NEW CALEDONIA NC

NEW ZEALAND NZ

NICARAGUA NI

NIGER NE

NIGERIA NG

NIUE NU

Country ISO Code

Appendix E, ISO Country Codes 803

NORFOLK ISLAND NF

NORTHERN MARIANA ISLANDS MP

NORWAY NO†

OMAN OM

PAKISTAN PK

PALAU PW

PANAMA PA

PAPUA NEW GUINEA PG

PARAGUAY PY

PERU PE

PHILIPPINES PH

PITCAIRN PN

POLAND PL

PORTUGAL PT

PUERTO RICO PR

QATAR QA

REUNION RE

ROMANIA RO

RUSSIAN FEDERATION RU

RWANDA RW

SAINT KITTS AND NEVIS KN

SAINT LUCIA LC

SAINT VINCENT AND THE GRENADINES VC

SAMOA WS

SAN MARINO SM

SAO TOME AND PRINCIPE ST

SAUDI ARABIA SA

SENEGAL SN

SEYCHELLES SC

SIERRA LEONE SL

SINGAPORE SG

SLOVAKIA (Slovak Republic) SK

SLOVENIA SI

SOLOMON ISLANDS SB

Country ISO Code

804 Zinc Application Framework 5

SOMALIA SO

SOUTH AFRICA ZA

SPAIN ES†

SRI LANKA LK

ST. HELENA SH

ST. PIERRE AND MIQUELON PM

SUDAN SD

SURINAME SR

SVALBARD AND JAN MAYEN ISLANDS SJ

SWAZILAND SZ

SWEDEN SE†

SWITZERLAND CH

SYRIAN ARAB REPUBLIC SY

TAIWAN, PROVINCE OF CHINA TW†

TAJIKISTAN TJ

TANZANIA, UNITED REPUBLIC OF TZ

THAILAND TH

TOGO TG

TOKELAU TK

TONGA TO

TRINIDAD AND TOBAGO TT

TUNISIA TN

TURKEY TR

TURKMENISTAN TM

TURKS AND CAICOS ISLANDS TC

TUVALU TV

UGANDA UG

UKRAINE UA

UNITED ARAB EMIRATES AE

UNITED KINGDOM GB†

UNITED STATES US†

UNITED STATES MINOR OUTLYING ISLANDS UM

URUGUAY UY

UZBEKISTAN UZ

Country ISO Code

Appendix E, ISO Country Codes 805

VANUATU VU

VATICAN CITY STATE (HOLY SEE) VA

VENEZUELA VE

VIET NAM VN

VIRGIN ISLANDS (BRITISH) VG

VIRGIN ISLANDS (U.S.) VI

WALLIS AND FUTUNA ISLANDS WF

WESTERN SAHARA EH

YEMEN YE

YUGOSLAVIA YU

ZAIRE ZR

ZAMBIA ZM

ZIMBABWE ZW

Country ISO Code

806 Zinc Application Framework 5

ISO Language Codes
This appendix lists the ISO language codes. Zinc will maintain compatibility
with the ISO definitions as they are updated or, in certain cases, before they are
officailly adopted if it is evident that a proposed standard will be adopted.
Please be aware that the inclusion of a language code in this table does not
imply support for that language code by Zinc Application Framework. This
table is the complete ISO table.

These codes are used by Zinc for identifying a particular language. The lan-
guage identified by these codes will be used when displaying text on objects in
the library. The codes are from the ISO639 standard.

“*” Signifies a proposed language code. “†” Indicates that support for the lan-
guage is already included in the I18n.znc file. See ZafLanguageData for infor-
mation on supporting languages.

Language ISO Code

Abkhazian ab

Afar aa

Afrikaans af

Albanian sq

Amharic am

Arabic ar

Armenian hy

Assamese as

Aymara ay

Azerbaijani az

Bashkir ba

Basque eu

Bengali (Bangla) bn

Bhutani dz

Bihari bh

Bislama bi

Breton br

Bulgarian bg

Burmese my

Byelorussian be

Cambodian km

Appendix F, ISO Language Codes 807

Catalan ca†

Chinese zh

Corsican co

Croatian hr

Czech cs

Danish da†

Dutch nl†

English en†

Esperanto eo

Estonian et

Faeroese fo

Farsi fa

Fiji fj

Finnish fi†

French fr†

Frisian fy

Galician gl

Georgian ka

German de†

Greek el†

Greenlandic kl

Guarani gn

Gujarati gu

Hausa ha

Hebrew iw, he

Hindi hi

Hungarian hu

Icelandic is

Indonesian in, id

Interlingua ia

Interlingue ie

Inuktitut iu

Inupiak ik

Language ISO Code

808 Zinc Application Framework 5

Irish ga

Italian it†

Japanese ja†

Javanese jw

Kannada kn

Kashmiri ks

Kazakh kk

Kinyarwanda rw

Kirghiz ky

Kirundi rn

Korean ko†

Kurdish ku

Laothian lo

Latin la

Latvian (Lettish) lv

Lingala ln

Lithuanian lt

Macedonian mk

Malagasy mg

Malay ms

Malayalam ml

Maltese mt

Manx Gaelic gv*

Maori mi

Marathi mr

Moldavian mo

Mongolian mn

Nauru na

Nepali ne

Norwegian no†

Occitan oc

Oriya or

Oromo (Afan) om

Pashto (Pushto) ps

Language ISO Code

Appendix F, ISO Language Codes 809

Polish pl

Portuguese pt

Punjabi pa

Quechua qu

Rhaeto-Romance rm

Romanian ro

Russian ru

Samoan sm

Sangro sg

Sanskrit sa

Scots Gaelic gd

Serbian sr

Serbo-Croatian sh

Sesotho st

Setswana tn

Shona sn

Sindhi sd

Singhalese si

Siswati ss

Slovak sk

Slovenian sl

Somali so

Spanish es†

Sundanese su

Swahili sw

Swedish sv†

Tagalog tl

Tajik tg

Tamil ta

Tatar tt

Telugu te

Thai th

Tibetan bo

Tigrinya ti

Language ISO Code

810 Zinc Application Framework 5

Tonga to

Tsonga ts

Turkish tr

Turkmen tk

Twi tw

Uighur ug

Ukrainian uk

Urdu ur

Uzbek uz

Vietnamese vi

Volapk vo

Welsh cy

Wolof wo

Xhosa xh

Yiddish ji, yi

Yoruba yo

Zulu zu

Language ISO Code

Appendix G, X Resources 811

X Resources
As part of the internal implementation of Zinc Application Framework 5 for
Motif, ZAF derives from Motif “xm*” classes and registers its own versions.
Knowledge of this internal implementation may be useful for programmers
who wish to change colors, fonts, etc. in Motif resource files rather than hard-
coding them into an application.

In general, a Motif application that wants to use resources should do so as
defined in the O’Reilly & Associates Motif manuals:

• Vol IV, Chapter 2.3.3—The App-defaults file

• Vol IV, Chapter 10—Resource Management

These chapters describe the types of operations and files that can be overriden,
and from what class. This information is also available in various end-user
Motif or system administration manuals.

The table below lists ZAF 5 window object class names and the corresponding
Motif or custom class names that are registered with Motif. These names may
be used as resource tags when overriding default widget operations. Also
listed are Motif classes used as an immediate base class by ZAF.

Sample usage is presented following the table.

ZAF Class Name Motif Class Name ZAF class derives from

ZafWindowObject “ZafWindowObject” xmPrimitiveClassRec

ZafWindow “ZafWindowShell”
(shell)

topLevelShellClassRec

 “ZafWindowFrame”
(frame)

xmBulletinBoardClassRec

“ZafWindow” (client) xmBulletinBoardClassRec

ZafButton “ZafButton” xmPushButtonClassRec

ZafComboBox “ZafComboBox” xmBulletinBoardClassRec

ZafDialogWindow see ZafWindow

ZafFileDialog “ZafWindowShell” xmFileSelectionBoxWidget

ZafFormattedString “ZafFormattedString” xmTextFieldClassRec

ZafGroup see ZafString

ZafHzList see ZafVtList

ZafIcon uses Icon registration

ZafMDIWindow see ZafWindow

ZafNotebook “ZafNotebook” xmBulletinBoardClassRec

812 Zinc Application Framework 5

When overriding operations for a program named “hello”, for example, a
resource file named “Hello” or “XHello” should be created. In this file a user
might include overrides such as:

ZafPrompt.fontList: --helvetica-bold-r-*-140-*-*-*-*-*-*
*ZafPrompt.foreground: blue
*ZafString.background: yellow
*ZafWindow.background: green

When adding definitions to resource files, note that Motif allows resources to
affect derived classes. Therefore, overrides for a base xmBulletinBoardClass-
Rec can affect ZAF classes that use the xmBulletinBoardClassRec definition.
For example:

*xmLabel.foreground: black
xmBulletinBoard.fontlist: --times-normal-r-*-140-*-*-*-*-*-*

ZafPullDownMenu “xmRowColumn” xmRowColumnClassRec

ZafPullDownItem “xmCascadeButton” xmCascadeButtonClassRec

ZafPopUpMenu “popupShell” xmRowColumnWidget-
ClassRec

ZafPopUpItem “ZafToggleItem” (no
children)

xmToggleButtonClassRec

“ZafCascadeItem”
(with children)

xmCascadeButtonClassRec

ZafPrompt “ZafPrompt” xmLabelClassRec

ZafScrolledWindow two “ZafWindow”s

ZafScrollBar “ZafScrollBar” (scroll-
bar)

xmScrollBarClassRec

“ZafSlider” (slider) xmScaleClassRec

ZafSpinControl “ZafSpinControl” xmBulletinBoardClassRec

ZafStatusBar see ZafWindow

ZafString “ZafString” xmTextFieldClassRec

ZafTable see ZafWindow

ZafTableHeader see ZafWindow

ZafTableRecord see ZafWindow

ZafToolBar see ZafWindow

ZafText “ZafText” xmTextClassRec

ZafTreeList “ZafTreeList” xmListClassRec

ZafVtList “ZafList” xmListClassRec

ZAF Class Name Motif Class Name ZAF class derives from

Appendix H, Zinc Coding Standards 813

Zinc Coding Standards
Zinc Software specifies standards for all code written for internal or external
distribution. These standards improve the readability, organization and main-
tenance of source code and header files and are used when writing library code,
example programs, tutorial programs, etc.

Naming
Conventions

CLASSES AND
STRUCTURES

Class names should be self-explanatory and should be in name-case format:
first letter in uppercase lettering, all remaining characters in lowercase letter-
ing, with no underscores used to separate words. Some example class and
structure names are shown below.

struct ZafEventStruct
struct ZafPaletteStruct
class ZafElement
class ZafEventManager : public ZafList
class ZafButton : public ZafWindowObject

All class and structure names unique to Zinc Application Framework use the
prefix “Zaf”. Names unique to Zinc DataConnect use the prefix “Zdc”. Other
Zinc products may introduce unique three-character prefixes. Shared names
(used by multiple products) currently use the prefix “Zaf”.

In addition, many Zinc classes and structures use suffixes:

Struct // denotes a general structure
Data // denotes a data object

FUNCTIONS Function names should be self explanatory and should be in name-case format
(see above). In addition, the function name should describe what the function
does. Some example class and regular function names are shown below:

ZafElement *Previous(void) const;
ZAF_EVENT_TYPE Event(const ZafEvent &event);
static ZafWindowObject *Read(const ZAF_ICHAR *name, ZafIO *io,
 ZafIOObject *ioObject, ZafPersistence *persist);

VARIABLES Variable names should be self-explanatory and use lowercase lettering for the
first word, then name case for each word thereafter. Global variables should
always be prefixed by the three character product prefix. Some example vari-
able names are shown below.

814 Zinc Application Framework 5

extern ZafIO *ZafDefaultStorage;
static int virtualCount = 0;
int ZafBorder::width = 4;

Each variable should be declared on a separate line when it is needed by the
function. When declaring a list of variables, the following order should be fol-
lowed:

• External variables

• Static variables

• Variables with complex structures

• All other variables according to need within the application

In addition, only one space, and not tabs, should exist between the type and the
variable. Comments should be aligned evenly after the variable list.

CONSTANTS Constant variables should be self-explanatory and should be in all uppercase,
with an underscore separating the words. Some example constant names are
shown below:

const ZAF_ERROR ZAF_ERROR_NONE = 0; // comment
const ZAF_LOGICAL_EVENT L_VIEW = 1001; // comment

In addition to the information described above:

• Constants should be placed before the definition of the class for which they apply,
or at the beginning of the module.

• If several related constants are defined, the definitions should be grouped together
with a preceding comment.

• Constant values should be tab-aligned to the right.

• Comments for each line, if any, should be aligned to the right of the value.

TYPEDEFS Typedefs should use the same naming conventions as classes and structures.
(However, as of this printing, ZAF typedefs are not yet using this convention.)

Organization

BROKEN
STATEMENTS

If a statement cannot fit on one line on the screen, it should be broken with the
subsequent lines of the statement indented one space farther over than the first
line. It should be split after a comma or logic symbol if possible. Several
examples of this calling convention are shown below:

Appendix H, Zinc Coding Standards 815

if (veryLongBooleanA && veryLongBooleanB && veryLongBooleanC &&
 veryLongBooleanD)
DoSomething();

for (int veryLongLoopCounter = 0;
 veryLongLoopCounter < 10;
 veryLongLoopCounter++)
{
if (CheckTheVeryLongLoopCounter(veryLongLoopCounter) ==
 veryLongConstant)
DoSomethingElse();

}

CLASS SCOPES The class declaration in an include file should list public members first, pro-
tected members next, and private members last. Each major section should list
static member variables first, member variables next, and member functions
last, listed in alphabetical order. (Be sure to list the constructor and destructor
first.) In addition, each scope section should contain a short comment telling
where its members are documented. The following example shows a class
containing the three scope sections:

class ZafExportClass ZafTimeData : public ZafUtimeData
{
public:
// -- General members ---
ZafTimeData(void);
ZafTimeData(int hour, int minute, int second, int
 milliSecond);
ZafTimeData(const ZAF_ICHAR *string, const ZAF_ICHAR *format =
 ZAF_NULLP(ZAF_ICHAR));
ZafTimeData(const ZafTimeData ©);
virtual ~ZafTimeData(void);

protected:
// --- Persistence ---
friend class ZafExportClass ZafPersistence;
static ZafElement *Read(const ZAF_ICHAR *name, ZafIO *io,
 ZafIOObject *ioObject)
{ return (new ZafTimeData(name, io, ioObject)); }

};

FILES Source code modules that contain class member functions should contain the
copyright notice, then any include files, static member variables, and member
functions, described in alphabetical order. An example of Z_BORDER.CPP’s
file layout is shown below:

816 Zinc Application Framework 5

// Zinc Application Framework - Z_BORDER.CPP
// COPYRIGHT (C) 1990-1997. All Rights Reserved.
// Zinc Software Incorporated. Pleasant Grove, Utah USA

#include "z_border.hpp"

// ----- ZafBorder --
ZAF_CLASSID ZafBorder::classID = ID_ZAF_BORDER;
ZAF_CLASSNAME_CHAR ZafBorder::className[] =
 ZAF_ITEXT("ZafBorder");
static ZAF_STRINGID_CHAR _stringID[] =
 ZAF_ITEXT("ZAF_NUMID_BORDER");

ZafBorder::ZafBorder(void) : ZafWindowObject(0, 0, 0, 0)
{
}

ZafBorder::~ZafBorder(void)
{
}

Comments

FILES Each source file (.CPP or .HPP) should contain a three-line comment that con-
tains the library or program name, the name of the file and copyright informa-
tion. A sample header is shown below:

// Zinc Application Framework - BUTTON.CPP
// COPYRIGHT (C) 1990-1997. All Rights Reserved.
// Zinc Software Incorporated. Pleasant Grove, Utah USA

The copyright information should be copied as shown above. The copyright
year should include the original year when the product was created and all sub-
sequent years when major revisions were made.

Code not copyrighted by Zinc Software should generally be placed in separate
files from Zinc code whenever possible. The same three-line comment should
begin the file, followed by whatever copyright information is required by the
owner of the source code.

FUNCTIONS Each routine may be preceded by a short description giving the routine’s pur-
pose and any related algorithms. If the routine name intuitively describes the
routine, no comment is needed. The example below shows the use of a func-
tion comment:

Appendix H, Zinc Coding Standards 817

// This member function displays the biorhythm information in
// the window. As the size of the window object changes (by
// changing the parent window), the size of the biorhythm chart
// also changes. A horizontal change results in a change in the
// number of days displayed. A vertical change results in a
// dynamic change in the height of the biorhythm curve.

void Biorhythm::UpdateBiorhythm(void)
{
...

}

VARIABLES Function arguments and local variables should only have descriptive com-
ments if their names are not descriptive. These comments should be lined up
on a right tab region. In addition, all comments should start with a capital let-
ter and be followed by a period. An example of two variable declarations is
shown below.

ZAF_EVENT_TYPE ccode; // The control code for an event.
int cardFile; // File handle for the disk file.

BLOCKS Block comments are used to describe a group of related code. Most block
comments should be one line, if possible, and reside immediately above the
block being commented. If more than a one line comment is needed, the extra
lines should each begin with the double slash. Block comments should be
indented to match the indentation of the line of code following it. A single
blank line should precede the comment and the block of code should follow
immediately after. Small blocks of code that do a specific job should be com-
mented but not individual lines, unless the line is complex or not intuitive).
Some example block comments are shown below.

// Destroy all of the items within the list.
Destroy();

// When the user selects a button, ccode
// is checked to see what type of event was received.
switch (ccode)
{
...
}

PRIVATE
COMMENTS

Infrequently, it may be helpful to add source code comments for the personal
reference of the Zinc developer, but that should not be shipped with production

818 Zinc Application Framework 5

code. In general, private comments are discouraged and should be used spar-
ingly. When necessary, these comments should use the following format:

//??? This algorithm needs more attention before shipping.

A source code utility will be run on the code prior to creating master diskettes.
The utility will remove any lines that begin with “//???”. Previous standards
that allowed “//***” as an alternate prefix to private comments are superseded,
and these comments should be removed or replaced.

Indentation

CLASSES AND
STRUCTURES

Structures and classes should have all members listed on individual lines and
should be indented with one tab from the left margin. When a member must
extend to the next line(s), each subsequent line should be indented an addi-
tional space. Several sample indentations are shown below:

class ZafExportClass ZafIcon : public ZafButton
{
public:
// --- General members ---
ZafIcon(int left, int top, ZafIconData *iconData, const
 ZAF_ICHAR *title, ZAF_ATTRIBUTE attribute = 0, ...);
virtual ~ZafIcon(void);
virtual ZAF_EVENT_TYPE Event(const ZafEventStruct &event);

protected:
// --- General members ---
ZAF_ICON_TYPE iconType;
ZafIconData *iconData;

ZafIcon(const ZafIcon ©);
virtual ZAF_EVENT_TYPE DragDropEvent(const ZafEventStruct
 &event);
virtual ZafWindowObject *Duplicate(void) { return (new
 ZafIcon(*this)); }
virtual ZAF_EVENT_TYPE DrawFocus(ZafRegionStruct ®ion,
 ZAF_EVENT_TYPE ccode);
virtual ZAF_EVENT_TYPE DrawItem(const ZafEventStruct &event,
 ZAF_EVENT_TYPE ccode);
virtual ZAF_EVENT_TYPE DrawShadow(ZafRegionStruct ®ion, int
 depth, bool fillRegion, ZAF_EVENT_TYPE ccode);
virtual ZafPaletteStruct *MapClassPalette(ZAF_PALETTE_TYPE
 type, ZAF_PALETTE_STATE state);

private:
static ZafPaletteMap defaultPaletteMap[];

Appendix H, Zinc Coding Standards 819

};

FUNCTIONS The main body of routines should have braces below the function declaration.
All function code should be indented one tab. An example of this indentation
is shown below:

void ZafButton::SetText(const ZAF_ICHAR *string)
{

// Reset the button’s string information.
...

}

FUNCTION CALLS Parameters in a function call should be listed with each argument, followed by
a comma and one space. If a routine call cannot fit on one line on the screen, it
should be broken with the next half of the call indented one space farther over.
It should be split after a comma or logic symbol if possible. Several examples
of this calling convention are shown below:

ZafWindow *ZafWindow::Generic(int left, int top, int width,
 int height, ZAF_ICHAR *title, ZafWindowObject *minObject,
 ZAF_ATTRIBUTE attribute, ...)
{

// Create the window.
ZafWindow *window = new ZafWindow(left, top, width, height);

}

STRING_WINDOW::STRING_WINDOW(int left, int top) :
 ZafWindow(left, top, 40, 9)
{

// Set the window information.
SetStringID("String Window");

// Create the window fields.
*this
 + new ZafBorder
 + new ZafMaximizeButton
 + new ZafMinimizeButton
 + new ZafSystemButton
 + new ZafTitle("String Window")
 ...
 ;

}

CASE STATEMENTS The reserved word case should be aligned with the switch statement, but all
code information should be indented an additional tab. Each additional level

820 Zinc Application Framework 5

of logic should be indented one tab. The colon should immediately follow
each case and the statement(s) should start on a new line. The break should
also be on a separate line. An example of this organization is shown below:

EventType ZafPrompt::Event(const ZafEvent &event)
{
// Switch on the event type.
ZAF_EVENT_TYPE ccode = event.type;
switch (ccode)
{
case S_CREATE:
case S_SIZE:
...
break;

case S_CURRENT:
case S_NON_CURRENT:
if (ZafWindowObject::NeedsUpdate(event, ccode))
 ZafWindowObject::Text(prompt, 0, ccode, lastPalette);
break;

default:
ccode = ZafWindowObject::Event(event);
break;
}

// Return the control code.
return (ccode);

}

SCOPING Normally, scoping is done with an expression, and indents with level.

if (expression)
{
statement1
statement2

}

Simple scoping should not indent, however.

{
statement1
statement2
}

Appendix H, Zinc Coding Standards 821

IF AND FOR
STATEMENTS

Statements following an if or for should be indented one tab, and simple condi-
tionals should use the inline ? operator. An example of these statements is
shown below:

left = (left < 1) ? 1 : right;

if (event->type == E_KEY &&
 (event->rawCode == ESCAPE || event->rawCode ==
 BACKSPACE || event->rawCode == ENTER))
{
offset = length;
length = 0;

}
for (number = 0; number < noOfCalls; number++)
; // Do nothing.

822 Zinc Application Framework 5

Index

Index 825

A
AbortJob

Printer 394

AcceptDrop
WindowObject 614

ActivateObject
TableRecord 524

ActiveModel
Chart 75

Add
List 297
PopUpItem 380
PullDownItem 413
SystemButton 503
Timer 540
Window 586

AddColor
Display 149

AddCompareFunction
ObjectPersistence 362

AddDataConstructor
DataPersistence 113

AddDataGroup
Chart 75

AddDataPoint
Chart 75

AddDepthItem
TreeList 560

AddFileSystem
DataPersistence 113

AddFont
Display 150

AddGenericObjects
Window 587, 588

AddNotification

Notification 352

AddObjectConstructor
ObjectPersistence 362

AddPalette
PaletteData368

AddStaticModule
I18nData254

AddUserCallback
ObjectPersistence 362

AddUserObject
ObjectPersistence 363

allFilesFilter
FileDialog208

Allocate
LanguageManager 294

AllocateData
DataManager 109

AllocateFile
DataPersistence114

AllowDefault
Button 61

AllowInvalid
String481

AllowModifyCollate
PrintDialog391

AllowModifyCopies
PrintDialog391

AllowModifyRange
PrintDialog391

AllowToggling
Button 62

altDigits
LocaleStruct304

AltPressed
Keyboard 286

Append
StringData 492

Application 22

argc
Application 24

argv
Application 24

Array
BitmapData 51
IconData 264
MouseData 335

array
ImageStruct 274

Assign
PositionStruct 388
RegionStruct 430

Attachment 27

attributes
FileInfoStruct 211

AutoClear
String 481
Text 528

AutomaticUpdate
Window 588
WindowObject 617

AutoRepeatSelection
Button 62

AutoSelect
Group 234

AutoSize
Bitmap 49
Button 63
Image 269
Prompt 408
ScrollBar 445

AutoSortData
ComboBox 92

826 Zinc Application Framework 5

HzList 249
TreeItem 553
TreeList 561
VtList 581

available3D
ZafMSWindowsApp . . 341

AxisColor
Chart 76

B
Background

Display 152

BackgroundColor
WindowObject 619

BasisYear
UTimeData 573

Beep
ErrorSystem 182

BeginDraw
Display 152
WindowObject 620

beginGregorian
LocaleStruct 304

BeginJob
Printer 394

BeginPage
Printer 394

Bignum 32
Property Matrix B-779

BignumData 37
Bignum 34

BinaryMode
File 201

Bitmap 47

Display 152
Property MatrixB-779

BitmapData50
Bitmap49
Button 63

BitmapStruct53

blankString
LanguageManager 294

BlinkRate
Cursor 100

Blocked
EventManager 187

Border 55
Property MatrixB-779
Window 589

Bordered
WindowObject621

bottom
RegionStruct 431

BottomOffset
Table 512

BroadcastEvent
Window 589

Button 58
Property MatrixB-779

ButtonType
Button 64

C
canonicalLocale

LocaleData302

CaptureMouse
WindowManager605

CellHeight

Display 153
HzList 250

CellWidth
Display 153
HzList 250

Center
RelativeConstraint 436
WindowManager 605

Changed
StorageFile 476
Window 590
WindowObject 622

ChangeExtension
DiskFileSystem 142

Char
StringData 492

Chart 72

ChartStub 81

ChartType
Chart 76

ChDir
DiskFileSystem 142
FileSystem 214
Storage 472

ClassID
Element 172
WindowObject 623

classID
WindowObject 623

ClassName
Element 172
WindowObject 623

className
WindowObject 623

Clear
BignumData 39
BitmapData 51

Index 827

CodeSetData 84
Data 104
DataRecord 120
DateData 128
IconData 264
IntegerData 281
LanguageData 290
LocaleData 302
MouseData 335
PaletteData 368
RealData 427
ScrollData 448
TimeData 538
UTimeData 573

ClearCompareFunctions
ObjectPersistence 363

ClearDataAll
Chart 76

ClearDataConstructors
DataPersistence 114

ClearDataGroup
Chart 77

ClearFileSystems
DataPersistence 114

ClearImage
Button 65

ClearMessageFlags
MessageWindow 323

ClearNotifications
Notification 352

ClearObjectConstructors
ObjectPersistence 363

ClearText
Button 65

ClearUserCallbacks
ObjectPersistence 363

ClearUserObjects
ObjectPersistence 363

ClientRegion
Window 591

ClipRegion
Display 153

Close
DiskFileSystem143
FileSystem 214
Storage 472

CodeSetAllocate
CodeSetData 84

CodeSetData82

CodeSetFree
CodeSetData 84

CodeSetName
CodeSetData 84

colorBackground
PaletteStruct371

colorForeground
PaletteStruct371

ColorInfo
Display 154

colorTable
ScreenDisplay 440

column
PositionStruct388

columns
Display 154

ComboBox 89

Property Matrix B-
780

commonControlsAvailable
ZafMSWindowsApp . .341

Compare
StringData493

CompareAscending
Window 591

CompareDescending
Window 591

CompareFunction
List 297

CompressedData
FormattedString 223

Constraint 94

Control
Application 24
DialogWindow 135

Convert 729

Convert Utility
ZAF 4 729

ConvertCoordinates
PositionStruct 388
RegionStruct 430
WindowObject 623

converted
EventStruct 195

ConvertRegion
WindowObject 624

convertText
ZafMSWindowsApp . . 341

ConvertToDrawRegion
WindowObject 624

ConvertToObjectPosition
WindowObject 624

ConvertToOSBitmap
Display 155

ConvertToOSChar
CodeSetData 85

ConvertToOSIcon
Display 155

828 Zinc Application Framework 5

ConvertToOSMouse
Display 155

ConvertToOSPosition
WindowObject 625

ConvertToOSRegion
WindowObject 625

ConvertToOSString
CodeSetData 85

ConvertToOSWChar
CodeSetData 85

ConvertToOSWString
CodeSetData 85

ConvertToScreenPosition
WindowObject 624

ConvertToZafBitmap
Display 155

ConvertToZafChar
CodeSetData 86

ConvertToZafEvent
WindowObject 626

ConvertToZafIcon
Display 155

ConvertToZafMouse
Display 155

ConvertToZafPosition
WindowObject 625

ConvertToZafRegion
WindowObject 625

ConvertToZafString
CodeSetData 86

ConvertXValue
Display 156

ConvertYValue
Display 156

CoordinateStruct 97

CoordinateType
Display 156
WindowObject627

coordinateType
PositionStruct388
RegionStruct 430

CopyDraggable
WindowObject634

CornerScrollBar
Window 591

Count
List298
PopUpItem381
PullDownItem 414
SystemButton504

CountryCodeToZafLocale
I18nData254

Create
File201
Storage 472

CreateSubclassedWindow
ZafMSWindowsApp . .341

creditLeftParen
LocaleStruct304

creditRightParen
LocaleStruct305

Ctl3dAutoSubclass
ZafMSWindowsApp . .342

Ctl3dEnabled
ZafMSWindowsApp . .341

ctl3dModule
ZafMSWindowsApp . .341

Ctl3dRegister
ZafMSWindowsApp . .341

Ctl3dSubclassCtl
ZafMSWindowsApp . .342

Ctl3dUnregister
ZafMSWindowsApp . . 342

CtrlPressed
Keyboard 286

currencySymbol
LocaleStruct 305

Current
List 298
PopUpItem 381
ProgressBar 402
PullDownItem 414
ScrollData 448
SystemButton 504

current
ScrollStruct 450

CurrentClassID
DataPersistence 114

CurrentClassName
DataPersistence 114

currentDirectoryName
FileSystem 214

CurrentFile
DataPersistence 115

CurrentFileSystem
DataPersistence 115

CurrentLanguage
DataPersistence 115

CurrentOffset
Table 512

CurrentPage
Notebook 348

Cursor 99

CursorOffset
String 481
Text 528

CursorPosition

Index 829

Text 528

D
Data 102

StorageFile 476

data
EventStruct 195

DataGroup
Chart 77

DataGroupBackgroundColor
Chart 77

DataGroupFillPattern
Chart 77

DataGroupFont
Chart 77

DataGroupForegroundColor
Chart 78

DataGroupLineStyle
Chart 78

DataManager 108

DataPersistence 110

DataPoint
Chart 78

DataRecord 119

Date 121
Property Matrix B-780

DateData 126
Date 124

dateSeparator
LocaleStruct 305

dateStringInputFormat
LocaleStruct 305

dateStringOutputFormat
LocaleStruct305

dateTimeStringInputFormat
LocaleStruct305

dateTimeStringOutputFormat
LocaleStruct305

Day
UTimeData573

DayName
UTimeData573

DayOfWeek
UTimeData573

DayOfYear
UTimeData573

DaysInMonth
UTimeData573

DaysInYear
UTimeData574

DeactivateObject
TableRecord524

decimalSeparator
LocaleStruct305

Decrement
ProgressBar 402
ScrollData448
String481

DefaultButton
Window 592

DefaultEventRoute
WindowManager605

defaultFilterName
Image269

DefaultLeadByte
CodeSetData 87

DefaultMessageFlag
MessageWindow323

DefaultUserFunction
WindowObject 630

DefaultValidateFunction
String 482

defDigits
LocaleStruct 306

DeleteData
FormattedString 224

DeleteDriveNames
DiskFileSystem 143

DeleteRecord
Table 512

Delta
ProgressBar 402
ScrollData 448
SpinControl 458

delta
ScrollStruct 450

Depressed
Button 65

Depth
Button 65

DepthCurrent
TreeItem 553
TreeList 561

DepthFirst
TreeItem 553
TreeList 561

DepthLast
TreeItem 554
TreeList 562

DepthNext
TreeItem 554

DepthPrevious
TreeItem 554

DerivedAccess

830 Zinc Application Framework 5

File 202

Destroy
List 298
PopUpItem 381
PullDownItem 414
SystemButton 504
Window 592

Destroyable
Data 105
Window 593

DestroyColor
Display 156
ZafDisplay 149

DestroyEvent
EventManager 187

DestroyFont
Display 156
ZafDisplay 150

DestroyOSBitmap
Display 156

DestroyOSIcon
Display 156

DestroyOSMouse
Display 156

DestroyZafBitmap
Display 157

DestroyZafIcon
Display 157

DestroyZafMouse
Display 157

Device 129

DeviceState
Device 130

DeviceType
Device 131

DialogWindow 133

DimensionConstraint136

direction
EraStruct180

Directory
FileDialog209
FileInfoStruct211

dirSepStr
CodeSetData 87

Disabled
WindowObject631

DiskFile140

DiskFileSystem 142

Display147
EventStruct196
WindowObject632

display
Device130
WindowObject632

DisplayContext
Display 157

DisplayHelp
HelpStub237
HelpSystem 240

DisplayMode
Display 157

DisplayType
Display 158

DockType
ToolBar548

double
BignumData41
RealData428

DragDropEvent
WindowObject633

Draggable
WindowObject634

dragObject
WindowManager 605

dragStartPosition
ZafMSWindowsApp . . 342

dragTest
ZafMSWindowsApp . . 342

Draw
WindowObject 635

DrawBackground
WindowObject 635

DrawBorder
WindowObject 635

DrawContext
Display 157

DrawFocus
WindowObject 636

DrawLines
TreeList 562

DrawShadow
WindowObject 636

dropDownCombo
ZafMSWindowsApp . . 342

Duplicate
Data 105
WindowObject 638

Dynamic Properties
Property Matrices . . . B-773

DynamicOSText
StringData 493

DynamicOSWText
StringData 493

DynamicPtrCast 709

DynamicText
StringData 493

Index 831

E
EditMode

WindowObject 639

Element 170

Ellipse
Display 158

Encompassed
RegionStruct 430

endDate
EraStruct 180

EndDraw
WindowObject 620

EndJob
Printer 395

EndPage
Printer 395

eraFormat
EraStruct 180

eraName
EraStruct 180

EraStruct 180

eraTable
LocaleStruct 306

eraTableLength
LocaleStruct 306

Error
Application 25
Data 105
File 202
FileSystem 214
WindowObject 639

ErrorMessage
ErrorStub 182
ErrorSystem 185

errorString

LanguageManager 294

ErrorStub182

ErrorSystem 184

EvaluateIsA
Element173

Event
Attachment29
Bignum35
Button 65
Constraint96
Cursor 100
Data107
Date125
DimensionConstraint . .138
EventManager 187
GeometryManager 230
HelpSystem 240
HelpTips244
Integer278
Keyboard 286
Mouse 330
PopUpItem381
PullDownItem 414
Real 425
RelativeConstraint 436
String482
Text 528
Time 535
Timer541
UTime569
Window 593
WindowManager606
WindowObject641

event
QueueElement421

EventManager 186
EventStruct196

eventManager
WindowObject646

EventMap 191

Events

A_CLOSE_WINDOW . A-
771

A_HELP_CONTEXT A-771
A_MINIMIZE_WINDOWS

A-772
A_OPEN_DOCUMENT A-

772
A_OPEN_WINDOW A-772
A_PRINT_DOCUMENT A-

772
A_RESET_I18N A-772
A_RESTORE_WINDOWS

A-772
D_ACTIVATE A-770
D_DEACTIVATE . . A-770
D_DEINITIALIZE . A-770
D_HIDE A-770
D_INITIALIZE A-770
D_OFF A-770
D_ON A-770
D_POSITION A-770
D_STATE A-769
DC_INSERT A-770
DC_OVERSTRIKE . A-770
DH_HELP_TIPS_TIMER .

A-770
DH_SET_HELP_OBJECT

A-769
DH_UPDATE_HELP_OBJECT

A-769
DM_BOTTOM_LEFT_CORNER

A-769
DM_BOTTOM_RIGHT_CORNER

A-769
DM_BOTTOM_SIDE . . A-

769
DM_CANCEL A-769
DM_CROSS_HAIRS A-769
DM_DRAG A-770
DM_DRAG_COPY . A-770
DM_DRAG_COPY_MULTIPLE

A-771
DM_DRAG_LINK . A-771
DM_DRAG_LINK_MULTIPLE

A-771
DM_DRAG_MOVE A-771
DM_DRAG_MOVE_MULTIPLE

A-771
DM_EDIT A-769
DM_LEFT_SIDE . . . A-769

832 Zinc Application Framework 5

DM_MOVE A-769
DM_RIGHT_SIDE . A-769
DM_SELECT A-770
DM_TOP_LEFT_CORNER

A-770
DM_TOP_RIGHT_CORNER

A-770
DM_TOP_SIDE A-770
DM_VIEW A-770
DM_WAIT A-770
E_CURSOR A-768
E_DEVICE A-768
E_HELPTIPS A-768
E_KEY A-768
E_MOUSE A-768
E_OSEVENT A-768
E_TIMER A-769
L_ALT_KEY A-766
L_BACKSPACE . . . A-764
L_BEGIN_ESCAPE A-764
L_BOL A-764
L_CANCEL A-764
L_CLOSE A-764
L_CLOSE_TEMPORARY

A-764
L_CONTINUE_ESCAPE .

A-764
L_CONTINUE_SELECT .

A-764
L_COPY A-764
L_CUT A-764
L_DELETE A-764
L_DELETE_EOL . . A-766
L_DELETE_WORD A-766
L_DOUBLE_CLICK A-764
L_DOWN A-764
L_END_ESCAPE . . A-764
L_END_SELECT . . A-764
L_EOL A-765
L_EXIT A-764
L_EXTEND_FIRST A-766
L_EXTEND_LAST A-766
L_EXTEND_NEXT A-766
L_EXTEND_PREVIOUS .

A-766
L_FIRST A-765
L_HELP A-765
L_INSERT_TOGGLE . A-

766

L_LAST A-765
L_LEFT A-765
L_MARK_BOL A-766
L_MARK_DOWN . .A-766
L_MARK_EOLA-766
L_MARK_LEFTA-766
L_MARK_PGDN . . .A-767
L_MARK_PGUP . . .A-767
L_MARK_RIGHT . .A-767
L_MARK_UP A-767
L_MARK_WORD_LEFT

A-767
L_MARK_WORD_RIGHT

A-767
L_MAXIMIZE A-767
L_MDI_MOVE_MODE A-

767
L_MDI_NEXT_WINDOW

A-765
L_MDI_SIZE_MODE . .A-

767
L_MINIMIZE A-767
L_MOVE_MODE . .A-767
L_NEXTA-765
L_NEXT_WINDOW A-767
L_NONEA-767
L_PASTEA-765
L_PGDNA-765
L_PGUPA-765
L_PREVIOUSA-765
L_RESTOREA-767
L_RIGHTA-765
L_SELECTA-765
L_SIZE_MODE A-767
L_SYSTEM_MENU A-767
L_TOGGLE_EXPANDED

A-767
L_UPA-765
L_VIEWA-766
L_WORD_LEFT . . .A-768
L_WORD_RIGHT . .A-768
N_CHANGE_PAGE A-756
N_CLOSE A-756
N_CURRENT A-756
N_EXIT A-756
N_HSCROLL A-756
N_MOUSE_ENTER A-756
N_MOUSE_LEAVE A-757
N_MOVEA-757

N_NON_CURRENT A-757
N_RESET_I18N A-757
N_SIZE A-756, A-757
N_TIMER A-757
N_VSCROLL A-757
S_ADD_OBJECT . . A-758
S_BEGIN_DRAG . . A-760
S_CLOSE A-758
S_CLOSE_TEMPORARY

A-758
S_COMPUTE_SIZE A-760
S_CONTINUE A-758
S_COPY A-758
S_COPY_DATA . . . A-758
S_CREATE A-761
S_CURRENT A-761
S_CUT A-758
S_DECREMENT . . . A-758
S_DEINITIALIZE . . A-761
S_DESTROY A-761
S_DLG_ABORT . . . A-762
S_DLG_CANCEL . . A-762
S_DLG_IGNORE . . A-762
S_DLG_NO A-762
S_DLG_OK A-763
S_DLG_RETRY . . . A-763
S_DLG_YES A-763
S_DRAG_COPY . . . A-761
S_DRAG_DEFAULT . . A-

761
S_DRAG_LINK A-761
S_DRAG_MOVE . . A-761
S_DROP_COPY . . . A-761
S_DROP_DEFAULT A-761
S_DROP_LINK A-761
S_DROP_MOVE . . . A-761
S_END_DRAG A-761
S_ERROR A-763
S_EXIT A-758
S_HELP A-758
S_HLP_CLOSE A-761
S_HLP_SELECT_TOPIC

A-761
S_HLP_SHOW_INDEX A-

761
S_HLP_SHOW_TOPIC A-

762
S_HLP_UPDATE_NAME

A-762

Index 833

S_HOT_KEY A-762
S_HSCROLL A-758
S_HSCROLL_CHECK A-

758
S_HSCROLL_COMPUTE

A-758
S_HSCROLL_SET . A-758
S_INCREMENT . . . A-758
S_INITIALIZE A-762
S_MAXIMIZE A-759
S_MDI_CASCADE_WINDOWS

A-759
S_MDI_CLOSE A-759
S_MDI_MAXIMIZE A-759
S_MDI_MINIMIZE A-759
S_MDI_MOVE_MODE A-

759
S_MDI_NEXT_WINDOW

A-759
S_MDI_RESTORE . A-759
S_MDI_SIZE_MODE . A-

759
S_MDI_TILE_WINDOWS

A-759
S_MINIMIZE A-759
S_MOVE_MODE . . A-759
S_NEXT_WINDOW A-759
S_NO_OBJECT A-763
S_NON_CURRENT A-762
S_PASTE A-759
S_REDISPLAY A-759
S_REDISPLAY_DATA A-

759
S_REDISPLAY_DEFAULT

A-762
S_REDISPLAY_REGION

A-759
S_REGISTER_OBJECT A-

762, A-763
S_RESTORE A-760
S_SET_DATA A-760
S_SIZE A-760
S_SIZE_MODE A-760
S_SUBTRACT_OBJECT

A-760
S_UNKNOWN A-763
S_VSCROLL A-760
S_VSCROLL_CHECK A-

760
S_VSCROLL_COMPUTE

A-760
S_VSCROLL_SET . .A-760

EventStruct 193

eventType
EventMap191

ExitFunction
WindowManager606

Expandable
TreeItem554

Expanded
TreeItem554

ExpandedData
FormattedString224

Export
PositionStruct389

ExportPixel
RegionStruct 431

ExportPoint
RegionStruct 431

F
File .200

FileDialog209

fileCreator
DiskFile 140

FileDialog 207

FileInfoStruct 211

FileSystem213

fileType
DiskFile 140

FillPattern
Display 159

fillPattern
PaletteStruct 372

Filter
FileDialog 209

Find
Element 174
List 298

FindClose
DiskFileSystem 143
FileSystem 215
Storage 472

FindFirst
DiskFileSystem 143
FileSystem 215
Storage 473

FindNext
DiskFileSystem 143
FileSystem 215
Storage 473

First
List 298
PopUpItem 382
PullDownItem 414
SystemButton 504

FirstFileSystem
DataPersistence 115

FirstPage
Notebook 348

Flush
Table 513

Focus
WindowObject 647

FocusObject
PopUpItem 382
PullDownItem 415
Window 593
WindowObject 648

focusObject
WindowManager 607

834 Zinc Application Framework 5

FocusOffset
Table 513

Font
Display 159
WindowObject 649

font
PaletteStruct 373

FontInfo
Display 159

fontList
X Resources G-812

fontTable
ScreenDisplay 440

Foreground
Display 160

FormatData 218
FormattedString 225

Formatted String
Property Matrix B-780

FormattedString 221

FormattedText
BignumData 40
DateData 128
FormatData 219
IntegerData 282
RealData 428
TimeData 538
UTimeData 574

fractionDigits
LocaleStruct 306

FrameJumpProc
ZafMSWindowsApp . . 343

FrameProc
ZafMSWindowsApp . . 343

Free
LanguageManager 294

Full
ListBlock 300

FullPath
FileDialog209

G
GdiDisplay 227

GeometryManager228
Window 593

Get
EventManager 187
List299
PopUpItem382
PullDownItem 415
SystemButton504

GetClassName
ObjectPersistence 363

GetCompareFunction
ObjectPersistence 364

GetCompareFunctionName
ObjectPersistence 364

GetCWD
DiskFileSystem143
FileSystem 216
Storage 473

GetDataConstructor
DataPersistence116

GetDriveNames
DiskFileSystem144

GetFile
FileDialog209

GetMessage
LanguageData 290, 291

GetMessageData
LanguageData 291

GetObject
Data 107
DataRecord 120
EventManager 188
PopUpItem 382
PullDownItem 415
WindowObject 650

GetObjectConstructor
ObjectPersistence 364

GetPalette
PaletteData 369

GetUserCallback
ObjectPersistence 364

GetUserCallbackName
ObjectPersistence 364

GetUserObject
ObjectPersistence 365

GetUserObjectName
ObjectPersistence 365

Grid
Table 513

Group 232
Property Matrix B-781

grouping
LocaleStruct 306

H
HeaderBackgroundColor

Table 513

HeaderHeight
Table 514

HeaderTextColor
Table 514

HeaderType
TableHeader 520

Index 835

HeaderWidth
Table 514

Height
BitmapData 52
IconData 264
MouseData 335
RegionStruct 431

height
ImageStruct 274

HelpContext
EventStruct 196
WindowObject 651

HelpObject
HelpTips 244

helpObject
WindowManager 607

HelpObjectTip
WindowObject 652

HelpStub 237

HelpSystem 238

HelpTips 242

HelpTipsType
HelpTips 245

hInstance
ZafMSWindowsApp . . 342

HorizontalScrollBar
Window 594

HotKeyChar
Button 66
Group 235
MessageData 317
Prompt 409

hotKeyChar
MessageStruct 319

HotKeyIndex
Button 66

Group 235
MessageData 317
Prompt409

hotKeyIndex
MessageStruct 319

HotKeyText
ZafMSWindowsApp . .342

HotSpotX
MouseData335

hotSpotX
MouseStruct338

HotSpotY
MouseData335

hotSpotY
MouseStruct338

Hour
UTimeData574

HzJustify
Button 66
Prompt410
String483
Text 529

HzList 247
Property MatrixB-781

HzScrollPos
ScrolledWindow 454

HzShift
PositionStruct389
RegionStruct 431

I
I18nAllocate

I18nData255

I18nData 252

I18nFree

I18nData 256

I18nName
I18nData 255

Icon 257
Display 160
Property Matrix B-781

IconData 262
Icon 259

IconImage
MessageWindow 323

IconStruct 265

IconType
Icon 260

Image 267
Property Matrix B-782

ImageData 272

ImageStruct 274

ImageType
Cursor 101
Mouse 330

Import
PositionStruct 389

ImportPixel
RegionStruct 431

ImportPoint
RegionStruct 431

Increment
ProgressBar 403
ScrollData 448
String 483

Index
List 299
PopUpItem 382
PullDownItem 415
SystemButton 505

IndexMethod

836 Zinc Application Framework 5

Chart 78

InitialDelay
HelpTips 245
WindowObject 653

InitializeOSBitmap
Display 160

InitializeOSIcon
Display 160

InitializeOSMouse
Display 160

InitializeWrappers
ZafMSWindowsApp . . 343

InputFormatData
String 483

InputType
EventStruct 196

Insert
StringData 494

InsertRecord
Table 514

Installed
Device 131

intCurrencySymbol
LocaleStruct 306

Integer 275
Property Matrix B-782

IntegerData 280
Integer 278

integerStringInputFormat
LocaleStruct 306

integerStringOutputFormat
LocaleStruct 306

internalHandle
FileInfoStruct 211

Interval

Timer541

intFractionDigits
LocaleStruct307

Invalid
String484
Text 529

IsA
Element174
WindowObject654

IsoToUnicode
CodeSetData 87

ItemType
PopUpItem382

IValue
Bignum35
BignumData40

J
JobSetup

Printer 395

JulianDay
UTimeData574

JumpProc
ZafMSWindowsApp . .343

K
Key

EventStruct196

Keyboard285

KeyStruct288

L
Language

LanguageManager 294

LanguageAllocate
LanguageManager 295

LanguageData 289, 317

LanguageFree
LanguageManager 295

LanguageManager 293

LanguageName
LanguageData 291
LanguageManager 295

LanguageStruct 319

Last
List 299
PopUpItem 383
PullDownItem 415
SystemButton 505

LastFileSystem
DataPersistence 116

LastPage
Notebook 348

LeapYear
UTimeData 574

left
RegionStruct 431

Length
DiskFile 140
File 202
StorageFile 476
StringData 494

length
FileInfoStruct 211

Line
Display 161

Index 837

line
PositionStruct 388

lines
Display 154

LineStyle
Display 161

lineStyle
PaletteStruct 372

lineTable
ScreenDisplay 441

LinkDraggable
WindowObject 634

LinkMain
Application 25

List 296

list
ComboBox 92

ListBlock 300

ListIndex
Element 175

Live
Splitter 463

Load
Path 375

LocaleAllocate
LocaleData 303

LocaleData 301

LocaleFree
LocaleData 303

LocaleName
LocaleData 303

LocaleStruct 304

Lock
LanguageData 291

Locked
LanguageData 291
Window 594

LogicalEvent
WindowObject655

LogicalPalette
WindowObject659

logicalValue
EventMap191

long
BignumData40
IntegerData282
UTimeData574, 575

LowerCase
String485

M
Main

Application25

MakeFullPath
DiskFileSystem144

MapTable
PaletteData369

Margins
Printer 396

MarksXAxis
Chart 79

MarksYAxis
Chart 79

Maximize Button
Property MatrixB-782

MaximizeButton 310
Window 594

Maximized

Window 595

Maximum
DimensionConstraint . . 138
ProgressBar 403
ScrollData 448

maximum
ScrollStruct 450

MaxLength
StringData 494

MaxOffset
Table 514

mblen
CodeSetData 87

mbstowcs
CodeSetData 87

MDIChildJumpProc
ZafMSWindowsApp . . 343

MDIFrameJumpProc
ZafMSWindowsApp . . 344

MDIType
MDIWindow 316

MDIWindow 313
Property Matrix B-783

MemberUserFunction
WindowObject 663

memberUserFunction
WindowObject 663

menu
PopUpItem 384
PullDownItem 415
SystemButton 505

Merge
DataPersistence 116
ObjectPersistence 365

Message
MessageWindow 324

838 Zinc Application Framework 5

MessageFlags
MessageWindow 324

Messages
LanguageData 292

MessageWindow 320

MilliSecond
UTimeData 574

miniDenominatorX
Display 153

miniDenominatorY
Display 153

Minimize Button
Property Matrix B-783

MinimizeButton 326
Window 595

Minimized
Window 596

MinimizeIcon
Window 596

Minimum
DimensionConstraint . 138
ProgressBar 403
ScrollData 448

minimum
ScrollStruct 450

miniNumeratorX
Display 153

miniNumeratorY
Display 153

Minute
UTimeData 574

MkDir
DiskFileSystem 144
FileSystem 216
Storage 473

Modal

Window 596

Mode
Display 161

modeTable
ScreenDisplay 441

modifiers
EventMap192
EventStruct197

monDecimalSeparator
LocaleStruct307

monGrouping
LocaleStruct307

MonoBackground
Display 162

monoBackground
PaletteStruct373

MonoForeground
Display 162

monoForeground
PaletteStruct373

monoTable
ScreenDisplay 441

Month
UTimeData575

MonthName
UTimeData575

monThousandsSeparator
LocaleStruct307

Motif class names
X ResourcesG-811

Mouse329
Display 162

MouseData 333

MouseEventRoute
WindowManager605

mouseObject
WindowManager 607

MouseStruct 337

mouseTimerID
ZafMSWindowsApp . . 344

Moveable
Window 597

MoveDraggable
WindowObject 634

MoveEvent
WindowObject 665

N
name

FileInfoStruct 212

native3D
ZafMSWindowsApp . . 344

NativeMapping
CodeSetData 88

negativeSign
LocaleStruct 307

negCurrencyPrecedes
LocaleStruct 307

negSignPrecedes
LocaleStruct 307

negSpaceSeparation
LocaleStruct 308

NewHelpTipDelay
HelpTips 245

Next
Device 131
Element 176
WindowObject 665

NextPaneObject

Index 839

Splitter 463

Noncurrent
WindowObject 666

NormalBitmap
TreeItem 555

NormalHotKeys
Window 597

Notebook 346
Property Matrix B-784

Notification 350

NotifyCount
Notification 354
Timer 541

NotifyFocus
WindowObject 667

NotifyMessage
Timer 542

NotifySelection
WindowObject 670

NumberID
Element 177

numberID
FileInfoStruct 212
MessageStruct 319

O
Object

Constraint 96

ObjectFromHandle
ZafMSWindowsApp . . 344

objectHighWord
ZafMSWindowsApp . . 344

objectLowWord
ZafMSWindowsApp . . 344

ObjectPersistence358

ObjNumberID
Constraint96

Offset
Attachment29
TableRecord524

offset
EraStruct180

oldFocusObject
WindowManager608

Open
DiskFileSystem144
FileSystem 216
Storage 474

OpenCreate
File203
Storage 474

operator 205, 578, 578
List299

operator -
BignumData42
List299
PopUpItem384
PullDownItem 416
StringData497
SystemButton505
Timer542
UTimeData576
Window 599, 602

operator --
BignumData42
IntegerData283
RealData429
RegionStruct 433
UTimeData576

operator !=
BignumData45
PositionStruct389
RegionStruct 433
ScrollStruct451

StringData 497
UTimeData 578

operator %
BignumData 43

operator %=
BignumData 45
IntegerData 284
RealData 429

operator ()
Window 602

operator *
BignumData 43
PaletteData 369

operator *=
BignumData 44
IntegerData 283
RealData 429

operator +
BignumData 42
List 297
PopUpItem 380
PullDownItem 413
StringData 497
SystemButton 504
Timer 541
UTimeData 576
Window 586, 602

operator ++
BignumData 43
IntegerData 283
RealData 429
RegionStruct 433
UTimeData 576

operator +=
IntegerData 283
RealData 429
RegionStruct 433
StringData 498
UTimeData 577

operator /
BignumData 43

840 Zinc Application Framework 5

operator /=
BignumData 45
IntegerData 283
RealData 429

operator <
BignumData 45
StringData 498

operator <=
BignumData 46
StringData 498

operator -=
BignumData 44
IntegerData 283
RealData 429
RegionStruct 433
StringData 497
UTimeData 577

operator =
BitmapData 52
IconData 264
IntegerData 283
MouseData 336
RealData 429
ScrollData 449
StringData 498
UTimeData 576

operator ==
BignumData 45
PositionStruct 389
RegionStruct 432
ScrollStruct 451
StringData 499
UTimeData 578

operator >
BignumData 46
StringData 499
UTimeData 578

operator >=
BignumData 46
StringData 499
UTimeData 578

operator >>

File203

operator []
StringData499

OppositeSide
Attachment29
RelativeConstraint 437

Origin
Display 163

OSDraw
WindowObject672

osEvent
EventStruct197

OSI18nName
I18nData255

OSLanguageToZafLanguage
I18nData254

osPalette
PaletteStruct374

OSScreenID
WindowObject673

OutputFormatData
String485

OutputFormatText
String485

Overlap
RegionStruct 432

Owner
Window 597

P
PageHeight

Printer 396

PageWidth
Printer 396

Palette
Display 163

palette
PaletteMap 370

PaletteData 367

PaletteMap 370

PaletteState
WindowObject 674

PaletteStruct 371

PaperHeight
Printer 396

PaperOrientation
Printer 397

PaperWidth
Printer 396

Parent
WindowObject 675

parentDirectoryName
FileSystem 216

ParentDrawBorder
WindowObject 676

ParentDrawFocus
WindowObject 676

Password
String 486

Path 375
PathElement 376

PathElement 376

PathID
Image 270

PathName
Image 270

patternTable
ScreenDisplay 441

Index 841

Pixel
Display 163

pixelsPerInchX
Display 153

pixelsPerInchY
Display 153

Poll
Cursor 101
Device 132
HelpTips 246
Keyboard 286
Mouse 332
Timer 542

PollDevices
EventManager 188

Polygon
Display 164

PopLanguage
DataPersistence 116

PopLevel
DataPersistence 117

PopUpItem 378
Property Matrix B-784

PopUpMenu 385

posCurrencyPrecedes
LocaleStruct 308

Position
EventStruct 197
PositionStruct 389
Splitter 464

PositionStruct 388

positiveSign
LocaleStruct 308

posSignPrecedes
LocaleStruct 308

posSpaceSeparation

LocaleStruct308

postSpace
Display 165

preSpace
Display 165

Previous
Device131
Element176
WindowObject677

PreviousPaneObject
Splitter463

PrintDialog 390

Printer 392

PrinterType
Printer 397

PrintJobStruct399

PrintSetup
Printer 397

ProgressBar400
Property MatrixB-784

ProgressData
ProgressBar 403

ProgressStyle
ProgressBar 404

ProgressType
ProgressBar 404

Prompt406
Property MatrixB-784

PropertiesB-773

Property MatricesB-773
BignumB-779
BitmapB-779
BorderB-779
Button B-779
ComboBoxB-780
DateB-780

Formatted String B-780
Group B-781
HzList B-781
Icon B-781, B-782
Integer B-782
Maximize Button . . . B-782
MDIWindow B-783
Minimize Button B-783
Notebook B-784
PopUpItem B-784
ProgressBar B-784
Prompt B-784
PullDownItem B-785
Real B-785
ScrollBar B-786
Scrolled Window . . . B-786
SpinControl B-786
Splitter B-786
String B-786
SystemButton B-787
Table B-787
TableHeader B-788
TableRecord B-788
Text B-788
Time B-788
Title B-789
ToolBar B-789
TreeItem B-789
TreeList B-790
UTime B-790
VtList B-790
Window B-776
WindowObject B-775

PullDownItem 411
Property Matrix B-785

PullDownMenu 417
Window 597

PushLanguage
DataPersistence 116

PushLevel
DataPersistence 117

Put
EventManager 188

842 Zinc Application Framework 5

Q
QueueBlock 420

QueueElement 421

QueueEvents
Timer 542

QuickTip
WindowObject 677

R
RangeData

String 486

RangeText
String 486

Ratio
RelativeConstraint 437

rawCode
EventMap 191
EventStruct 197

Read
File 203

ReadData
DiskFile 141
File 204
StorageFile 477

ReadFromBeginning
EventManager 188

ReadFromEnd
EventManager 189

ReadOnly
File 204
FileInfoStruct 212
Storage 474

ReadRecord

Table 515

ReadWrite
File204
Storage 474

Real 422
Property MatrixB-785

RealData 426
Real 425

realStringInputFormat
LocaleStruct308

realStringOutputFormat
LocaleStruct308

RearrangeArgs
StandardArg465

Record
Table 515

Rectangle
Display 165

RectangleXORDiff
Display 165

Redisplay
WindowObject679

RedisplayData
WindowObject679

Reference
Attachment30

ReferenceNumberID
Attachment30

Region
Button 67
EventStruct197
RegionStruct 432
WindowObject679

RegionCopy
Display 166

RegionStruct430

RegionType
WindowObject 680

RelativeConstraint 434

Remove
DiskFileSystem 144
FileSystem 217
Storage 474
StringData 494

Rename
DiskFileSystem 145
FileSystem 217
Storage 474

Rep . 730

Rep Utility
ZAF 4 730

Rep4to5 731

Rep4to5 Utility
ZAF 4 731

RepeatDelay
WindowObject 653

Repopulate
Table 515

ReportError
ErrorStub 183

ReportInvalid
String 487

ResetI18n
I18nData 256

ResetOSBitmap
Display 167

ResetOSIcon
Display 167

ResetOSMouse
Display 167

ResetStorage
HelpSystem 241

Index 843

RestoreDisplayContext
Display 157

RestoreDrawContext
Display 157

right
RegionStruct 431

RmDir
DiskFileSystem 145
FileSystem 217
Storage 475

rootDirectoryName
FileSystem 217

RootObject
WindowObject 683

route
EventStruct 198

RowHeight
Table 516

RValue
Bignum 35
BignumData 41

S
Save

Storage 475

SaveAs
Storage 475

Scale
Display 167

Scaled
Image 270

ScreenDisplay 439

ScreenID
EventStruct 198

screenID
WindowObject683

Scroll
EventStruct198

ScrollBar 442
Property MatrixB-786

ScrollData 446
ScrollBar445

Scrolled Window
Property MatrixB-786

ScrolledWindow 452

ScrollEvent
WindowObject685

ScrollHeight
ScrolledWindow 454

ScrollStruct450

ScrollType
ScrollBar445

ScrollWidth
ScrolledWindow 454

Second
UTimeData575

Seek
DiskFile 141
File204
StorageFile477

SeekNextRecord
Table 516

SeekPreviousRecord
Table 516

SeekRandomRecord
Table 516

Selected
WindowObject686

SelectedBitmap

TreeItem 555

SelectionType
HzList 250
TreeList 562
VtList 582
Window 598

SelectOnDoubleClick
Button 68

SelectOnDownClick
Button 68

SendMessage
Button 68

SendMessageText
Button 69

SendMessageWhenSelected
Button 68

SetAcceptDrop
WindowObject 614

SetAllowDefault
Button 61

SetAllowInvalid
String 481

SetAllowModifyCollate
PrintDialog 391

SetAllowModifyCopies
PrintDialog 391

SetAllowModifyRange
PrintDialog 391

SetAllowToggling
Button 62

SetAutoClear
String 481
Text 528

SetAutomaticUpdate
Window 588
WindowObject 617

844 Zinc Application Framework 5

SetAutoRepeatSelection
Button 62

SetAutoSelect
Group 234

SetAutoSize
Bitmap 49
Button 63
Image 269
Prompt 408
ScrollBar 445

SetAutoSortData
ComboBox 92
HzList 249
TreeItem 553
TreeList 561
VtList 581

SetAxisColor
Chart 76

SetBackground
Display 152

SetBackgroundColor
ComboBox 92
HzList 250
TreeList 563
VtList 581
WindowObject 619

SetBasisYear
UTimeData 573

SetBignum
Bignum 36
BignumData 41

SetBignumData
Bignum 34

SetBitmap
BitmapData 52

SetBitmapData
Bitmap 49
Button 63

SetBlinkRate

Cursor 100

SetBordered
WindowObject621

SetBottomOffset
Table 512

SetButtonType
Button 64

SetCellHeight
HzList 250

SetCellSize
Display 153

SetCellWidth
HzList 250

SetCenter
RelativeConstraint 436

SetChanged
Window 590
WindowObject622

SetChar
StringData492

SetChartType
Chart 76

SetClipRegion
Display 153

SetCodeSetName
CodeSetData 84

SetColumnText
Table 512

SetCompareFunction
List297

SetCompareFunctions
ObjectPersistence 365

SetCompressedData
FormattedString223

SetCompressedText

FormattedString 223

SetCoordinateType
Display 156
Table 512
WindowObject 627

SetCopyDraggable
WindowObject 634

SetCurrent
List 298
ProgressBar 402
ScrollData 448

SetCurrentOffset
Table 512

SetCurrentPage
Notebook 348

SetCursorOffset
String 481
Text 528

SetCursorPosition
Text 528

SetDataConstructors
DataPersistence 118

SetDataGroupBackground-
Color

Chart 77

SetDataGroupFillPattern
Chart 77

SetDataGroupFont
Chart 78

SetDataGroupForegroundCol-
or

Chart 78

SetDataGroupLineStyle
Chart 78

SetDate
DateData 128

Index 845

SetDateData
Date 124

SetDefaultButton
Window 592

SetDefaultEventRoute
WindowManager 605

SetDefaultLeadByte
CodeSetData 87

SetDefaultMessageFlag
MessageWindow 323

SetDeleteData
FormattedString 224

SetDeleteText
FormattedString 224

SetDelta
ProgressBar 402
ScrollData 448
SpinControl 458

SetDepressed
Button 65

SetDepth
Button 65

SetDestroyable
Data 105
Window 593

SetDevice
EventStruct 195

SetDeviceImage
EventManager 189

SetDevicePosition
EventManager 189

SetDeviceState
Device 130
EventManager 189

SetDirectory
FileDialog 209

SetDisabled
WindowObject631

SetDisplay
EventStruct196

SetDisplayContext
Display 157

SetDockType
ToolBar548

SetDrawContext
Display 157

SetDrawLines
TreeList562

SetDrive
DiskFileSystem145

SetEditMode
WindowObject639

SetError
Application25
Data105
DataPersistence115
File202
FileSystem 214
WindowObject639

SetEventManager
EventStruct196

SetExitFunction
WindowManager607

SetExpandable
TreeItem554

SetExpanded
TreeItem554

SetExpandedData
FormattedString224

SetExpandedText
FormattedString225

SetFile

FileDialog 209

SetFillPattern
Display 159

SetFilter
FileDialog 209

SetFocus
WindowObject 647

SetFocusOffset
Table 513

SetFont
ComboBox 92
Display 159
HzList 251
VtList 582
WindowObject 649

SetForeground
Display 160

SetFormatData
FormattedString 225

SetFormatText
FormattedString 225

SetGrid
Table 513

SetHeaderBackgroundColor
Table 513

SetHeaderHeight
Table 514

SetHeaderTextColor
Table 514

SetHeaderType
TableHeader 520

SetHeaderWidth
Table 514

SetHelpContext
EventStruct 196
WindowObject 651

846 Zinc Application Framework 5

SetHelpObject
HelpTips 244

SetHelpObjectTip
WindowObject 652

SetHelpTipsType
HelpTips 245

SetHotKey
Button 66
Group 235
MessageData 317
Prompt 409

SetHotSpot
MouseData 335

SetHzJustify
Button 67
Prompt 410
String 483
Text 529

SetHzScrollPos
ScrolledWindow 454

SetI18nName
I18nData 255

SetIcon
IconData 264

SetIconData
Icon 260

SetIconImage
Icon 260
MessageWindow 323

SetIconType
Icon 260

SetImageType
Cursor 101
Mouse 330

SetIndexMethod
Chart 79

SetInitialDelay

HelpTips245
WindowObject653

SetInputFormat
String483

SetInputFormatData
String483

SetInteger
Integer279
IntegerData282

SetIntegerData
Integer278

SetInterval
Timer541

SetInvalid
String484
Text 529

SetItemType
PopUpItem382

SetJulianDay
UTimeData574

SetKey
EventStruct196

SetLanguage
LanguageManager 294

SetLanguageName
LanguageData 291
LanguageManager 295

SetLineStyle
Display 161

SetLinkDraggable
WindowObject634

SetLive
Splitter463

SetLocale
LocaleData302

SetLocaleName

LocaleData 303

SetLocked
Window 594

SetLowerCase
String 485

SetMapTable
PaletteData 369

SetMargins
Printer 396

SetMarksXAxis
Chart 79

SetMarksYAxis
Chart 79

SetMaximized
Window 595

SetMaximum
DimensionConstraint . . 138
ProgressBar 403
ScrollData 448

SetMaxLength
StringData 494

SetMaxOffset
Table 514

SetMDIType
MDIWindow 316

SetMessage
LanguageData 292
MessageWindow 324

SetMessageFlags
MessageWindow 324

SetMessages
LanguageData 292

SetMinimized
Window 596

SetMinimum
DimensionConstraint . . 138

Index 847

ProgressBar 403
ScrollData 448

SetModal
Window 596

SetMode
Display 161

SetMonoBackground
Display 162

SetMonoForeground
Display 162

SetMouse
MouseData 335

SetMouseEventRoute
WindowManager 605

SetMoveable
Window 597

SetMoveDraggable
WindowObject 634

SetNativeMapping
CodeSetData 88

SetNewHelpTipDelay
HelpTips 245

SetNextPaneObject
Splitter 463

SetNoncurrent
WindowObject 666

SetNormalBitmap
TreeItem 555

SetNormalHotKeys
Window 597

SetNotifyMessage
Timer 542

SetNumberID
Element 177

SetObject

Constraint96

SetObjectConstructors
ObjectPersistence 365

SetObjNumberID
Constraint96

SetOffset
Attachment29
TableRecord524

SetOppositeSide
Attachment29
RelativeConstraint 437

SetOrigin
Display 163

SetOSDraw
WindowObject672

SetOSText
StringData495

SetOSWText
StringData495

SetOutputFormat
String485

SetOutputFormatData
String485

SetOwner
Window 597

SetPageHeight
Printer 396

SetPageWidth
Printer 396

SetPalette
Display 163

SetPaperHeight
Printer 396

SetPaperOrientation
Printer 397

SetPaperWidth
Printer 396

SetParent
WindowObject 675

SetParentDrawBorder
WindowObject 676

SetParentDrawFocus
WindowObject 676

SetParentPalette
WindowObject 676

SetPassword
String 486

SetPath
PathElement 376

SetPathID
Image 270

SetPathName
Image 270

SetPosition
EventStruct 197
Splitter 464

SetPreviousPaneObject
Splitter 463

SetPrinterType
Printer 397

SetProgressData
ProgressBar 403

SetProgressStyle
ProgressBar 404

SetProgressType
ProgressBar 404

SetQueueEvents
Timer 542

SetQuickTip
WindowObject 677

848 Zinc Application Framework 5

SetRange
String 486

SetRangeData
String 486

SetRatio
RelativeConstraint 437

SetReadFunction
Table 515

SetReal
Real 425
RealData 428

SetRealData
Real 425

SetReference
Attachment 30

SetReferenceNumberID
Attachment 30

SetRegion
Button 67
EventStruct 197
WindowObject 679

SetRegionType
WindowObject 680

SetRepeatDelay
WindowObject 653

SetReportInvalid
String 487

SetRowHeight
Table 516

SetScale
Display 167

SetScaled
Image 270

SetScreenID
EventStruct 198

SetScroll

EventStruct198
ScrollData449

SetScrollData
ScrollBar445

SetScrollHeight
ScrolledWindow 454

SetScrollType
ScrollBar445

SetScrollWidth
ScrolledWindow 454

SetSelected
String487
WindowObject686

SetSelectedBitmap
TreeItem 555

SetSelectionType
HzList 250
TreeItem 555
TreeList562
VtList 582
Window 598

SetSelectOnDoubleClick
Button 68

SetSelectOnDownClick
Button 68

SetSendMessageText
Button 69

SetSendMessageWhenSelect-
ed

Button 68

SetShowing
ScrollData449

SetSizeable
Window 598

SetSplitterType
Splitter464

SetSprintf
StandardArg 466

SetSscanf
StandardArg 466

SetStaticArray
ImageStruct 274

SetStaticData
LanguageData 292
PaletteData 369
StringData 496

SetStaticHandle
BitmapStruct 54
IconStruct 266
MouseStruct 339

SetStep
ProgressBar 404
ScrollData 449

SetStretch
Attachment 30
RelativeConstraint 437

SetStringData
Button 70
Group 235
Prompt 410
String 487
Text 529
TreeItem 556

SetStringID
Element 178

SetSupportObject
WindowObject 687

SetSystemButtonType
SystemButton 505

SetSystemObject
WindowObject 687

SetTabHeight
Notebook 349

SetTabHotKey

Index 849

Notebook 349

SetTabText
Notebook 349

SetTabWidth
Notebook 349

SetTemporary
Window 601

SetText
Button 70
String 487
StringData 496
Text 530
TreeItem 556
Window 601
WindowObject 687

SetTextColor
ComboBox 92
HzList 251
TreeList 563
VtList 582
WindowObject 689

SetTextStyle
ProgressBar 405

SetTextTitle
Chart 79

SetTextXAxis
Chart 79

SetTextYAxis
Chart 80

SetThickness
Splitter 464

SetTiled
Image 270

SetTime
TimeData 538

SetTimeData
Time 535

SetTopOffset
Table 517

SetTransparentBackground
Prompt410

SetType
Attachment30
DimensionConstraint . .139
RelativeConstraint 437

SetUnanswered
String488
Text 530

SetUpdate
Notification 354

SetUpperCase
String488

SetUserCallbacks
ObjectPersistence 365

SetUserFunction
WindowObject691

SetUserObjects
ObjectPersistence 366

SetUserPalette
HelpTips246

SetUserPaletteData
WindowObject693

SetUTime
UTimeData575

SetUTimeData
UTime569

SetValue
Button 71

SetVariableName
String489

SetVersion
Storage 475

SetViewCurrent

TreeList 563

SetViewOnly
ComboBox 93
String 489
Text 531

SetVirtualField
TableHeader 521

SetVirtualRecord
Table 517

SetVisible
WindowObject 699

SetVoidData
EventStruct 198

SetVtJustify
Button 67
Prompt 410

SetVtScrollPos
ScrolledWindow 455

SetWallpaper
Image 271

SetWidth
Border 57

SetWindow
EventStruct 199

SetWindowManager
EventStruct 199

SetWindowObject
EventStruct 199

SetWordWrap
Text 531

SetWrapChildren
ToolBar 548

SetWrappedData
SpinControl 459

SetWriteFunction
Table 517

850 Zinc Application Framework 5

SetZoneOffset
UTimeData 576

ShiftPressed
Keyboard 287

shiftState
KeyStruct 288

Showing
ScrollData 449

showing
ScrollStruct 450

Sizeable
Window 598

skipGregorian
LocaleStruct 308

Sort
List 299
PopUpItem 384
PullDownItem 416
SystemButton 505

SpinControl 456
Property Matrix B-786

Splitter 460
Property Matrix B-786

SplitterType
Splitter 464

StandardArg 465

startDate
EraStruct 181

state
PaletteMap 370

StaticArray
ImageStruct 274

StaticData
LanguageData 292
PaletteData 369
StringData 496

StaticHandle
BitmapStruct 54
IconStruct266
MouseStruct339

StatusBar468

Step
ProgressBar 404
ScrollData449

Storage471

StorageFile 476

streq 717

Stretch
Attachment30
RelativeConstraint 437

String 478
Property MatrixB-786

StringData490
Button 70
Group 235
Prompt410
String487
Text 529
TreeItem 555

StringID
Element178

stringID
FileInfoStruct212
MessageStruct 319

StripFullPath
DiskFileSystem145

strneq 720

strnicmp721

strrepc722

strstrip 723

Subtract
List299

PopUpItem 384
PullDownItem 416
SystemButton 505
Timer 542
Window 599

SubtractCompareFunction
ObjectPersistence 366

SubtractDataConstructor
DataPersistence 118

SubtractFileSystem
DataPersistence 118

SubtractNotification
Notification 352

SubtractObjectConstructor
ObjectPersistence 366

SubtractStaticModule
I18nData 254

SubtractUserCallback
ObjectPersistence 366

SubtractUserObject
ObjectPersistence 366

support
Window 599

SupportCurrent
Window 599

SupportDestroy
Window 599

SupportFirst
Window 599

SupportLast
Window 599

SupportObject
WindowObject 687

SystemButton 501
Property Matrix B-787
Window 600

Index 851

SystemButtonMenu
Window 600

SystemButtonType
SystemButton 505

SystemObject
WindowObject 687

T
TabHeight

Notebook 349

TabHotKeyChar
Notebook 349

TabHotKeyIndex
Notebook 349

Table 507
Property Matrix B-787
TableHeader 521
TableRecord 524

TableHeader 518
Property Matrix B-788

TableRecord 522
Property Matrix B-788

TabText
Notebook 349

TabWidth
Notebook 349

Tell
DiskFile 141
File 205
StorageFile 477
Table 512

TempName
DiskFileSystem 145

Temporary
File 205

Window 601

Text 525
Button 70
Display 168
Property MatrixB-788
String487
StringData496
Text 530
TreeItem556
Window 601
WindowObject687

text
EventStruct198
MessageStruct 319

TextBlock
Printer 398

TextColor
WindowObject689

TextLine
Printer 398

TextMode
File205

TextSize
Display 169

TextStyle
ProgressBar 405

TextTitle
Chart 79

TextXAxis
Chart 79

TextYAxis
Chart 80

Thickness
Splitter464

thousandsSeparator
LocaleStruct309

Tiled

Image 270

Time 532
Property Matrix B-788

time12StringOutputFormat
LocaleStruct 309

TimeData 536
Time 535

TimeName
UTimeData 575

Timer 539

timeSeparator
LocaleStruct 309

TimeStamp
LocaleData 303

timeStringInputFormat
LocaleStruct 309

timeStringOutputFormat
LocaleStruct 309

Title 543
Property Matrix B-789
Window 601

ToggleExpanded
TreeItem 554

ToggleSelected
WindowObject 686

ToolBar 546
Property Matrix B-789

top
RegionStruct 431

topLevelShellClassRec
X Resources G-811

TopOffset
Table 517

Touching
RegionStruct 432

852 Zinc Application Framework 5

TransparentBackground
Prompt 410

TreeItem 550
Property Matrix B-789

TreeList 558
Property Matrix B-790
TreeItem 556

Type
Attachment 30
DimensionConstraint . 139
RelativeConstraint 437

type
EventStruct 198
PaletteMap 370

U
Unanswered

String 488
Text 530

UnicodeToIso
CodeSetData 88

UnLock
LanguageData 291

Update
Notification 354

UpdateData
Notification 356

UpdateObjects
Notification 356

UpperCase
String 488

userFlags
WindowObject 690

UserFunction
WindowObject 691

userFunction
WindowObject691

UserInformation
WindowObject692

userObject
WindowObject693

UserPaletteData
WindowObject693

userPaletteData
WindowObject693

userStatus
WindowObject698

UTime 565
Property MatrixB-790

UTimeData 570
UTime569

V
Validate

String488

ValidName
DiskFileSystem146

Value
Button 71
Integer279
IntegerData282
Real 425
RealData428
UTimeData575

value
KeyStruct 288

VariableName
String489

Version
Storage 475

VerticalScrollBar
Window 602

ViewCount
TreeList 563

ViewCurrent
TreeItem 556
TreeList 563

ViewFirst
TreeItem 556
TreeList 564

ViewLast
TreeItem 557
TreeList 564

ViewLevel
TreeItem 557

ViewNext
TreeItem 557

ViewOnly
ComboBox 93
String 489
Text 531

ViewPrevious
TreeItem 557

VirtualField
TableHeader 521

VirtualRecord
Table 517

Visible
WindowObject 699

VoidData
EventStruct 198

vsprintf
StandardArg 466

vsscanf
StandardArg 467

VtJustify

Index 853

Button 66
Prompt 410

VtList 579
Property Matrix B-790

VtScrollPos
ScrolledWindow 455

VtShift
PositionStruct 389
RegionStruct 432

W
Wallpaper

Image 270

wcstombs
CodeSetData 88

Width
BitmapData 52
Border 57
IconData 264
MouseData 336
RegionStruct 432

width
ImageStruct 274

WildStrcmp 726

Window 583
EventStruct 199
Property Matrix B-776

WindowManager 603
EventStruct 199

windowManager
WindowObject 700

WindowObject 609
EventStruct 199
Property Matrix B-775

windowsPlatform

ZafMSWindowsApp . .345

windowsVersion
ZafMSWindowsApp . .345

WordWrap
Text 531

WrapChildren
ToolBar548

WrappedData
SpinControl 459

Write
File205
WindowObject701

WriteData
DiskFile 141
File206
StorageFile477

WriteRecord
Table 517

X
X Resources G-811

xmBulletinBoardClassRec
X ResourcesG-811

xmCascadeButtonClassRec
X ResourcesG-812

xmFileSelectionBoxWidget
X ResourcesG-811

xmLabelClassRec
X ResourcesG-812

xmPrimitiveClassRec
X ResourcesG-811

xmPushButtonClassRec
X ResourcesG-811

xmRowColumnClassRec

X Resources G-812

xmRowColumnWidgetClass-
Rec

X Resources G-812

xmScaleClassRec
X Resources G-812

xmScrollBarClassRec
X Resources G-812

xmTextFieldClassRec
X Resources G-811

Y
Year

UTimeData 576

Z
ZAF 5 to 4 Class Comparisons
C-791

ZAF 4 C-791

ZafAbs 705

ZafCoordinate 147

ZafCrNlToCr 706

ZafCrNlToNl 707

ZafCrToCrNl 708

ZafIChar
StringData 496

ZafLanguageToZafLocale
I18nData 255

ZafLocaleToZafLanguage
I18nData 254

ZafMax 710

854 Zinc Application Framework 5

ZafMessageStruct
LanguageData 292

ZafMin 711

ZafMSWindowsApp 340

ZafNlToCrNl 712

zafRegion
WindowObject 679

ZafRegisterMouse 714

ZafStrColl 715

ZafStrdup 716

ZafStricmp 718

ZafStrlwr 719

ZafStrupr 724

ZafStrXFrm 725

ZMake 746

ZoneOffset
UTimeData 576

	Table of Contents
	Introduction
	Class Reference
	Class Hierarchy
	ZafApplication
	ZafAttachment
	ZafBignum
	ZafBignumData
	ZafBitmap
	ZafBitmapData
	ZafBitmapStruct
	ZafBorder
	ZafButton
	ZafChart
	ZafChartStub
	ZafCodeSetData
	ZafComboBox
	ZafConstraint
	ZafCoordinateType
	ZafCursor
	ZafData
	ZafDataManager
	ZafDataPersistence
	ZafDataRecord
	ZafDate
	ZafDateData
	ZafDevice
	ZafDialogWindow
	ZafDimensionConstraint
	ZafDiskFile
	ZafDiskFileSystem
	ZafDisplay
	ZafElement
	ZafEraStruct
	ZafErrorStub
	ZafErrorSystem
	ZafEventManager
	ZafEventMap
	ZafEventStruct
	ZafFile
	ZafFileDialog
	ZafFileInfoStruct
	ZafFileSystem
	ZafFormatData
	ZafFormattedString
	ZafGdiDisplay
	ZafGeometryManager
	ZafGroup
	ZafHelpStub
	ZafHelpSystem
	ZafHelpTips
	ZafHzList
	ZafI18nData
	ZafIcon
	ZafIconData
	ZafIconStruct
	ZafImage
	ZafImageData
	ZafImageStruct
	ZafInteger
	ZafIntegerData
	ZafKeyboard
	ZafKeyStruct
	ZafLanguageData
	ZafLanguageManager
	ZafList
	ZafListBlock
	ZafLocaleData
	ZafLocaleStruct
	ZafMaximizeButton
	ZafMDIWindow
	ZafMessageData
	ZafMessageStruct
	ZafMessageWindow
	ZafMinimizeButton
	ZafMouse
	ZafMouseData
	ZafMouseStruct
	ZafMSWindowsApp
	ZafNotebook
	ZafNotification
	ZafObjectPersistence
	ZafPaletteData
	ZafPaletteMap
	ZafPaletteStruct
	ZafPath
	ZafPathElement
	ZafPopUpItem
	ZafPopUpMenu
	ZafPositionStruct
	ZafPrintDialog
	ZafPrinter
	ZafPrintJobStruct
	ZafProgressBar
	ZafPrompt
	ZafPullDownItem
	ZafPullDownMenu
	ZafQueueBlock
	ZafQueueElement
	ZafReal
	ZafRealData
	ZafRegionStruct
	ZafRelativeConstraint
	ZafScreenDisplay
	ZafScrollBar
	ZafScrollData
	ZafScrollStruct
	ZafScrolledWindow
	ZafSpinControl
	ZafSplitter
	ZafStandardArg
	ZafStatusBar
	ZafStorage
	ZafStorageFile
	ZafString
	ZafStringData
	ZafSystemButton
	ZafTable
	ZafTableHeader
	ZafTableRecord
	ZafText
	ZafTime
	ZafTimeData
	ZafTimer
	ZafTitle
	ZafToolBar
	ZafTreeItem
	ZafTreeList
	ZafUTime
	ZafUTimeData
	ZafVtList
	ZafWindow
	ZafWindowManager
	ZafWindowObject

	Function Reference
	ZafAbs
	ZafCrNlToCr
	ZafCrNlToNl
	ZafCrToCrNl
	DynamicPtrCast
	ZafMax
	ZafMin
	ZafNlToCrNl
	ZafRegisterMouse
	ZafStrColl
	ZafStrdup
	streq
	ZafStricmp
	ZafStrlwr
	strneq
	strnicmp
	strrepc
	strstrip
	ZafStrupr
	ZafStrXFrm
	WildStrcmp

	Utility Reference
	Convert
	Rep
	Rep4to5
	ZMake

	Appendices
	Event Definitions
	Property Matrices
	ZAF 5 to 4 Class Comparisons
	Character Maps
	ISO Country Codes
	ISO Language Codes
	X Resources
	Zinc Coding Standards

	Index
	A
	AbortJob
	AcceptDrop
	ActivateObject
	ActiveModel
	Add
	AddColor
	AddCompareFunction
	AddDataConstructor
	AddDataGroup
	AddDataPoint
	AddDepthItem
	AddFileSystem
	AddFont
	AddGenericObjects
	AddNotification
	AddObjectConstructor
	AddPalette
	AddStaticModule
	AddUserCallback
	AddUserObject
	allFilesFilter
	Allocate
	AllocateData
	AllocateFile
	AllowDefault
	AllowInvalid
	AllowModifyCollate
	AllowModifyCopies
	AllowModifyRange
	AllowToggling
	altDigits
	AltPressed
	Append
	Application 22
	argc
	argv
	Array
	array
	Assign
	Attachment 27
	attributes
	AutoClear
	AutomaticUpdate
	AutoRepeatSelection
	AutoSelect
	AutoSize
	AutoSortData
	available3D
	AxisColor

	B
	Background
	BackgroundColor
	BasisYear
	Beep
	BeginDraw
	beginGregorian
	BeginJob
	BeginPage
	Bignum 32
	BignumData 37
	BinaryMode
	Bitmap 47
	BitmapData 50
	BitmapStruct 53
	blankString
	BlinkRate
	Blocked
	Border 55
	Bordered
	bottom
	BottomOffset
	BroadcastEvent
	Button 58
	ButtonType

	C
	canonicalLocale
	CaptureMouse
	CellHeight
	CellWidth
	Center
	Changed
	ChangeExtension
	Char
	Chart 72
	ChartStub 81
	ChartType
	ChDir
	ClassID
	classID
	ClassName
	className
	Clear
	ClearCompareFunctions
	ClearDataAll
	ClearDataConstructors
	ClearDataGroup
	ClearFileSystems
	ClearImage
	ClearMessageFlags
	ClearNotifications
	ClearObjectConstructors
	ClearText
	ClearUserCallbacks
	ClearUserObjects
	ClientRegion
	ClipRegion
	Close
	CodeSetAllocate
	CodeSetData 82
	CodeSetFree
	CodeSetName
	colorBackground
	colorForeground
	ColorInfo
	colorTable
	column
	columns
	ComboBox 89
	commonControlsAvailable
	Compare
	CompareAscending
	CompareDescending
	CompareFunction
	CompressedData
	Constraint 94
	Control
	Convert 729
	Convert Utility
	ConvertCoordinates
	converted
	ConvertRegion
	convertText
	ConvertToDrawRegion
	ConvertToObjectPosition
	ConvertToOSBitmap
	ConvertToOSChar
	ConvertToOSIcon
	ConvertToOSMouse
	ConvertToOSPosition
	ConvertToOSRegion
	ConvertToOSString
	ConvertToOSWChar
	ConvertToOSWString
	ConvertToScreenPosition
	ConvertToZafBitmap
	ConvertToZafChar
	ConvertToZafEvent
	ConvertToZafIcon
	ConvertToZafMouse
	ConvertToZafPosition
	ConvertToZafRegion
	ConvertToZafString
	ConvertXValue
	ConvertYValue
	CoordinateStruct 97
	CoordinateType
	coordinateType
	CopyDraggable
	CornerScrollBar
	Count
	CountryCodeToZafLocale
	Create
	CreateSubclassedWindow
	creditLeftParen
	creditRightParen
	Ctl3dAutoSubclass
	Ctl3dEnabled
	ctl3dModule
	Ctl3dRegister
	Ctl3dSubclassCtl
	Ctl3dUnregister
	CtrlPressed
	currencySymbol
	Current
	current
	CurrentClassID
	CurrentClassName
	currentDirectoryName
	CurrentFile
	CurrentFileSystem
	CurrentLanguage
	CurrentOffset
	CurrentPage
	Cursor 99
	CursorOffset
	CursorPosition

	D
	Data 102
	data
	DataGroup
	DataGroupBackgroundColor
	DataGroupFillPattern
	DataGroupFont
	DataGroupForegroundColor
	DataGroupLineStyle
	DataManager 108
	DataPersistence 110
	DataPoint
	DataRecord 119
	Date 121
	DateData 126
	dateSeparator
	dateStringInputFormat
	dateStringOutputFormat
	dateTimeStringInputFormat
	dateTimeStringOutputFormat
	Day
	DayName
	DayOfWeek
	DayOfYear
	DaysInMonth
	DaysInYear
	DeactivateObject
	decimalSeparator
	Decrement
	DefaultButton
	DefaultEventRoute
	defaultFilterName
	DefaultLeadByte
	DefaultMessageFlag
	DefaultUserFunction
	DefaultValidateFunction
	defDigits
	DeleteData
	DeleteDriveNames
	DeleteRecord
	Delta
	delta
	Depressed
	Depth
	DepthCurrent
	DepthFirst
	DepthLast
	DepthNext
	DepthPrevious
	DerivedAccess
	Destroy
	Destroyable
	DestroyColor
	DestroyEvent
	DestroyFont
	DestroyOSBitmap
	DestroyOSIcon
	DestroyOSMouse
	DestroyZafBitmap
	DestroyZafIcon
	DestroyZafMouse
	Device 129
	DeviceState
	DeviceType
	DialogWindow 133
	DimensionConstraint 136
	direction
	Directory
	dirSepStr
	Disabled
	DiskFile 140
	DiskFileSystem 142
	Display 147
	display
	DisplayContext
	DisplayHelp
	DisplayMode
	DisplayType
	DockType
	double
	DragDropEvent
	Draggable
	dragObject
	dragStartPosition
	dragTest
	Draw
	DrawBackground
	DrawBorder
	DrawContext
	DrawFocus
	DrawLines
	DrawShadow
	dropDownCombo
	Duplicate
	Dynamic Properties
	DynamicOSText
	DynamicOSWText
	DynamicPtrCast 709
	DynamicText

	E
	EditMode
	Element 170
	Ellipse
	Encompassed
	endDate
	EndDraw
	EndJob
	EndPage
	eraFormat
	eraName
	EraStruct 180
	eraTable
	eraTableLength
	Error
	ErrorMessage
	errorString
	ErrorStub 182
	ErrorSystem 184
	EvaluateIsA
	Event
	event
	EventManager 186
	eventManager
	EventMap 191
	Events
	EventStruct 193
	eventType
	ExitFunction
	Expandable
	Expanded
	ExpandedData
	Export
	ExportPixel
	ExportPoint

	F
	File 200
	fileCreator
	FileDialog 207
	FileInfoStruct 211
	FileSystem 213
	fileType
	FillPattern
	fillPattern
	Filter
	Find
	FindClose
	FindFirst
	FindNext
	First
	FirstFileSystem
	FirstPage
	Flush
	Focus
	FocusObject
	focusObject
	FocusOffset
	Font
	font
	FontInfo
	fontList
	fontTable
	Foreground
	FormatData 218
	Formatted String
	FormattedString 221
	FormattedText
	fractionDigits
	FrameJumpProc
	FrameProc
	Free
	Full
	FullPath

	G
	GdiDisplay 227
	GeometryManager 228
	Get
	GetClassName
	GetCompareFunction
	GetCompareFunctionName
	GetCWD
	GetDataConstructor
	GetDriveNames
	GetFile
	GetMessage
	GetMessageData
	GetObject
	GetObjectConstructor
	GetPalette
	GetUserCallback
	GetUserCallbackName
	GetUserObject
	GetUserObjectName
	Grid
	Group 232
	grouping

	H
	HeaderBackgroundColor
	HeaderHeight
	HeaderTextColor
	HeaderType
	HeaderWidth
	Height
	height
	HelpContext
	HelpObject
	helpObject
	HelpObjectTip
	HelpStub 237
	HelpSystem 238
	HelpTips 242
	HelpTipsType
	hInstance
	HorizontalScrollBar
	HotKeyChar
	hotKeyChar
	HotKeyIndex
	hotKeyIndex
	HotKeyText
	HotSpotX
	hotSpotX
	HotSpotY
	hotSpotY
	Hour
	HzJustify
	HzList 247
	HzScrollPos
	HzShift

	I
	I18nAllocate
	I18nData 252
	I18nFree
	I18nName
	Icon 257
	IconData 262
	IconImage
	IconStruct 265
	IconType
	Image 267
	ImageData 272
	ImageStruct 274
	ImageType
	Import
	ImportPixel
	ImportPoint
	Increment
	Index
	IndexMethod
	InitialDelay
	InitializeOSBitmap
	InitializeOSIcon
	InitializeOSMouse
	InitializeWrappers
	InputFormatData
	InputType
	Insert
	InsertRecord
	Installed
	intCurrencySymbol
	Integer 275
	IntegerData 280
	integerStringInputFormat
	integerStringOutputFormat
	internalHandle
	Interval
	intFractionDigits
	Invalid
	IsA
	IsoToUnicode
	ItemType
	IValue

	J
	JobSetup
	JulianDay
	JumpProc

	K
	Key
	Keyboard 285
	KeyStruct 288

	L
	Language
	LanguageAllocate
	LanguageData 289, 317
	LanguageFree
	LanguageManager 293
	LanguageName
	LanguageStruct 319
	Last
	LastFileSystem
	LastPage
	LeapYear
	left
	Length
	length
	Line
	line
	lines
	LineStyle
	lineStyle
	lineTable
	LinkDraggable
	LinkMain
	List 296
	list
	ListBlock 300
	ListIndex
	Live
	Load
	LocaleAllocate
	LocaleData 301
	LocaleFree
	LocaleName
	LocaleStruct 304
	Lock
	Locked
	LogicalEvent
	LogicalPalette
	logicalValue
	long
	LowerCase

	M
	Main
	MakeFullPath
	MapTable
	Margins
	MarksXAxis
	MarksYAxis
	Maximize Button
	MaximizeButton 310
	Maximized
	Maximum
	maximum
	MaxLength
	MaxOffset
	mblen
	mbstowcs
	MDIChildJumpProc
	MDIFrameJumpProc
	MDIType
	MDIWindow 313
	MemberUserFunction
	memberUserFunction
	menu
	Merge
	Message
	MessageFlags
	Messages
	MessageWindow 320
	MilliSecond
	miniDenominatorX
	miniDenominatorY
	Minimize Button
	MinimizeButton 326
	Minimized
	MinimizeIcon
	Minimum
	minimum
	miniNumeratorX
	miniNumeratorY
	Minute
	MkDir
	Modal
	Mode
	modeTable
	modifiers
	monDecimalSeparator
	monGrouping
	MonoBackground
	monoBackground
	MonoForeground
	monoForeground
	monoTable
	Month
	MonthName
	monThousandsSeparator
	Motif class names
	Mouse 329
	MouseData 333
	MouseEventRoute
	mouseObject
	MouseStruct 337
	mouseTimerID
	Moveable
	MoveDraggable
	MoveEvent

	N
	name
	native3D
	NativeMapping
	negativeSign
	negCurrencyPrecedes
	negSignPrecedes
	negSpaceSeparation
	NewHelpTipDelay
	Next
	NextPaneObject
	Noncurrent
	NormalBitmap
	NormalHotKeys
	Notebook 346
	Notification 350
	NotifyCount
	NotifyFocus
	NotifyMessage
	NotifySelection
	NumberID
	numberID

	O
	Object
	ObjectFromHandle
	objectHighWord
	objectLowWord
	ObjectPersistence 358
	ObjNumberID
	Offset
	offset
	oldFocusObject
	Open
	OpenCreate
	operator 205, 578, 578
	operator -
	operator --
	operator !=
	operator %
	operator %=
	operator ()
	operator *
	operator *=
	operator +
	operator ++
	operator +=
	operator /
	operator /=
	operator <
	operator <=
	operator -=
	operator =
	operator ==
	operator >
	operator >=
	operator >>
	operator []
	OppositeSide
	Origin
	OSDraw
	osEvent
	OSI18nName
	OSLanguageToZafLanguage
	osPalette
	OSScreenID
	OutputFormatData
	OutputFormatText
	Overlap
	Owner

	P
	PageHeight
	PageWidth
	Palette
	palette
	PaletteData 367
	PaletteMap 370
	PaletteState
	PaletteStruct 371
	PaperHeight
	PaperOrientation
	PaperWidth
	Parent
	parentDirectoryName
	ParentDrawBorder
	ParentDrawFocus
	Password
	Path 375
	PathElement 376
	PathID
	PathName
	patternTable
	Pixel
	pixelsPerInchX
	pixelsPerInchY
	Poll
	PollDevices
	Polygon
	PopLanguage
	PopLevel
	PopUpItem 378
	PopUpMenu 385
	posCurrencyPrecedes
	Position
	PositionStruct 388
	positiveSign
	posSignPrecedes
	posSpaceSeparation
	postSpace
	preSpace
	Previous
	PreviousPaneObject
	PrintDialog 390
	Printer 392
	PrinterType
	PrintJobStruct 399
	PrintSetup
	ProgressBar 400
	ProgressData
	ProgressStyle
	ProgressType
	Prompt 406
	Properties B-773
	Property Matrices B-773
	PullDownItem 411
	PullDownMenu 417
	PushLanguage
	PushLevel
	Put

	Q
	QueueBlock 420
	QueueElement 421
	QueueEvents
	QuickTip

	R
	RangeData
	RangeText
	Ratio
	rawCode
	Read
	ReadData
	ReadFromBeginning
	ReadFromEnd
	ReadOnly
	ReadRecord
	ReadWrite
	Real 422
	RealData 426
	realStringInputFormat
	realStringOutputFormat
	RearrangeArgs
	Record
	Rectangle
	RectangleXORDiff
	Redisplay
	RedisplayData
	Reference
	ReferenceNumberID
	Region
	RegionCopy
	RegionStruct 430
	RegionType
	RelativeConstraint 434
	Remove
	Rename
	Rep 730
	Rep Utility
	Rep4to5 731
	Rep4to5 Utility
	RepeatDelay
	Repopulate
	ReportError
	ReportInvalid
	ResetI18n
	ResetOSBitmap
	ResetOSIcon
	ResetOSMouse
	ResetStorage
	RestoreDisplayContext
	RestoreDrawContext
	right
	RmDir
	rootDirectoryName
	RootObject
	route
	RowHeight
	RValue

	S
	Save
	SaveAs
	Scale
	Scaled
	ScreenDisplay 439
	ScreenID
	screenID
	Scroll
	ScrollBar 442
	ScrollData 446
	Scrolled Window
	ScrolledWindow 452
	ScrollEvent
	ScrollHeight
	ScrollStruct 450
	ScrollType
	ScrollWidth
	Second
	Seek
	SeekNextRecord
	SeekPreviousRecord
	SeekRandomRecord
	Selected
	SelectedBitmap
	SelectionType
	SelectOnDoubleClick
	SelectOnDownClick
	SendMessage
	SendMessageText
	SendMessageWhenSelected
	SetAcceptDrop
	SetAllowDefault
	SetAllowInvalid
	SetAllowModifyCollate
	SetAllowModifyCopies
	SetAllowModifyRange
	SetAllowToggling
	SetAutoClear
	SetAutomaticUpdate
	SetAutoRepeatSelection
	SetAutoSelect
	SetAutoSize
	SetAutoSortData
	SetAxisColor
	SetBackground
	SetBackgroundColor
	SetBasisYear
	SetBignum
	SetBignumData
	SetBitmap
	SetBitmapData
	SetBlinkRate
	SetBordered
	SetBottomOffset
	SetButtonType
	SetCellHeight
	SetCellSize
	SetCellWidth
	SetCenter
	SetChanged
	SetChar
	SetChartType
	SetClipRegion
	SetCodeSetName
	SetColumnText
	SetCompareFunction
	SetCompareFunctions
	SetCompressedData
	SetCompressedText
	SetCoordinateType
	SetCopyDraggable
	SetCurrent
	SetCurrentOffset
	SetCurrentPage
	SetCursorOffset
	SetCursorPosition
	SetDataConstructors
	SetDataGroupBackgroundColor
	SetDataGroupFillPattern
	SetDataGroupFont
	SetDataGroupForegroundColor
	SetDataGroupLineStyle
	SetDate
	SetDateData
	SetDefaultButton
	SetDefaultEventRoute
	SetDefaultLeadByte
	SetDefaultMessageFlag
	SetDeleteData
	SetDeleteText
	SetDelta
	SetDepressed
	SetDepth
	SetDestroyable
	SetDevice
	SetDeviceImage
	SetDevicePosition
	SetDeviceState
	SetDirectory
	SetDisabled
	SetDisplay
	SetDisplayContext
	SetDockType
	SetDrawContext
	SetDrawLines
	SetDrive
	SetEditMode
	SetError
	SetEventManager
	SetExitFunction
	SetExpandable
	SetExpanded
	SetExpandedData
	SetExpandedText
	SetFile
	SetFillPattern
	SetFilter
	SetFocus
	SetFocusOffset
	SetFont
	SetForeground
	SetFormatData
	SetFormatText
	SetGrid
	SetHeaderBackgroundColor
	SetHeaderHeight
	SetHeaderTextColor
	SetHeaderType
	SetHeaderWidth
	SetHelpContext
	SetHelpObject
	SetHelpObjectTip
	SetHelpTipsType
	SetHotKey
	SetHotSpot
	SetHzJustify
	SetHzScrollPos
	SetI18nName
	SetIcon
	SetIconData
	SetIconImage
	SetIconType
	SetImageType
	SetIndexMethod
	SetInitialDelay
	SetInputFormat
	SetInputFormatData
	SetInteger
	SetIntegerData
	SetInterval
	SetInvalid
	SetItemType
	SetJulianDay
	SetKey
	SetLanguage
	SetLanguageName
	SetLineStyle
	SetLinkDraggable
	SetLive
	SetLocale
	SetLocaleName
	SetLocked
	SetLowerCase
	SetMapTable
	SetMargins
	SetMarksXAxis
	SetMarksYAxis
	SetMaximized
	SetMaximum
	SetMaxLength
	SetMaxOffset
	SetMDIType
	SetMessage
	SetMessageFlags
	SetMessages
	SetMinimized
	SetMinimum
	SetModal
	SetMode
	SetMonoBackground
	SetMonoForeground
	SetMouse
	SetMouseEventRoute
	SetMoveable
	SetMoveDraggable
	SetNativeMapping
	SetNewHelpTipDelay
	SetNextPaneObject
	SetNoncurrent
	SetNormalBitmap
	SetNormalHotKeys
	SetNotifyMessage
	SetNumberID
	SetObject
	SetObjectConstructors
	SetObjNumberID
	SetOffset
	SetOppositeSide
	SetOrigin
	SetOSDraw
	SetOSText
	SetOSWText
	SetOutputFormat
	SetOutputFormatData
	SetOwner
	SetPageHeight
	SetPageWidth
	SetPalette
	SetPaperHeight
	SetPaperOrientation
	SetPaperWidth
	SetParent
	SetParentDrawBorder
	SetParentDrawFocus
	SetParentPalette
	SetPassword
	SetPath
	SetPathID
	SetPathName
	SetPosition
	SetPreviousPaneObject
	SetPrinterType
	SetProgressData
	SetProgressStyle
	SetProgressType
	SetQueueEvents
	SetQuickTip
	SetRange
	SetRangeData
	SetRatio
	SetReadFunction
	SetReal
	SetRealData
	SetReference
	SetReferenceNumberID
	SetRegion
	SetRegionType
	SetRepeatDelay
	SetReportInvalid
	SetRowHeight
	SetScale
	SetScaled
	SetScreenID
	SetScroll
	SetScrollData
	SetScrollHeight
	SetScrollType
	SetScrollWidth
	SetSelected
	SetSelectedBitmap
	SetSelectionType
	SetSelectOnDoubleClick
	SetSelectOnDownClick
	SetSendMessageText
	SetSendMessageWhenSelected
	SetShowing
	SetSizeable
	SetSplitterType
	SetSprintf
	SetSscanf
	SetStaticArray
	SetStaticData
	SetStaticHandle
	SetStep
	SetStretch
	SetStringData
	SetStringID
	SetSupportObject
	SetSystemButtonType
	SetSystemObject
	SetTabHeight
	SetTabHotKey
	SetTabText
	SetTabWidth
	SetTemporary
	SetText
	SetTextColor
	SetTextStyle
	SetTextTitle
	SetTextXAxis
	SetTextYAxis
	SetThickness
	SetTiled
	SetTime
	SetTimeData
	SetTopOffset
	SetTransparentBackground
	SetType
	SetUnanswered
	SetUpdate
	SetUpperCase
	SetUserCallbacks
	SetUserFunction
	SetUserObjects
	SetUserPalette
	SetUserPaletteData
	SetUTime
	SetUTimeData
	SetValue
	SetVariableName
	SetVersion
	SetViewCurrent
	SetViewOnly
	SetVirtualField
	SetVirtualRecord
	SetVisible
	SetVoidData
	SetVtJustify
	SetVtScrollPos
	SetWallpaper
	SetWidth
	SetWindow
	SetWindowManager
	SetWindowObject
	SetWordWrap
	SetWrapChildren
	SetWrappedData
	SetWriteFunction
	SetZoneOffset
	ShiftPressed
	shiftState
	Showing
	showing
	Sizeable
	skipGregorian
	Sort
	SpinControl 456
	Splitter 460
	SplitterType
	StandardArg 465
	startDate
	state
	StaticArray
	StaticData
	StaticHandle
	StatusBar 468
	Step
	Storage 471
	StorageFile 476
	streq 717
	Stretch
	String 478
	StringData 490
	StringID
	stringID
	StripFullPath
	strneq 720
	strnicmp 721
	strrepc 722
	strstrip 723
	Subtract
	SubtractCompareFunction
	SubtractDataConstructor
	SubtractFileSystem
	SubtractNotification
	SubtractObjectConstructor
	SubtractStaticModule
	SubtractUserCallback
	SubtractUserObject
	support
	SupportCurrent
	SupportDestroy
	SupportFirst
	SupportLast
	SupportObject
	SystemButton 501
	SystemButtonMenu
	SystemButtonType
	SystemObject

	T
	TabHeight
	TabHotKeyChar
	TabHotKeyIndex
	Table 507
	TableHeader 518
	TableRecord 522
	TabText
	TabWidth
	Tell
	TempName
	Temporary
	Text 525
	text
	TextBlock
	TextColor
	TextLine
	TextMode
	TextSize
	TextStyle
	TextTitle
	TextXAxis
	TextYAxis
	Thickness
	thousandsSeparator
	Tiled
	Time 532
	time12StringOutputFormat
	TimeData 536
	TimeName
	Timer 539
	timeSeparator
	TimeStamp
	timeStringInputFormat
	timeStringOutputFormat
	Title 543
	ToggleExpanded
	ToggleSelected
	ToolBar 546
	top
	topLevelShellClassRec
	TopOffset
	Touching
	TransparentBackground
	TreeItem 550
	TreeList 558
	Type
	type

	U
	Unanswered
	UnicodeToIso
	UnLock
	Update
	UpdateData
	UpdateObjects
	UpperCase
	userFlags
	UserFunction
	userFunction
	UserInformation
	userObject
	UserPaletteData
	userPaletteData
	userStatus
	UTime 565
	UTimeData 570

	V
	Validate
	ValidName
	Value
	value
	VariableName
	Version
	VerticalScrollBar
	ViewCount
	ViewCurrent
	ViewFirst
	ViewLast
	ViewLevel
	ViewNext
	ViewOnly
	ViewPrevious
	VirtualField
	VirtualRecord
	Visible
	VoidData
	vsprintf
	vsscanf
	VtJustify
	VtList 579
	VtScrollPos
	VtShift

	W
	Wallpaper
	wcstombs
	Width
	width
	WildStrcmp 726
	Window 583
	WindowManager 603
	windowManager
	WindowObject 609
	windowsPlatform
	windowsVersion
	WordWrap
	WrapChildren
	WrappedData
	Write
	WriteData
	WriteRecord

	X
	X Resources G-811
	xmBulletinBoardClassRec
	xmCascadeButtonClassRec
	xmFileSelectionBoxWidget
	xmLabelClassRec
	xmPrimitiveClassRec
	xmPushButtonClassRec
	xmRowColumnClassRec
	xmRowColumnWidgetClassRec
	xmScaleClassRec
	xmScrollBarClassRec
	xmTextFieldClassRec

	Y
	Year

	Z
	ZAF 5 to 4 Class Comparisons C-791
	ZafAbs 705
	ZafCoordinate 147
	ZafCrNlToCr 706
	ZafCrNlToNl 707
	ZafCrToCrNl 708
	ZafIChar
	ZafLanguageToZafLocale
	ZafLocaleToZafLanguage
	ZafMax 710
	ZafMessageStruct
	ZafMin 711
	ZafMSWindowsApp 340
	ZafNlToCrNl 712
	zafRegion
	ZafRegisterMouse 714
	ZafStrColl 715
	ZafStrdup 716
	ZafStricmp 718
	ZafStrlwr 719
	ZafStrupr 724
	ZafStrXFrm 725
	ZMake 746
	ZoneOffset

